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Abstract: In this paper, by treating the cosmological constant as a thermodynamic pressure, we study
the thermodynamics and phase transitions of the dyonic AdS black holes in Gauss-Bonnet-Scalar
gravity, where the conformal scalar field is considered. In a more general extended phase space, we
first verified the first law of black hole thermodynamics, and find that it is always true. Meanwhile,
the corresponding Smarr relation is also obtained. Then, we found that this black hole exhibits
interesting critical behaviors in six dimensions, i.e., two swallowtails can be observed simultaneously.
Interestingly, in a specific parameter space, we observed the small/intermediate/large black hole
phase transitions, with the triple point naturally appearing. Additionally, the small/large black hole
phase transition, similar to the liquid/gas phase transition of the van der Waals fluids, can also be
found in other parameter regions. Moreover, we note that the novel phase structure composed of two
separate coexistence curves discovered in the dyonic AdS black holes in Einstein-Born-Infeld gravity
disappears in Gauss-Bonnet-Scalar gravity. This suggests that this novel phase structure may be
related to gravity theory, and importantly, it is generally observed that the triple point is a universal
property of dyonic AdS black holes. On the other hand, we calculated the critical exponents near the
critical points and found that they share the same values as in mean field theory. Finally, it is true
that these results will provide some deep insights into the interesting thermodynamic properties of
the dyonic AdS black holes in the background of conformal scalar fields.

Keywords: thermodynamics; phase transition; triple point; conformal scalar field

1. Introduction

The thermodynamics of black holes (BHs) constitutes an important research subject in
the field of BH studies. In the 1970s, it was realized that BH is a thermodynamic system
with temperature and entropy [1–3]. The intriguing thermodynamic properties of BHs are
gradually being discovered, which differ from those of ordinary thermodynamic systems.
In particular, Hawking and Page discovered a phase transition between stable BHs and
thermal radiation, which is referred to as the Hawking-Page phase transition [4]. On the
other hand, the anti-de Sitter/conformal field theory (AdS/CFT) correspondence indicates
that the thermodynamics of BHs in AdS space can correspond to the thermodynamics of the
dual strongly coupled conformal field theory in the boundary of AdS space [5–7]. Therefore,
in the framework of the AdS/CFT correspondence, the Hawking-Page phase transition is
interpreted as a confinement/deconfinement phase transition of gauge fields [8]. Motivated
by this inspiration, the thermodynamics and phase transitions of BHs have been widely
investigated [9–14].

Recently, there has been increasing attention directed towards studying the thermody-
namics of AdS BHs in the extended phase space. It is worth noting that, in this framework,
the negative cosmological constant Λ is interpreted as the thermodynamic pressure, while
its conjugate quantity is regarded as the thermodynamic volume [15–21]. Subsequently, Ku-
bizňák and Mann compared the charged AdS BHs with the van der Waals (vdW) liquid-gas
system, and demonstrated that they share the same oscillatory behavior of pressure-volume,
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critical exponents, and scaling relations [22]. Thus, an analogy between charged AdS BHs
and vdW systems has been established. Specifically, the small/large BH phase transition
in AdS BHs is similar to the liquid/gas phase transition in vdW fluids. This analogy was
applied to different types of AdS BHs, and suggested that such a small/large BH phase
transition widely existed [23–28]. Later, it was discovered that AdS BHs exhibit more
interesting phase transitions in the extended phase space, such as the reentrant phase
transition and the triple point [29–41]. Furthermore, in the context of higher-order Lovelock
gravity, there are also some intriguing BHs phase transitions, such as multicritical phase
transitions [42–44].

By adding higher-order curvature terms to the gravitational action, the extended grav-
ity theories have been established, which include Lovelock gravity and GB gravity [45–47].
These extended gravity theories have provided new insights into the study of BHs in higher-
dimensional cases. For example, Wei found that charged AdS BHs in GB gravity exhibits
small/intermediate/large BH phase transitions in six-dimensional spacetime, with the ap-
pearance of triple point [31]. Frassino studied the phase transitions of charged AdS BHs
in third-order Lovelock gravity and confirmed the existence of triple point and reentrant
phase transitions in higher dimensions [32]. More studies have shown that AdS BHs in
extended gravity exhibits many intriguing properties [42–44,48–50]. On the other hand, qu-
asitopological electromagnetism is a class of interesting and significant objects in the study
of BHs [51–56]. Recently, Liu et al. have introduced a novel concept of quasitopological
electromagnetism, which is defined as the square of the norm of the topological wedge
product of the Maxwell field strength of order k (k > 2) [51]. Subsequently, Li investigated
the phase transitions of the dyonic AdS BHs in Einstein-Born-Infeld (EBI) gravity and
obtained some interesting results, such as triple point and novel phase structure composed
of two separate coexistence curves [57]. Moreover, we also revealed the intriguing ther-
modynamic properties of dyonic AdS BHs in Einstein-Gauss-Bonnet (EGB) gravity and
observed the triple point [58].

Recently, a class of high-dimensional dyonic BH solutions, which include the dyonic
BHs in Gauss-Bonnet-Scalar (GBS) gravity, has been derived by coupling Lovelock-Scalar
gravity with quasitopological electromagnetism [59]. The conformal scalar field is very
important for BHs and it is also quite interesting. Recently, Oliva et al. have developed a
model for the gravity theory coupled to the real scalar field [60,61]. Based on this model,
higher dimensional BHs with scalar hair have been studied [62–66]. It is believed that
the conformal scalar field can affect the thermodynamic stability of hairy BHs [62,63].
Interestingly, one also finds that the conformal scalar field has an impact on the local
stability of BHs [59]. Specifically, the range of horizon radius for stable BHs decreases
with the increase in the conformal scalar field parameter H. Clearly, these studies indicate
that BHs influenced by the conformal scalar field exhibit many intriguing thermodynamic
properties which are worthy of further investigation. In addition, although dyonic AdS
BHs in EBI gravity and EGB gravity exhibit some rich phase transitions, such as triple
points [57,58], it is still unclear whether these intriguing phase transitions also exist in GBS
gravity when considering the conformal scalar field. Therefore, in this paper, we study the
thermodynamics and phase transitions of the dyonic BHs in GBS gravity by considering
the effect of the conformal scalar field in the extended phase space. We are aim to further
reveal the interesting thermodynamic properties of the dyonic BHs in GBS gravity and
provide insights into the influence of the conformal scalar field on dyonic AdS BHs.

This paper is organized as follows. In Section 2, we give a review of the dyonic BHs
in GBS gravity when considering the conformal scalar field. In Section 3, we study the
thermodynamics of the dyonic BHs in the extended phase space. In Section 4, we investigate
the phase transitions and phase diagrams of the dyonic AdS BHs, where the conformal
scalar field is considered. Section 5 involved the computation of critical exponents near the
critical points. Finally, Section 6 concludes with a summary and discussion.
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2. Review of the Dyonic BHs

The action of high curvature gravity coupled to the conformal scalar field and matter
sources can be expressed as [59]

I =
∫

ddx
√
−g

(
pmax

∑
p=0

1
2k δ

µ1ν1 ...µpνp
σ1λ1···σpλp

(
apRσ1λ1

µ1ν1 · · · R
σpλp
µpνp + bpξd−4pSσ1λ1

µ1ν1 · · · S
σpλp
µpνp

)
+ Lqt

)
, (1)

where Lqt represents the Lagrangian density of matter, ap is a Lovelock coupling constant,
and bp is a conformal coupling constant. Here, δ

µ1ν1···µpνp
σ1λ1···σpλp

is the generalized Kronecker delta

and Rσλ
µν represents the components of the Riemann tensor. The tensor Sσλ

µν is defined as

Sσλ
µν = ξ2Rσλ

µν − 2δ
[σ
[µ

δ
λ]
ν]
▽βξ▽βξ − 4ξδ

[σ
[µ
▽ν]▽λ]ξ + 8δ

[σ
[µ
▽ν]ξ▽λ]ξ, where ξ describes the scalar

field [60,61]. As a certain class of Lovelock coupling gravity, the dimensionally continued
gravity can be obtained when assuming [67–69]

ap =

(
n − 1

p

)
[(d − 1)− 2p]!

(d − 2)!l−2(p+1−n)
. (2)

It should be noted that l is related to the cosmological constant, i.e., Λ = − (d−1)(d−2)
2l2 .

Meanwhile, n is associated with the dimensionality parameter d, where d = 2n + 1 is for
odd dimensions and d = 2n + 2 is for even dimensions. The gravitational field equation in
Equation (1) can be determined by the action principle, i.e.,

pmax

∑
p=0

ap

2p+1 δ
ασ1λ1 ...σpλp
βκ1ρ1···κpρp

Rκ1ρ1
σ1λ1

· · · R
κpρp
σpλp

= −ς
(M)α
β − ς

(S)α
β , (3)

where ς
(qt)α
β is the energy-momentum tensor corresponding to the material source, and which

is defined by

ς
(M)
αβ = − 2√−g

δIqt

δgαβ
. (4)

One should note that Iqt represents the action associated with matter. And, the energy-
momentum tensor of the conformal scalar field is

ς
(S)α
β =

pmax

∑
p=0

bp

2p+1 ξd−4pδ
ασ1λ1 ...σpλp
βκ1ρ1···κpρp

Sκ1ρ1
σ1λ1

· · · S
κpρp
σpλp

. (5)

Based on the action principle, the scalar field equation is constructed as

pmax

∑
p=0

(d − 2p)
bp

2p ξ(d−1)−4pδ
σ1λ1 ...σpλp
κ1ρ1···κpρp Sκ1ρ1

σ1λ1
· · · S

κpρp
σpλp

= 0. (6)

Moreover, the Lagrangian density of the material source is

Lqt = −1
4

FρσFρσ − 1
2m!

Hν1ν2···νm Hν1ν2···νm − ηLint, (7)

where η is a coupling parameter, and Lint takes the form of

Lint = δ
ρ1···ρd
σ1···σd Fρ1ρ2 Hρ3···ρd Fσ1σ2 Hσ3···σd . (8)

In addition, the energy-momentum tensor corresponding to the Lagrangian density (7) can
be expressed as
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ς
(M)
αβ = FαρFρ

β − 1
4

gαβFρσFρσ +
1

2(m − 1)!
Hαν1···νm−1 Hν1···νm−1

β

− 1
2(m!)2 δ

ν1···νmρ

σ1···σm(αgβ)ρ
Hν1···νm Hσ1···σm + ηgαβLint. (9)

To construct the hairy dyonic BH solutions, one applies condition (2) and the static
spherical symmetry line element

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΥ2
d−2, (10)

where dΥ2
d−2 is the metric of the (d−2)-dimensional hyper-surface of curvature (d−2)(d−3)γ,

which is defined as

dΥ2
d−2 =


dθ2

1 + ∑d−2
j=2 ∏

j−1
l=1 sin2 θldθ2

j , γ = 1,

dθ2
1 + sinh2 θ1dθ2

2 + sinh2 θ1 ∑d−2
j=3 ∏

j−1
l=2 sin2 θldθ2

j , γ = −1,

∑d−2
j=1 dϕ2

j , γ = 0.

(11)

The magnetic field of this (d − 2)-dimensional hyper-surface can be expressed as

Hν1ν2···νm = q
√

Σδx1···xm

ν1···νm , (12)

where q is related to the magnetic charge and Σ represents the volume of the (d − 2)-
dimensional hyper-surface. For the purely electric case, the corresponding Maxwell tensor
is of the form

Fαβ = h
′
(r)δtr

αβ, (13)

where prime denotes differentiation with respect to r. Based on Equations (12) and (13),
the following equation can be obtained,

r2(d−2)
(
(d − 2)h

′
(r) + rh

′′
(r)
)
− 8η((d − 2)!)2q2

(
(d − 2)h

′
(r)− rh

′′
(r)
)
= 0. (14)

Integrating the above equation, it gives

h
′
(r) =

Qrd−2

r2(d−2) + 8η((d − 2)!)2q2
. (15)

It should be noted that the constant of integration Q in the above equation is related to the
electric charge.

The configuration of a scalar field can be defined as

ξ(r) =
X
r

. (16)

When the conditions
pmax

∑
p=0

pbp
(d − 1)!

(d − 1 − 2p)!
γp−1X 2−2p = 0, (17)

and
pmax

∑
p=0

bp
(d − 1)!

(
d(d − 1) + 4P2)

(d − 1 − 2p)!
γpX−2p = 0 (18)

are satisfied, it shows that ξ(r) is a solution of Equation (6). It can be shown that there is an
unknown X in Equations (17) and (18), so that one of these two equations must constitute a
constraint on the constant bp’s. Therefore, by considering the gravitational field equations
given in Equation (3), choosing the Lovelock parameter ap arbitrarily, and based on the
scalar field ξ(r) subject to the constraints of Equations (17) and (18), the energy-momentum
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tensor (9), and (15), an independent equation of motion can be obtained, which takes the
form of

d
dr

[
pmax

∑
p=0

αp

(
γ − f (r)

r2

)p
]
+

d − 1
r

pmax

∑
p=0

αp

(
γ − f (r)

r2

)p

=
q2

2(d − 2)r2d−3 − 2H
rd+1 +

Q2

2(d − 2)
(

r2d−3 + 8ηq2(Γ(d − 1))2r
) , (19)

where

α0 =
a0

(d − 1)(d − 2)
, α1 = 1, αp =

2p

∏
n=3

(d − n)ap (20)

with the conditions p ≥ 2. By solving Equation (19), one obtains

pmax

∑
p=0

αp

(
γ − f (r)

r2

)p
=

µ

r(d − 1)
+

2H
rd − q2

2(d − 2)(d − 3)r2(d−2)

− Q2

2(d − 2)r2(d−2) 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
,
−8ηq2(Γ(d − 1))2

r2(d−2)

]
, (21)

where

H =
pmax

∑
p=0

bp
(d − 2)!γpX d−2p

(d − 2 − 2p)!
(22)

is a parameter related to the conformal scalar field.
Therefore, by setting α0,1,2 ̸= 0 and αp = 0 for p ≥ 3 in Equation (21), a spherical

(γ = 1)1 dyonic BHs with the effect of conformal scalar field can be obtained in GBS gravity,
which is [59]

f (r) = 1 +
r2

2α2

[
1 −

√
1 − 4α2

l2 +
8α2M

(d − 2)Σrd−1 +
8α2H

rd − 8α2q2r−2(d−2)

(d − 2)(d − 3)
− 2α2Q2F

(d − 2)r2(d−2)

]
, (23)

where

F = 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
;
−8ηq2(Γ(d − 1))2

r2(d−2)

]
(24)

is a hypergeometric function. Here, M is the BH mass, H is the parameter related to the
conformal scalar field, Σ is the volume of the (d − 2)-dimensional hyper-surface, and l
corresponds to the negative cosmological constant as Λ = − (d−1)(d−2)

2l2 . Moreover, Q and q
represent the electric and magnetic charges of the BH, respectively.

3. Thermodynamics of the Dyonic BHs

In this subsection, we study the thermodynamics of the dyonic BHs in the extended
phase space, where the conformal scalar field is considered. In this case, the negative cosmo-
logical constant Λ is regarded as the thermodynamic pressure P = − Λ

8π [15]. Furthermore,
by solving the equation f (rh) = 0, the outer horizon radius rh of BH can be obtained, which
is determined by the largest root of this equation. Thus, we can express the BH mass in
terms of the horizon radius rh as
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M =
q2r4−d

h Σ
4(d − 3)rh

+
8Pπrd−1

h Σ
d − 1

+
(d − 2)rd−5

h Σ(α2 + r2
h)

2
− (d − 2)HΣ

rh

− 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
;
−8ηq2(Γ(d − 1))2

r2(d−2)
h

]
. (25)

Based on the definition of Hawking temperature T = f ′(rh)
4π , the BH temperature can

be determined,

T =
4Pπr3

h
(d − 2)(r2

h + 2α2)
+

r3−d
h H

2π(r2
h + 2α2)

+
2(d − 1)(r2

h + α2)

8πrh(r2
h + 2α2)

− 1
2πrh

−
r7−2d

h q2

8(d − 2)π(r2
h + 2α2)

−
(d − 3)r7

hQ2

8(d − 2)π(r2
h + 2α2)[r2d

h + 8r4
hηq2(Γ(d − 1))2]

. (26)

Furthermore, in the extended phase space, the BH mass should be regarded as the
enthalpy rather than the internal energy, i.e., H ≡ M. Therefore, we can calculate the other
thermodynamic quantities of BH, such as the thermodynamic volume V, entropy S, electric
potential ΦQ, and magnetic potential Φq as follows,

V =

(
∂H
∂P

)
S,Q,q

=
8πrd−1

h Σ
d − 1

, (27)

S =
∫ rh

0
T−1

(
∂H
∂r

)
P,Q,q

=
2πrd−4

h Σ
(
(d − 4)r2

h + 2(d − 2)α2
)

d − 4
, (28)

ΦQ =

(
∂H
∂Q

)
S,P,q

=
1
2

Qr3−d
h Σ 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
;
−8ηq2(Γ(d − 1))2

r2(d−2)
h

]
, (29)

Φq =

(
∂H
∂q

)
S,P,Q

=
r3−d

h Σq
2(d − 3)

+
(d − 3)Q2rd+3

h Σ

4(d − 2)q
[
r2d

h + 8q2r4
hη(Γ(d − 1))2

]
−

(d − 3)r3−d
h Q2Σ

4(d − 2)q 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
;
−8ηq2(Γ(d − 1))2

r2(d−2)
h

]
. (30)

Considering the characteristics of the parameters H, α2, and η, we regard them as the
new thermodynamic variables. Therefore, it can be verified that these thermodynamic
quantities satisfy the follow differential form

dH = TdS + ΦQdQ + Φqdq + ΦHdH + Φα2 dα2 + Φηdη + VdP, (31)

where

ΦH =

(
∂H
∂H

)
S,P,Q,q,α2,η

= − (d − 2)Σ
rh

(32)

is the conjugate quantity to H,

Φα2 =

(
∂H
∂α2

)
S,P,Q,q,H,η

=
1
2
(d − 1)rd−5

h Σ −
4(d − 2)πrd−4

h η

d − 4
T (33)

is the conjugate quantity to α2,
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Φη =

(
∂H
∂η

)
S,P,Q,q,H,α2

=
(d − 3)Q2r3−d

h Σ

8(d − 2)η
[
1 + 8q2r4−2d

h η(Γ(d − 1))2
] − (d − 3)Q2r3−d

h Σ
8(d − 2)η

× 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
;
−8ηq2(Γ(d − 1))2

r2(d−2)
h

]
(34)

is the conjugate quantity to η. In addition, the corresponding Smarr relation can be obtained,
which is of the form

(d − 3)H = (d − 2)TS − 2PV + (d − 3)QΦQ + (d − 3)qΦq + (d − 2)HΦH + 2α2Φα2 + 2ηΦη . (35)

Through the above discussion, we find that both the first law of BH thermodynamics
and the Smarr relation hold in a more general extended phase space which H is considered
as the new thermodynamic variable.

The Gibbs free energy, as a quantity describing the global stability of a BH system, is
given by G = H− TS. Therefore, we obtain

G =
q2r3−d

h Σ
4(d − 3)

− (d − 2)HΣ
rh

+
8Pπrd−1

h Σ
d − 1

+
1
2

drd−3
h Σ +

(d − 2)drd−5
h α2Σ

2(d − 4)
− HrhΣ

r2
h + 2α2

+
q2r5−d

h Σ
4(d − 2)(r2

h + 2α2)
−

8Pπrd+1
h Σ

(d − 2)(r2
h + 2α2)

−
(d − 1)rd−1

h Σ
2(r2

h + 2α2)
− 2(d − 2)Hα2Σ

(d − 4)rh(r2
h + 2α2)

+
r−1−d

h (q2r4
h − 32Pπr2d

h )α2Σ
2(d − 4)(r2

h + 2α2)
+

(d − 2)(d − 1)rd−5
h α2(r2

h + α2)Σ
(d − 4)(r2

h + 2α2)
−

(d − 1)rd−3
h α2Σ

2(r2
h + 2α2)

+
1
4

Q2r3−d
h Σ 2F1

[
1,

d − 3
2(d − 2)

;
3(d − 2)− 1

2(d − 2)
;
−8ηq2(Γ(d − 1))2

r2(d−2)
h

]

+
(d − 3)Q2rd+3

h Σ
(
(d − 4)r2

h + 2(d − 2)α2
)

4(d − 4)(d − 2)(r2
h + 2α2)

[
r2d

h + 8q2r4
hη(Γ(d − 1))2

] . (36)

The appearance of a swallowtail in a Gibbs free energy temperature (G − T) diagram
indicates the occurrence of a BH phase transition. Therefore, we study BH phase transitions
by analyzing the swallowtail observed in the G − T diagram.

4. Phase Transitions and Phase Diagrams of the Dyonic BHs

In this section, we would like to study the phase transitions and phase diagrams of
the dyonic AdS BHs in GBS gravity. In particular, this paper focuses on the BH phase
transition in six-dimensional spacetime2. Naturally, based on the temperature Equation (26),
the equation of state for the BH can be obtained as

P(rh, T) =
(d − 2)T

4rh
+

d − 2
8πr2

h
+

(d − 2)Tα2

2r3
h

+
(d − 2)α2

4πr4
h

−
(d − 2)Hr−d

h α2

4π(r2
h + 2α2)

+
q2r4−2d

h
32π

− 3(d − 1)(d − 2)α2

16πr2
h(r

2
h + 2α2)

−
(d − 2)r−d

h

(
2Hr2

h + (d − 1)rd
)

16π(r2
h + 2α2)

+
(d − 3)Q2r4

h

32π
[
r2d

h + 8q2r4
hη(Γ(d − 1))2

] − (d − 1)(d − 2)α2
2

8πr4
h(r

2
h + 2α2)

. (37)
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Moreover, considering the thermodynamic volume V ∝ rd−1
h , the critical point can be

determined by the following conditions,(
∂P
∂rh

)
T
= 0,

(
∂2P
∂r2

h

)
T

= 0; or
(

∂T
∂rh

)
P
= 0,

(
∂2T
∂r2

h

)
P

= 0. (38)

As is well known, the local thermodynamic stability of BHs is measured by the heat
capacity with a constant pressure, denoted as CP. When CP is positive, it indicates that the
system is locally stable. On the contrary, when CP is negative, it suggests that the system is
locally unstable. For a constant pressure P, the heat capacity CP is defined as

CP = T
(

∂S
∂T

)
P

. (39)

By substituting thermodynamic quantities into the calculation, CP can be further repre-
sented as

CP = T
(

∂rh S
∂rh T

)
P
∝ (∂rh T)−1

P . (40)

In this paper, we follow the conditions of T > 0 and S > 0. Thus, in the T − rh
diagram, the BH branches with positive and negative slopes correspond to stable and
unstable phases, respectively, and their corresponding CP values are positive and negative.

Next, we proceed to study BH phase transitions and phase diagrams, with a particular
focus on the triple point. In addition, we also focus on the effect of the conformal scalar
field on BH phase transitions. Therefore, in this paper, we set the electric charge Q = 10,
magnetic charge q = 5, and parameter Σ = 1, and vary the conformal scalar field parameter
H, the coupling parameters α2, and η to investigate the phase transitions and phase
diagrams of the dyonic BHs.

4.1. Phase Transitions by Fixing H and η While Varying α2

In this subsection, we study the BH phase transitions and phase diagrams by fixing
the conformal scalar field parameter H = 0.01 and the coupling parameter η = 0.01, while
varying α2 as 1, 5, and 10.

4.1.1. α2 = 1

In this case, according to Equations (37) and (38), a critical point can be determined,
which is

Tc = 0.102946, Pc = 0.0156174. (41)

The behaviors of temperature T with respect to horizon radius rh and Gibbs free
energy G with respect to temperature T are plotted in Figure 1a,b, respectively. It should
be noted that isobaric curves of the same color in (a) and (b) correspond to same pressure
values. In Figure 1a, when P < Pc, two extremal points appear on the isobaric curves
(represented by red and green), which divide these two curves into three branches: the
stable small BH branch, the unstable intermediate BH branch, and the stable large BH
branch. Among them, stable branches are represented by solid curves with a positive value
of CP, while unstable branches are represented by dashed curves with a negative value
of CP. When P > Pc, there is no extremal point on the isobaric curve, and T increases
monotonically with rh.

Now, let us focus on the behavior of Gibbs free energy in Figure 1b. For P < Pc, a
swallowtail appears on each isobaric curve, which suggests the occurrence of a first-order
small/large BH phase transition. It should be noted that the nonsmooth points on the
isobaric curves in the G − T diagram correspond to the extremal points on the isobaric
curves in the T − rh diagram. Regarding the red and green isobaric curves, it can be found
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that the system initially exhibits a small BH phase and turns into a large BH phase near
the intersection as temperature increases. Furthermore, by comparing the red with the
green isobaric curves, it can be discovered that the size of the swallowtail decreases as the
pressure increases. When the pressure reaches Pc, the swallowtail disappears. For P > Pc,
the Gibbs free energy decreased monotonically with temperature, which indicates that no
phase transition occurs in the system.
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Figure 1. (a) Temperature T vs. horizon radius rh. (b) Gibbs free energy G vs. temperature T. The red,
green, orange, and black isobaric curves in (a,b) correspond to P = 0.01, 0.013, 0.0156174, and 0.02,
respectively. Solid curves indicate stable branches, while dashed curves represent unstable branches.
(c) P-T phase diagram for the six-dimensional dyonic BHs when H = 0.01, η = 0.01 and α2 = 1.

The phase diagram for the dyonic BHs, as shown in Figure 1c. It can be observed that
the pressure increases monotonically with temperature and terminates at the critical point
(Pc, Tc). The region of small BHs is located above the coexistence curve, while the region of
large BHs lies below it. This is a typical small/large BH phase transition, which is similar
to the vdW liquid/gas phase transition.

4.1.2. α2 = 5

In this case, three critical points can be obtained, which are

Tc1 = 0.0477114, Pc1 = 0.00250879, (42)

Tc2 = 0.0496516, Pc2 = 0.00374402, (43)

Tc3 = 0.0490982, Pc3 = 0.00444920. (44)

Firstly, we focus on the behavior of temperature, as shown in Figure 2a. When P < Pc1,
two extremal points appear on the blue isobaric curve, which divide it into three branches:
the stable small BH branch, the unstable intermediate BH branch, and the stable large
BH branch. Interestingly, when Pc1 < P < Pc2, four extremal points emerged on the red
isobaric curve, which divide it into five branches: the stable small BH branch, the unstable
small BH branch, the stable intermediate BH branch, the unstable large BH branch, and the
stable large BH branch. For P = Pt = 0.00337487, it is easy to utilize Maxwell equal area
laws to construct two pairs of equal area regions in the T − S diagram, as illustrated in
Figure 2b. These two pairs of regions have the same temperature, i.e., T = Tt = 0.0485154.
This implies that the BH undergoes two phase transitions simultaneously at such pressure
and temperature. In fact, this result indicates the existence of a triple point, where small,
intermediate, and large BH phases can coexist. When P increases to Pc2, the BH system
undergoes a second-order BH phase transition. For Pc2 < P < Pc3, two extremal points
on the orange isobaric curve divide it into three branches: the stable small BH branch,
the unstable intermediate BH branch, and the stable intermediate BH branch. Moreover,
the first-order phase transition turns to a second-order phase transition as P approaches to
Pc3. When P > Pc3, the temperature T increases monotonically with rh, which implies that
there is only one BH branch.
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Figure 2. (a) T vs. rh. The blue, red, black, orange, green and gray curves correspond to P = 0.0024,
0.00337487, 0.00374402, 0.004, 0.0044492 and 0.005, respectively. Solid curves indicate stable branches,
while dashed curves represent unstable branches. (b) T − S diagram of two pairs of equal area
regions at pressure P = Pt = 0.00337487. The horizontal line has a temperature T = Tt = 0.0485154.

We have plotted the behavior of Gibbs free energy G with respect to temperature
T, as shown in Figure 3. When P < Pc1, a swallowtail appears in the G − T diagram,
which indicates a small/large BH phase transition. As the pressure increased to Pc1 <
P < Pt, two swallowtails appear in Figure 3b, which suggests the potential existence
of two BH phase transitions. However, the intermediate BH branch is suppressed by
the lower free energy branch and does not participate in the phase transition. Therefore,
in this case, only the small/large BH phase transition occurs. Increasing the pressure to
P = Pt, it can be discovered that the intersection points of two swallowtails appear at
the same point, which suggests the occurrence of small/intermediate/large BH phase
transitions. For Pt < P < Pc2, two swallowtails can be observed, and all BH branches
can participate in the phase transitions. This indicates that in this case, the system can
undergo small/intermediate and intermediate/large BH phase transitions simultaneously.
When the pressure is increased to Pc2 < P < Pc3, one swallowtail can be noticed, which
implies that there exists only one small/intermediate BH phase transition. When P > Pc3,
the Gibbs free energy decreases monotonically with temperature, which indicates that no
phase transition occurs in the system.

The phase diagram is illustrated in Figure 4, where Figure 4b is a local magnifica-
tion near the triple point. As can be seen from the phase diagram, the system undergoes
the small/large BH phase transition at P < Pt. Interestingly, at the triple point (Pt, Tt),
the small, intermediate, and large BHs phases coexist, and the system undergoes the
small/intermediate/large BH phase transitions. When Pt < P < Pc2, the small/intermediate
and intermediate/large BH phase transitions appear simultaneously. When the pressure
increases to Pc2 < P < Pc3, the system undergoes only the small/intermediate BH phase
transition. In summary, these results suggest the presence of a rich variety of phase transi-
tion types in this parameter region.
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Figure 3. Cont.
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Figure 3. G vs. T. The red, green and orange curves represent the small, intermediate and large BHs,
while the dashed curves indicate unstable BHs.
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Figure 4. Phase diagram for the six-dimensional dyonic BHs with H = 0.01, η = 0.01 and α2 = 5.
(a) Entire phase diagram. (b) An enlarged view near the triple point (Pt, Tt).

4.1.3. α2 = 10

Similar to the previous case, three critical points are obtained, which are

Tc1 = 0.0349879, Pc1 = 0.0016521, (45)

Tc2 = 0.0354822, Pc2 = 0.0019592, (46)

Tc3 = 0.0415633, Pc3 = 0.0228754. (47)

Firstly, we would like to analyze the behavior of temperature T with respect to rh,
as shown in Figure 5. When P < Pc1, two extremal points appear on the blue isobaric curve,
which divide it into three branches: the stable small BH branch, the unstable intermediate
BH branch, and the stable large BH branch. As the pressure increases to Pc1 < P < Pc2,
the red isobaric curve is divided into five branches by four extremal points: the stable small
BH branch, the unstable small BH branch, the stable intermediate BH branch, the unstable
large BH branch, and the stable large BH branch. For Pc2 < P < Pc3, there are two extremal
points on the orange isobaric curve, which suggests the existence of three BH branches.
When the pressure increases to P > Pc3, the temperature increases monotonically with rh,
which implies that there is only one BH branch.
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Figure 5. (a) T vs. rh for P = 0.0019. (b) T vs. rh, where the blue, purple, black, orange, green and
gray curves represent P = 0.0015, 0.0016521, 0.0019592, 0.01, 0.0228754 and 0.03, respectively. Solid
curves indicate stable branches, while dashed curves represent unstable branches.

Next, let us analyze the behavior of Gibbs free energy G with respect to T. When
P < Pc1, the appearance of a swallowtail in Figure 6a actually indicates the small/large
BH phase transition. When the pressure increased to Pc1 < P < Pc2, two swallowtails
can be observed in Figure 6b. However, the intermediate BH branch is suppressed by
the BH branches with lower Gibbs free energy and does not participate in the phase
transition. Therefore, in this pressure range, only the small/large BH phase transition
occurs. For Pc2 < P < Pc3, the presence of a swallowtail indicates the occurrence of the
small/large BH phase transition. When P > Pc3, the monotonic decrease in Gibbs free
energy suggests that no phase transition occurs in the system.
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Figure 6. G vs. T. The red, green and orange curves represent the small, intermediate and large BHs,
while the dashed curves indicate unstable BHs.

Finally, the phase diagram is illustrated as shown in Figure 7. The coexistence curve
originates from the origin and terminates at the critical point (Pc3, Tc3). From the phase
diagram, it is evident that while there are three critical points in this parameter region, only
the small/large BH phase transitions occur.
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Figure 7. Phase diagram for the six-dimensional dyonic BHs with H = 0.01, η = 0.01 and α2 = 10.

4.2. Phase Transitions by Fixing H and α2 While Varying η

In this subsection, by setting the conformal scalar field parameter H = 0.01 and the
coupling parameter α2 = 6, while varying η as 0.01, 0.1, and 5, we study the BH phase
transitions and phase diagrams.

4.2.1. η = 0.01

In this case, three critical points can be obtained, which are

Tc1 = 0.0438641, Pc1 = 0.00209037, (48)

Tc2 = 0.0455153, Pc2 = 0.00317372, (49)

Tc3 = 0.0460847, Pc3 = 0.00583728. (50)

We have plotted the behavior of temperature T with respect to rh, as shown in Figure 8a.
For Pc1 < P < Pc2, there are four extremal points on the isobaric curve, which suggests
the existence of five BH branches. When P = Pt = 0.00292831, we have utilized Maxwell
equal area law to construct two pairs of equal area regions with the same temperature
T = Tt = 0.0447573, as shown in Figure 8b. In fact, this predicts the existence of a triple
point. Therefore, we plot the behavior of Gibbs free energy with respect to temperature,
as shown in Figure 9. As anticipated, the three BH branches intersect at a point when P = Pt,
which indicates the occurrence of the small/intermediate/large BH phase transitions.
Finally, the phase diagram is plotted in Figure 10. In the phase diagram, the triple point
where small, intermediate, and large BHs coexist can be observed.
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Figure 8. (a) T vs. rh. The blue, red, black, orange, green, and gray curves correspond to P = 0.002,
0.00292831, 0.00317372, 0.004, 0.00583728, and 0.007, respectively. The solid and dashed curves
represent stable and unstable branches, respectively. (b) T − S diagram of two pairs of equal
area regions at a pressure of P = Pt = 0.00292831. The horizontal line has a temperature of
T = Tt = 0.0447573.
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Figure 9. G vs. T. The red, green and orange curves represent the small, intermediate and large BHs,
while the dashed curves indicate unstable BHs.
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Figure 10. Phase diagram for the six-dimensional dyonic AdS BHs with H = 0.01, α2 = 6, and
η = 0.01. (a) Entire phase diagram. (b) An enlarged view near the triple point (Pt, Tt).
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4.2.2. η = 0.1

Like the previous case, three critical points can be obtained, which are

Tc1 = 0.0454479, Pc1 = 0.00313279, (51)

Tc2 = 0.0455649, Pc2 = 0.00319072, (52)

Tc3 = 0.0463009, Pc3 = 0.00429228. (53)

The T − rh diagram is illustrated in Figure 11, where four extremal points appear on
the red isobaric curve at P = 0.00316. However, the intermediate BH is suppressed and
does not participate in phase transitions, as shown in Figure 12b. This indicates that the
system only undergoes the small/large BH phase transitions, similar to the case discussed
in Section 4.1.3. Finally, the phase diagram, as illustrated in Figure 13, indicates that only
the small/large BH phase transitions occur in this parameter region.
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Figure 11. (a) T vs. rh for P = 0.00316. (b) T vs. rh, where the blue, purple, black, orange, green, and
gray curves represent P = 0.003, 0.00313279, 0.00319072, 0.0036, 0.00429228, and 0.0045, respectively.
The solid and dashed curves represent stable and unstable branches, respectively.
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Figure 12. G vs. T. The red, green, and orange curves represent the small, intermediate, and large
BHs, while the dashed curves indicate unstable BHs.
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Figure 13. Phase diagram for the six-dimensional dyonic BHs with H = 0.01, α2 = 6, and η = 0.1.

4.2.3. η = 5

In this case, there are three critical points located at

Tc1 = 0.0457980, Pc1 = 0.00324087, (54)

Tc2 = 0.0458859, Pc2 = 0.00329751, (55)

Tc3 = 0.0463043, Pc3 = 0.00404979. (56)

In Figure 14, there exists an isobaric curve with four extremal points, which seems
to indicate complex phase transition behavior. However, by analyzing the behavior of
Gibbs free energy in Figure 15, it can be found that only the small/large BH phase tran-
sitions occur, which is similar to the previous case. The phase diagram in Figure 16 also
supports our analysis, which indicates the small/large BH phase transitions occur in this
parameter region.
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Figure 14. (a) T vs. rh for P = 0.00327. (b) T vs. rh, where the blue, purple, black, orange, green, and
gray curves represent P = 0.003, 0.00324087, 0.00329751, 0.0036, 0.00404979, and 0.0045, respectively.
The solid and dashed curves represent stable and unstable branches, respectively.
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Figure 15. Cont.
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Figure 15. G vs. T. The red, green and orange curves represent the small, intermediate and large
BHs, while the dashed curves indicate unstable BHs.
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Figure 16. Phase diagram for the six-dimensional dyonic AdS BHs with H = 0.01, α2 = 6 and η = 5.

4.3. Phase Transitions by Fixing α2 and η While Varying H

In this subsection, by setting the coupling parameters α2 = 5 and η = 0.01, while
varying the conformal scalar field parameter H as 0.1 and 1, we study the BH phase
transitions and phase diagrams.

4.3.1. H = 0.1

In this case, three critical points are obtained, i.e.,

Tc1 = 0.0478445, Pc1 = 0.00258937, (57)

Tc2 = 0.0496781, Pc2 = 0.00375132, (58)

Tc3 = 0.0495021, Pc3 = 0.00494838. (59)

The behavior of temperature T with respect to rh is shown in Figure 17a. For Pc1 <
P < Pc2, four extremal points appear on each isobaric curve, which indicates a rich variety
of phase transitions. Obviously, when P = Pt = 0.00342036, we have utilized the Maxwell
equal area law to construct two pairs of equal area regions, as shown in Figure 17b. Then,
we plotted the behavior of Gibbs free energy in Figure 18. In particular, when P = Pt =
0.00342036, it can be discovered that three BH branches intersect at one point, which
suggests the occurrence of small/intermediate/large BH phase transitions. Finally, in the
phase diagram shown in Figure 19, a triple point can be observed where small, intermediate,
and large BH phases coexist.
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Figure 17. (a) T vs. rh. The blue, red, black, orange, green, and gray curves corresponds to P = 0.0025,
0.00342036, 0.00375132, 0.0043, 0.00494838, and 0.0055, respectively. The solid and dashed curves
represent stable and unstable branches, respectively. (b) T − S diagram of two pairs of equal area
regions at pressure P = Pt = 0.00342036. The horizontal line has a temperature T = Tt = 0.0486811.
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Figure 18. G vs. T. The red, green, and orange curves represent the small, intermediate, and large
BHs, while the dashed curves indicate unstable BHs.
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Figure 19. Phase diagram for the six-dimensional dyonic AdS BHs with α2 = 5, η = 0.01, and
H = 0.1. (a) Entire phase diagram. (b) An enlarged view near the triple point (Pt, Tt).

4.3.2. H = 1

Similar to the previous case, three critical points can be obtained, which are

Tc1 = 0.0490380, Pc1 = 0.00326926, (60)

Tc2 = 0.0499632, Pc2 = 0.00383222, (61)

Tc3 = 0.0558200, Pc3 = 0.01618840. (62)

The behaviors of temperature and Gibbs free energy are plotted in Figures 20 and 21.
After careful analysis, it can be determined that only small/large BH phase transitions
occur in this parameter region. Finally, the phase diagram in Figure 22 further shows this
small/large BH phase transition.
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Figure 20. T vs. rh, where the blue, purple, red, black, orange, green, and gray curves represent
P = 0.003, 0.00326926, 0.0035, 0.00383222, 0.008, 0.0161884, and 0.02, respectively. The solid and
dashed curves represent stable and unstable branches, respectively.
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Figure 21. Cont.
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Figure 21. G vs. T. The red, green and orange curves represent the small, intermediate and large
BHs, while the dashed curves indicate unstable BHs.
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Figure 22. Phase diagram for the six-dimensional dyonic AdS BHs with α2 = 5, η = 0.01, and H = 1.

5. Critical Exponents

It is widely believed that the critical exponents offer a valuable method for describing
the behavior of physical quantities near the critical point, and they do not depend on the
details of the physical system. Therefore, in this section we would like to calculate the
critical exponents in the vicinity of the critical points.

For convenience, we start by defining some reduced parameters, whereby we set

t =
T
Tc

− 1 = τ − 1, (63)

where τ = T
Tc

is defined as the reduced thermodynamic temperature, we set

ω =
V
Vc

− 1 = ν − 1, (64)

where ν = V
Vc

is defined as the reduced thermodynamic volume, and we define

p =
P
Pc

(65)

as the reduced thermodynamic pressure.
Next, let us review the definitions of the critical exponents α, β, γ, and δ near the

critical point [22]:

(1) Exponent α determines the behavior of the specific heat at constant volume,

CV = T
∂S
∂T

|V ∝ |t|−α. (66)
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(2) Exponent β describes the behavior of the order parameter η1 = Vl − Vs (the difference
between the volumes of the coexisting large and small BHs) on a given isotherm

η1 = Vl − Vs ∝ |t|β. (67)

(3) Exponent γ governs the behavior of the isothermal compressibility κT

κT = − 1
V

∂V
∂P

|T ∝ |t|−γ. (68)

(4) Exponent δ reflected the following behavior on the critical isotherm T = Tc

|P − Pc| ∝ |V − Vc|δ. (69)

Subsequently, we will proceed to compute these critical exponents. From Equation (28),
it can be found that the entropy S is independent of T, which leads

CV = T
∂S
∂T

|V = 0. (70)

Thus, the critical exponent is α = 0.
In addition, by substituting the reduced parameters introduced in Equations (63)–(65)

into Equation (37), we can calculate the corresponding state equations. Therefore, it is easy
to express the reduced pressure near the critical point as

p = A0 + A1ω + A2ω2 + A3ω3 + B0t + B1tω +O(tω2, ω4). (71)

The values of the expanded coefficients in Equation (71) for different parameters were
calculated, and the corresponding results are listed in Table 1.

Table 1. The values of the expanded coefficients in Equation (71) for different parameters.

H α2 η A0 A3 B0 B1

0.01 1 0.01 1 −0.0300092 4.73944 −1.55851
0.01 5 0.01 1 −0.0947391 22.7021 −11.2639
0.01 5 0.01 1 −0.0075045 5.13489 −1.79055
0.01 10 0.01 1 −0.1293810 14.1455 −7.97322
0.01 10 0.01 1 −0.0042004 6.25360 −2.33512
0.01 6 0.01 1 −0.1009740 22.4269 −11.6441
0.01 6 0.01 1 −0.0066289 5.42808 −1.93255
0.01 6 0.1 1 −0.0580844 27.1060 −13.9027
0.01 6 0.1 1 −0.0043064 5.73413 −2.07767
0.01 6 5 1 −0.0597647 28.6375 −14.6833
0.01 6 5 1 −0.0028678 6.79827 −2.60357
0.1 5 0.01 1 −0.0902457 21.6797 −10.8256
0.1 5 0.01 1 −0.0074550 5.15617 −1.80103
1 5 0.01 1 −0.1120780 14.0584 −7.47423
1 5 0.01 1 −0.0068363 5.41632 −1.9295

As shown in Table 1, the coefficient A0 = 1, the coefficient B0 is positive, and the
coefficients A3 and B1 are negative. Moreover, the coefficients A1 and A2 are absent in the
BH system, and thus they have not been listed in this table. Therefore, the reduced pressure
can be re-expressed as

p = 1 + A3ω3 + B0t + B1tω +O(tω2, ω4). (72)
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For a fixed t < 0, when differentiating the reduced pressure in Equation (72), we
obtain

dp = (3A3ω2 + B1t)dω. (73)

Additionally, by applying Maxwell equal area law, it can be obtained that∫ ωl

ωs
ω(3A3ω2 + B1t)dω = 0, (74)

where ωs and ωl are the volumes of the coexisting small and large BHs, respectively.
Moreover, the coexisting small and large BHs satisfy the following equation of state

p = 1 + A3ω3
s + B0t + B1tωs = 1 + A3ω3

l + B0t + B1tωl . (75)

By solving Equations (74) and (75), we obtain ωs = −ωl = −
√

B1
A3

√
−t. Therefore, the order

parameter η1 satisfies the condition

η1 = Vc(ωl − ωs) = 2Vc

√
B1

A3

√
−t. (76)

Therefore, the exponent β = 1
2 .

Then, by differentiating Equation (72), we obtain

∂V
∂P

|T =
1
B1

Vc

Pc

1
t
+O(ω). (77)

Further, we have

κT = − 1
V

∂V
∂P

|T ∝ − 1
B1

Vc

Pc

1
t

, (78)

which suggests that the exponent γ = 1.
Lastly, we set the reduced temperature t = 0 in Equation (72), resulting in

p − 1 = A3ω3, (79)

which indicates that the exponent δ = 3. Now, it can be verified that these critical exponents
satisfy the following scaling laws of thermodynamics, i.e.,

α + 2β + γ = 2, α + β(1 + δ) = 2,

γ(1 + δ) = (2 − α)(δ − 1), β(δ − 1) = γ. (80)

In summary, these critical exponents near the critical points have been calculated,
which are

α = 0, β =
1
2

, γ = 1, δ = 3. (81)

Therefore, we can conclude that this dyonic BH shares the same critical exponents as the
dyonic BH in EBI gravity [57] and EGB gravity [58]. Interestingly, these critical exponents
match those in mean field theory. This similarity is of great significance and provides
further support for the results obtained in this paper.

6. Conclusions and Discussion

By regarding the cosmological constant as the thermodynamic pressure, we study the
thermodynamics and phase transitions of the dyonic AdS BHs in GBS gravity, where the
conformal scalar fields are considered. Firstly, we treat the conformal scalar field parameter
H and the coupling parameters α2 and η as novel thermodynamic variables to verify the
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first law of BH thermodynamics and derive the corresponding Smarr relation in a more
general extended phase space. Then, we study the BH phase transitions by analyzing the
characteristic behaviors of temperature and Gibbs free energy in six-dimensional spacetime.
On the other hand, to analyze the effect of the conformal scalar field on the BH phase
transition, we fix and vary the values of the conformal scalar field parameter H and the
coupling parameters α2 and η to study the BH phase transition.

We first consider the case where H = 0.01 and η = 0.01, while α2 takes the values of
1, 5, and 10. For α2 = 1, we observed a typical small/large BH phase transition, which is
similar to the vdW liquid/gas phase transition. When α2 = 5, we discovered four extremal
points on the isobaric curve in the T-r diagram, as well as two swallowtails in the G-T
diagram. This actually indicates a rich variety of phase transitions beyond the small/large
BH phase transition. As a result, the small/intermediate/large BH phase transitions
can be found in this case. Additionally, the triple point where the small, intermediate,
and large BHs can coexist is obtained, i.e., (Pt = 0.00337487, Tt = 0.0485154). For α2 = 10,
although there are three critical points, as the intermediate BH branch has a higher free
energy and is suppressed by the lower free energy BH branch, thus only the small/large BH
phase transition can be discovered. Then, we fixed H = 0.01 and α2 = 6 while we varied
the parameter η to study the phase transition of BHs. When η = 0.01, we observed the
small/intermediate/large BH phase transitions, as well as the triple point, which is located
at (Pt = 0.00292831, Tt = 0.0447573). For the case of η = 0.01 and 5, which is similar to the
case of H = 0.01, η = 0.01, and α2 = 10, only the small/large BH phase transition occurs.
Finally, we set α2 = 5 and η = 0.01 and varied the parameter H to study the BH phase
transition. For H = 0.1, the small/intermediate/large BH phase transitions can be found.
As expected, a triple point appears, which is located at (Pt = 0.00342036, Tt = 0.0486811).
While for H = 1, only the small/large BH phase transitions can be observed. Based on
the above discussions, it can be found that the conformal scalar field has some significant
impact on the BH thermodynamics and phase transitions. On the other hand, we also note
that the novel phase structure composed of two separate coexistence curves, discovered
in EBI gravity [57], is absent in GBS gravity. This is consistent with the results obtained
in EGB gravity [58], further suggesting that this novel phase structure is related to the
gravity theory. In fact, these results also demonstrate that the triple point, where small,
intermediate, and large BHs can coexist, is a universal feature of dyonic AdS BHs.

Moreover, we calculated the critical exponents near the critical points and obtained
results for α = 0, β = 1

2 , γ = 1, and δ = 3. This implies that these critical exponents share
the same values as in mean field theory and are consistent with those obtained in other BH
systems. Finally, it can be summarized that our conclusions will provide important insights
for a deep understanding of the intriguing thermodynamic properties of the dyonic AdS
BHs in GBS gravity.

In addition, holographic duality provides a valuable method for the study of the
thermodynamic properties of AdS BHs, i.e., it reveals these characteristics from an alter-
native perspective [70,71]. Therefore, it is worth utilizing holographic duality to further
investigate the thermodynamics of this dyonic AdS BHs, which may reveal more intriguing
thermodynamic properties. This will also be a part of our future work.
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Notes
1 As we would like to study the thermodynamics and phase transitions of BHs in the extended phase space, we will focus only on

the spherical case (γ = 1) in this paper.
2 Based on a detailed study, we find that the rich phase transitions, such as the triple point, only appear in six dimensions while

absent in other dimensions.
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