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Abstract: We find that a big gap between indicators for the breaking strengths of the global chiral
SU(2) and U(1) axial symmetries in the QCD of the standard model (SM) can be interpreted as a new
fine-tuning problem. This may thus imply calling for a class beyond the SM, which turns out to favor
having a new chiral symmetry, and the associated massless new quark is insensitive to the chiral
SU(2) symmetry for the lightest up and down quarks so that the fine-tuning is relaxed. Our statistical
estimate shows that QCD of the SM is by more than 300 standard deviations off the parameter space
free from fine-tuning, and the significance will be greater as the lattice measurements on the QCD
hadron observables become more accurate. We briefly address a dark QCD model with massless new
quarks as one viable candidate.

Keywords: beyond the standard model; new quark; QCD-chiral-symmetry-structure

1. Introduction

Several types of fine-tuning problems have so far been pointed out that cannot be
resolved by the SM alone. All of these involve an unsatisfactory big cancellation, e.g., the
gauge hierarchy problem [1–4] and the strong CP problem [5–9]. The associated fine-tuned
small observables have been confirmed: the size of the Higgs mass is much smaller than the
Planck scale and the yet-unobserved electromagnetic dipole moment of neutron, respectively.

Fine-tunings can generically be related to existence of a hidden new symmetry that
relaxes the big cancellation so that the fine-tuning becomes absent in the symmetric limit,
which includes the ‘t Hooft naturalness argument [10]1. Taking this seriously into account
has so far motivated people to refine or go beyond standard theories with such a new
hidden symmetry and opened numerous frontiers in research directions along the lines of
theoretical particle and cosmological physics.

In this paper, we argue that a big gap between indicators for the breaking strengths of
the global chiral SU(2) and U(1) axial symmetries in the QCD of the SM can be interpreted
as a new fine-tuning problem.

QCD has been well explored and confirmed, but actually, we know less precisely how
low-energy QCD and the vacuum depend on quark flavors (described like the Columbia
plot); in particular, there is little understanding of how the relatively heavy strange quark
contributes there. This important open issue is thought of as an analogy to the top quark
contribution to the electroweak-symmetry broken vacuum in the Higgs potential of the SM,
called the electroweak-vacuum stability problem. What the present work focuses on is such
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a still nontrivial quark–flavor structure of the QCD vacuum, in particular, the essential gap
between the breaking strengths of the chiral SU(2) symmetry for the light up and down
quarks and U(1) axial symmetry.

The proposed new fine-tuning issue arises in an anomalous chiral Ward–Takahashi
identity, which dictates the chiral SU(2) breaking strength as the subtraction of the U(1)
axial breaking and the rate of the fluctuation of the QCD topological charge (Equation (1)).
There, a drastic cancellation between two independent infrared singularities is observed, at
around the QCD scale, which is responsible for the existence of the soft pions and required
to yield the finite quark condensate. This thus potentially causes fine-tuning and yields a
gigantic gap between the chiral SU(2) and U(1) axial breaking strengths.

We find that the gap is big enough to require fine-tuning, which corresponds to more
than 300 standard deviations for the QCD in the SM away from the parameter space free
from fine-tuning. The prospected statistical significance is subject to the higher accuracy of
the lattice QCD measurements on the hadronic observables. Thus, the fine-tuned big gap
between the chiral SU(2) and U(1) axial breaking strengths can be interpreted as a new
indication from QCD calling for beyond the SM.

As one viable candidate, a dark QCD model with massless new quarks is briefly addressed.

2. The Posed Fine-Tuning Problem and Hidden Symmetry

We begin by introducing a key equation, the anomalous-chiral Ward identity, showing a
relation between the indicators for the breaking strengths of chiral SU(2)L ×SU(2)R symmetry
(χchiral) and U(1)A axial symmetry (χaxial), together with the topological susceptibility (χtop).
In light of the QCD of the SM, we consider massive three-flavor QCD only including the
lightest up, down, and strange quarks relevant below the QCD scale of O(1) GeV. We perform
the three-flavor chiral SU(3) rotations to derive the anomalous Ward identities. Detailed
definitions of susceptibilities, as well as the explicit derivation for the Ward identities, are
supplied in Appendix A. Combining relevant identities, we thus find

χchiral = χaxial +
4

m2
l

χtop , (1)

where ml denotes the mass for the up and down quarks. χchiral is given as the difference of
the (volume-averaged) propagators of mesons forming the chiral partner, which becomes zero
when the partner masses are identical. χaxial is the similar indicator for the breaking strength
of the U(1) axial symmetry. χtop measures the rate of fluctuation of the topological charge2.

In the case with small-enough ml and finite strange quark mass ms (ms ≫ ml → 0),
as in the QCD of the SM at the physical point, the topological susceptibility χtop can
approximately be evaluated as (see also Appendix A)3

χtop

∣∣∣∣∣
ml≪ms

∼
(
⟨ūu⟩
ml

+
⟨d̄d⟩
ml

+
⟨s̄s⟩
ms

)
m̄2 , (2)

where m̄ = (2/ml + 1/ms)−1. Noting that ⟨ūu⟩, ⟨d̄d⟩, and ⟨s̄s⟩ remain nonzero even when
ml = 0, because of the dynamical generation of quark condensates in QCD at the scale
of O(1) GeV, we find that for small ml ≪ ms, the ⟨ūu⟩ and ⟨d̄d⟩ terms are dominant in
Equation (2) so that the χtop term in Equation (1) is well approximated as

χtop

m2
l

∣∣∣∣∣
ml≪ms

∼
(
⟨ūu⟩
ml

+
⟨d̄d⟩
ml

)
m̄2

m2
l

∼ − [O(1)GeV]3

4ml
, (3)

with the minus sign of the quark-condensate value taken into account. Thus, the size of the
χtop term becomes larger than [O(1)GeV]2 (with minus sign). Note also that χchiral > 0,
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χaxial > 0, and χchiral < χaxial due to the measured meson spectroscopy (for more details,
see Appendix A). Therefore, in the case with small ml and finite ms, we meet a big destructive
cancellation in Equation (1) between χaxial and the χtop term, both of which are on the
order bigger than [O(1)GeV]2, to have a highly suppressed χchiral: Equation (1) looks like
[O(10 GeV)]2χaxial

− [O(10 GeV)]2χtop = χchiral ≪ [O(1 GeV)]2 for ml ≲ MeV. This can be
interpreted as a fine-tuning, unless some symmetry is present to explain the extraordinarily
small χchiral, which can relax the big subtraction, as elaborated in the Introduction. Note,
however, that even the conventional chiral SU(2) symmetry (ml → 0) makes the accidental
big cancellation more serious. As it will turn out later, the QCD of the SM with light up
and down quarks and relatively heavier strange quarks actually suffers from this kind of
big subtraction.

The original form of the anomalous Ward identity Equation (1), as given in Appendix A,
is constructed from several susceptibilities. The anomalous Ward identity Equation (1) is
derived by making a couple of the chiral SU(3) transformations, corresponding to the SU(3)
adjoint indices a = 1, 2, 3, 8, on the vacuum expectation values of the pseudoscalar operators
with a = 0, 8 (see also Appendix E), which gives some correspondence between the vacuum
expectation values of scalar and pseudoscalar operators, leading to the relationship among
susceptibilities. Once χtop is identified in terms of a set of the susceptibilities, other terms
unambiguously correspond to χchiral and χaxial, which can be independently observed in
the lattice simulation. Therefore, a big subtraction between χaxial and χtop to yield a small
χchiral is physical. In fact, such big destructive cancellation has been observed even at high
temperatures [11].

The existence of the fine-tuning is due to the accidental cancellation between two indi-
vidual infrared singularities responsible for the soft pions in QCD, as discussed in Ref. [12],
χaxial ∼ 1/m2

π ∼ 1/ml , χchiral ∼ constant, and χtop/m2
l ∼ 1/ml (see also Equation (3)) for

ml ≪ ms and ml → 0; hence, in this limit, Equation (1) looks like finite = ∞ − ∞. This obser-
vation may imply that the chiral limit, on the basis of which the QCD can be expanded in
the way of the chiral perturbation and hence widely accepted and well established, is faced
with an accidental fine-tuning. Thus, the proposed fine-tuning is completely separated
from the already existing fine-tuning, e.g., on the tiny mass difference between proton
and neutron.

Going away from the QCD of the SM, we consider a counter limit where ms → 0, keeping
ml finite. In Equation (1), the χtop term then vanishes as ms → 0 (see also Equation (2)),
reflecting the flavor-singlet nature [12], so that the indicators for the breaking strengths of
the chiral and axial symmetries become identically equal each other:

(χchiral − χaxial) =
4χtop

m2
l

→ 0 , as ms → 0. (4)

In this case, the χtop term (χtop/m2
l ) is adjusted to zero by a big destructive subtraction,

i.e., a fine-tuning between χchiral and χaxial. However, this fine-tuning can be gone in the
limit ms → 0, which makes (χtop/m2

l ) become zero, in contrast to the QCD of the SM
argued above, though the case with ml ≫ ms → 0, where χchiral ∼ χaxial, is unrealistic.

Note that the strange quark currently acts as a spectator for the chiral SU(2) symmetry,
being a singlet. Hence, the introduction of a new massless quark, protected by its own
chiral symmetry, i.e., hidden new symmetry, should play the same role as the strange quark
to solve the fine-tuning problem, keeping the massive-enough strange quark in accordance
with the observation. We will later introduce an explicit and phenomenologically viable
model having massless new quarks (χ) with a new chiral symmetry, which makes the
real-life QCD free from fine-tuning:

(χchiral − χaxial) → 0 , as mχ → 0 , (5)

with ml and ms at the physical point.
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3. Quantifying the Fine-Tuning

We define the ratio [12]

R ≡ χchiral
χaxial

, (6)

which also reads R = 1 − 4χtop/m2
l

χaxial
= 1

1+
4χtop/m2

l
χchiral

via the Ward identity in Equation (1). Thus,

the deviation from R = 1 dictates a fine-tuning, and hence R serves as the estimator of
the fine-tuning.

To compute the estimator R, one needs to work on the QCD in the deep-infrared
region, which is highly nonperturbative because of the strong coupling nature in the low-
energy scale. The best method to compute such nonperturbative dynamics is the numerical
simulations of QCD on the lattice. However, the lattice simulations have never measured
the susceptibilities at vacuum with varying ms

4.
Instead of the lattice simulation, in the spirit of Weinberg [15], we can invoke effective

models of low-energy QCD, which realize the same breaking structure of the chiral and
axial symmetries, and so forth, as that in low-energy QCD. In this paper, as the low-energy
QCD description, we thus adapt a class of the Nambu–Jona–Lasinio (NJL) model made
of only quarks with several quarkonic interactions. The NJL model has extensively been
utilized in the field of hadron physics and so far provided us with lots of qualitative
interpretations for low-energy QCD features, associated with chiral and axial symmetry
breaking, together with successful phenomenological predictions [16].

We evaluate R as a function of ms based on a best-fit NJL model, which exhibits good
fitness with lattice data on 2 + 1 flavor-QCD at the physical point, such as the observed
meson masses. Details are provided in Appendices B–D. Since the NJL model currently
does not incorporate the isospin breaking as well as radiative electromagnetic and weak
interactions, it would not be suitable to input experimental values of QCD observables that
implicitly include all those corrections. We therefore have used as inputs observables in
lattice QCD with 2 + 1 flavors in the isospin-symmetric limit at the physical point available
from the literature [17,18], which are exclusive for the gauge interactions external to QCD,
and applied the least-χ2 test to fix the parameters by using five representative observables5.

We thus compute the estimator R at the best-fit point, including the errors associated
with the lattice data, and find

R = 0.0469 ± 0.0028 . (7)

This clarifies that the QCD at the physical point is by about 340 standard deviation off the
theory free from fine-tuning with R = 1! This is due to a too-large ms, as noted above.

We may take into account a possible theoretical uncertainty of about 30%, which
could arise from the leading order approximation in the 1/Nc expansion, on which the
present NJL model prediction is based. Currently disregarded corrections, associated
with the isospin breaking, electromagnetic, and electroweak interactions, would also be
small enough to be covered by the 30% uncertainty. Therefore, the estimated value of R
in Equation (7) with the theoretical uncertainty of 30% would be the one corresponding
to the prediction of the SM. Combining this 30% (“theor.”) with the error in Equation (7)
associated with the uncertainties of inputs from the lattice data (“lat.”), we would then
have R = 0.0469 ± (0.0028)lat. ± (0.0141)theor.. It is still about 66 standard deviations.

To make this disfavor visualized, varying the value of ms and ml with other model
parameters fixed at the best-fit values, we plot contours of the estimator R on the (ml , ms)
plane, which is displayed in Figure 1.
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Figure 1. This plot visualizes that the QCD of the SM is disfavored in terms of the presently addressed
fine-tuning problem. The estimated numbers of the estimator R are displayed in the (ml , ms) plane,
where the cross mark “×”, labeled as the “QCD of standard model”, has been plotted by using the
best-fit model parameters in Table A2 of Appendix D. A possible theoretical uncertainty of 30% for
the present NJL model to match the full QCD of the SM has also been reflected there (see also the
text), which is drawn by light-blue arrows. The size of deviations is maximally about 340σ, and will
be at least over 66σ even when the theoretical uncertainty of 30% is considered.

The value of R tends to saturate to be ≃0.02, even in the massive two-flavor limit with
ms → ∞ and ml = 5.75 MeV. This trend is exactly what we have suspected from the ms
scaling of the χtop term in Equation (3). With ms fixed, say, to the physical point, R tends to
get close to 1 as ml becomes larger and actually reaches 1 before the decoupling limit of the
up and down quarks, as clarified in Ref. [12].

The deviation in Equation (7) can be interpreted as an indication of a violation of a new
symmetry, as conjectured in Equation (5), which the SM does not possess. The significance
of this new symmetry is subject to the accuracy in the current lattice simulation reflected
in the size of the error of R, which is as low as 10%. This significance may therefore be
compared to the significance for the discovery of the small isospin breaking in the W and Z
boson masses observed at UA1 and UA2 experiments [21–24], which was the same 10%
level in accuracy at the final stage of the discovery era (with data taking til 1985) [25,26].
The estimator R can be defined also for the W and Z masses as RWZ ≡ mW

mZ
such that

the mass difference is written as ∆mWZ = mZ − mW = mZ(1 − RWZ), which actually
forms a big cancellation structure and hence could be thought of as a fine-tuning in the
same way as in χaxial and χtop/m2

l with R in Equation (6). The final UA2 result reads [26]
R1982−1985

WZ = 0.876 ± 0.026, so it is about a 4.8σ deviation from the isospin-symmetric
limit RWZ = 1. This is, however, of course, trivial and can be explained by the isospin
breaking (related to the so-called custodial symmetry) in the SM due to the hypercharge
gauge interaction and the presence of isospin breaking in the quark masses. Compared
to this, the new indication from QCD in Equation (7) is by about one order of magnitude
more significant.

Current precision measurements on mW and mZ give R2022
WZ = 0.88147 ± 0.00013 [27],

which corresponds to 890σ deviations from the isospin-symmetric limit. Similarly, the
error of R in Equation (7) is also expected to become smaller as the precision in the lattice
simulations becomes higher in the future; hence, the significance of the violation of a new
symmetry will be enlarged to be as big as the current one for the isospin breaking.

This prospected significance might also become comparable with the current signifi-
cance of the isospin breaking in the proton and neutron mass difference with Rpn ≡ mp

mn
=

1 − ∆mpn
mn

= 1
1

∆mpn
mp

, which is read as R2022
pn = 0.998623477(316) [27], leading to ∼ 4 × 104σ.
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The gauge hierarchy problem caused by the big destructive loop correction to the

Higgs mass mh yields RH =
m2

h(mh)

m2
h(Mp)

≈ 1− 3
8π2

M2
p−m2

h
m2

h(Mp)
= 1

1+ 3
8π2

M2
p−m2

h
m2

h

, where Mp denotes the

Planck scale ∼ 1018 GeV, mh(mh) ∼ 125 GeV, and we have simply taken into account only
the top loop with the top Yukawa coupling ∼ 1. This RH is estimated to be ∼6.3 × 10−32.
A similar estimate can be made also for the strong CP problem, which would yield
Rθ =

θQCD
θEW

< 10−10, where θQCD and θEW, respectively, denote the QCD and electroweak
origins for the CP phase of the quark mass term. Thus, the statistical significance of RH
will remain the biggest unless the accuracy in measuring the Higgs mass and top Yukawa
coupling becomes better than the level of ∼ 10−32, the size of RH .

The fine-tuning problem that we presently address is nothing sensory, but is essentially
related to the existence of a hidden symmetry which makes R = 1 or χtop/m2

l = 0 or
χchiral = χaxial in terms of our estimator. This is in contrast to the conventional argument:
Something delicately fine or not is controlled merely by whether the tuning, to some extent,
is necessary to make a big cancellation. The quantification of the present fine-tuning is
unambiguously made on the basis of the statistical significance, and the standard deviations
are subject to the accuracy in the measurement of Rs, which should therefore be compared
with those having the same level of accuracy, as seen above.

Note that the strong CP problem in the SM is trivially solved in the limit ml → 0,
whereas the new fine-tuning problem becomes more serious (R → 0). This discrepancy in
the two problems can be understood via the Ward identity Equation (1), where χtop itself
can be sent to zero when ml → 0, which is the massless up quark solution to the strong
CP problem [5,28]; however, χtop/m2

l then blows up, leaving the new fine-tuning problem.
Thus, the two problems are generically separated within the framework of the SM. This
fact also proves that the chiral SU(2) symmetry (with ml → 0) does not make QCD free
from fine-tuning, in sharp contrast to the naïve folklore. We will discuss a more definite
discrimination from the strong CP problem in a later section (Section 5).

We could start with the definition of R, R = χchiral/χaxial, instead of the Ward identity
Equation (1), and discuss the difference ∆axial−chiral = χaxial − χchiral, so that R = 1 −
∆axial−chiral/χaxial. Then, the form of Equation (1) is unambiguously fixed as it stands,
telling us that the symmetric limit R = 1 is realized when χtop/m2

l → 0, which cannot be
made when ml → 0 (because χtop ∼ ml for small ml), but can be achieved when ms → 0,
which is based on the symmetry argument. This alternative view would also help readers
to more definitely see that the ml = 0 limit separates the new fine-tuning problem from the
strong CP problem, where R → 0 and Rθ = θQCD/θEW → 1, respectively.

4. A Solution: New Quarks with Dark QCD Colors

The proposed new fine-tuning problem is present at the scale only around the order
of 1 GeV. When the electroweak symmetry becomes manifest at higher scales, the fine-
tuning problem will be obscure. This is because the global chiral SU(2) and U(1) axial
symmetries are explicitly broken by the electroweak interactions as well as quark masses
(or Yukawa couplings between the Higgs and quarks). In that case, the key Equation (1) will
be modified involving the electroweak “topological” susceptibilities. Also at scales ≲ mπ ,
the fine-tuning will be nontransparent due to the decoupling of pions, which is the most
dominant source to generate the big gap between χchiral and χaxial. Thus, the new fine-
tuning problem needs to be solved by a new physics with the scale ΛNEW in a range
of mπ ≲ ΛNEW ≲ 1 GeV.

The hint for this avenue is seen in Equation (4), which indicates introducing massless
new quarks. In fact, the topological susceptibility χtop goes to zero when a massless new
quark couples to the other three quarks due to the flavor-singlet nature so that Equation (5)
is realized. The detailed proof is given in Appendix E. This motivates one to consider an
explicit model beyond the SM.
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We consider a new chiral quark (χ) to be neutral under the electroweak charges, which,
instead, carries a dark color of SU(Nd) group under the fundamental representation. The
group representation table for the χ quark thus goes like χL,R ∼ (Nd, 3, 1)0 for SU(Nd)×
SU(3)c × SU(2)W × U(1)Y, where the latter three symmetries correspond to the SM ones
(QCD color, weak, and hypercharge). The dark color symmetry, as well as the electroweak
neutrality, forbids creating extra light hadrons composed of the ordinary light quarks
and the χ quark, such as ūχ and uuχ. For simplicity, we also assume that the dark QCD
coupling gd becomes strong almost at the same scale as the ordinary QCD coupling does,
(Λd ∼ ΛQCD = O(1)GeV), namely, gd ∼ gs.

Below the scale ∼ 1 GeV, the dark QCD dynamically breaks the dark chiral
U(3)L × U(3)R symmetry for the χ quark, down to the vectorial part, where the extra
factor of 3 in the number of flavors comes from the QCD color multiplicity. Only the
hadrons singlet under both the dark and ordinary QCD colors survive in the vacuum. Then,
there emerges only one composite Nambu–Goldstone boson, ηd, which becomes pseudo
due to the axial anomaly in the dark QCD sector and acquires the mass of O(1) GeV.
Moreover, at almost the same scale, the ordinary QCD breaks the approximate chiral
SU(3 + Nd)L × SU(3 + Nd)R symmetry involving the χ quark down to the vectorial one,
where, again, only the color singlets are relevant. The spontaneous breaking of this ex-
tended chiral symmetry does not yield excessive meson spectra made of ordinary quarks
because of the double color symmetries, as aforementioned. Thus, the new low-lying
spectra consist only of the dark sector: ηd ∼ χ̄iγ5χ and its dark chiral partner σd ∼ χ̄χ, as
well as spin-1 dark mesons (χ̄γµχ and χ̄γµγ5χ) and dark baryons (∼ χχχ · · · χ). All those
low-lying dark hadrons have a mass on the order of 1 GeV by feeding the chiral breaking
contributions from both the ordinary QCD and dark QCD sectors.

The most stringent phenomenological constraint on this type of model comes from
the extra massless-quark contribution to the running evolution of the ordinary QCD
coupling αs, where, in the present case, Nd species of new quarks in the fundamental
representation of SU(3)c group come into play. Collider experiments have confirmed the
asymptotic freedom with high accuracy in a wide range of higher energy scales, in particu-
lar above 10 GeV, over 1 TeV [27]. When αs is evolved up to higher scales using αs(MZ)
measured at the Z boson pole as input, the tail of the asymptotic freedom around O(1) TeV
can thus have sensitivity to exclude new quarks. Current data on αs at the scale around
O(1) TeV involve large theoretical uncertainties. This results in uncertainty of determi-
nation of αs(MZ) for various experiments (LHC-ATLAS, -CMS, Tevatron-CDF, D0, etc.),
which yields αs(MZ) ≃ 0.110–0.130, consistent with the world average αs(MZ) ≃ 0.118
within the uncertainties [27]. We have worked on the two-loop perturbative computation
of αs

6, and find that as long as Nd is moderately large (Nd ≤ 5), the measured ultraviolet
scaling (for the renormalization scale of µ = 10 GeV, a few TeV) can be consistent with the
current data [27] within the range of αs(Mz) above.

Precise measurements in lower scales ≲ 10 GeV have not well been explored so far
due to the deep-infrared complexity of QCD. The low-energy running of αs is indeed still
uncertain and can be variant as discussed in a recent review, e.g., [29]. The present dark
QCD could dramatically alter the infrared running feature of αs, due to new quarks and
the running of the dark QCD coupling αd. This will also supply a decisive answer to the
possibility of the infrared-near conformality of the real-life QCD.

Thus, a few massless new quarks can still survive constraints on αs at the current
status7. More precise measurements of αs in the future will clarify how many light or
massless new quarks can be hidden in QCD, which will fix the value of Nd in terms of the
present dark QCD.

Regarding other phenomenological aspects, we have checked that the present dark
QCD model can survive current constraints, such as the measurement of the ordinary
QCD hadron physics, dark meson couplings to diphoton, and limits on the dark baryon as
dark matter candidates, and so forth. Furthermore, the dark meson and dark baryon yield
several smoking guns to be probed in the near future, respectively, through the triphoton
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(3γ) signal at the mass around 1 GeV, at the Belle II experiment with 20–50 fb−1 data [31],
and a planned dark matter detection experiment aiming at the sub-GeV mass range [32]
with the spin-independent dark matter–nucleon cross-section ∼10−43 cm28.

5. Conclusions

Toward a deeper understanding of the flavor dependence of the QCD vacuum, in
the present work, we have focused on a gap between the breaking strengths of the chiral
SU(2) symmetry for light up and down quarks and U(1) axial symmetry. It might be too
premature to conclude that this gap is related merely to the mystery of the quark-generation
structure in the SM. We have found an alternative interpretation based on the symmetry
argument: the gap can be relaxed by a chiral symmetry for the strange quark, and the
role of the massless/light strange quark can be replaced by a new massless/light quark
(called χ).

The existence of the symmetric limit ms → 0, where the “chiral SU(2) = U(1) axial” is
realized as above, is manifest in the flavor dependence of the QCD vacuum, and we have
shown how the gap, i.e., the fine-tuning, is seriously large on the basis of the statistical
analysis along with comparison with the existing fine-tuned quantities.

Thus, the QCD of the SM may be yet incomplete if the fine-tuning is considered to
be serious and hence may call for more quarks to keep the equivalence of the strengths
of the chiral SU(2) and U(1) axial breaking. Given these new criteria, new quarks need
protecting to be (nearly) massless by a new chiral symmetry and can be introduced in QCD
consistently with existing experiments; that is what we have demonstrated in the present
work. This symmetry is independent of the existing chiral or isospin symmetry, which
ensures the smallness of masses of light quarks and has so far played the role to make
QCD free from fine-tuning, e.g., for the small proton–neutron mass difference compared to
individual proton and neutron masses.

The new fine-tuning problem is triggered due to the large strange quark mass, and
brings a big gap between the chiral and axial order parameters, detected as a small size of
the estimator R in Equation (6). This trend actually persists even in a whole temperature,
as can be understood by tracing the analysis in the recent literature [12]. The present work
is sort of an extension from the reference, and what is more, it essentially paves the way to
a new criterion on the necessity of beyond the SM, which is completely out of the scope of
the literature. Still, as noted also in [12], the characteristic small R can be checked on the
lattice QCD simulations in the future, which will be an indirect observation of the proposed
new indication.

In this paper, a benchmark of the fine-tuned QCD was placed based on the well-
known low-energy effective model, NJL. This is a pioneering step and should be motivated
and confirmed by various approaches in the future, such as the lattice calculation and
functional-renormalization group analysis. One can also work on the chiral perturbation
theory to evaluate R. No work has so far been conducted properly taking into account the
flavor-singlet condition for χtop; hence, it would also be an interesting issue to be left in
the future.

Relaxing the new fine-tuning is tied with the vanishing curvature of the QCD vacuum
at around the QCD scale: χtop → 0. The new fine-tuning problem is present irrespective of
the place of the QCD vacuum, i.e., the value of the (net) QCD θ̄ parameter: even a shifted
QCD vacuum with θ̄ gone, say by assumption of a QCD axion, keeps nonzero χtop as the
developed axion potential energy, including the axion mass, which takes precisely the
same flavor-singlet form as in Equation (2). Thus, the new fine-tuning problem is definitely
separated from the strong CP problem.

In general, the dark QCD solution instead implies a nontrivial relation between θ̄ and
θd, the theta parameter in dark QCD, to realize χtop = 0 in the presence of the massless
new χ quark: the anomalous axial rotation of the massless χ leaves the θ̄-dependence into
the dark QCD topological sector, (θd + (Nc/Nd)θ̄)Qd

top, where Qd
top denotes the dark QCD

topological charge. Thereby, one obtains χtop = (Nc/Nd)
2χd

top ̸= 0, with χd
top being the
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topological susceptibility in dark QCD, unless θd = −(Nc/Nd)θ̄. This nontrivial relation is
required no matter what size θ̄ is, i.e., which is independent of the strong CP problem.

The required relation might be trivial when QCD itself relaxes θ̄ to 0 at a deep-infrared
fixed point to be consistent with realization of the confinement, as recently discussed in
lattice QCD [34–36]. This self-relaxation is applicable also to dark QCD; hence, in that
case, one has θ̄ = θd = 0, and χtop = 0 in the presence of the massless χ quark. In this
sense, the proposed fine-tuning might be linked also with a deeper understanding of the
color confinement.

In contrast, solving the new fine-tuning problem disfavors QCD axion models as the
solution of the strong CP: first of all, the QCD axion needs not to be present until the
QCD pions are decoupled from R, otherwise the axion potential energy necessarily yields
nonzero χtop even along with massless new quarks. In this sense, a composite axion [37,38]
with the dynamical/composite scale scaled down to the QCD scale (or lower) might be the
candidate, where the composite scale is set to ∼ mπ ∼ 4π fa with the axion decay constant
fa. However, such a low-scale QCD axion model with both a QCD axion and its small decay
constant on the QCD scale has already been ruled out by the LEP search for Z → πγ [39]
due to too-large axion coupling to diphoton. Thus, the QCD axion is incompatible with the
solution for the new fine-tuning problem.

Other solutions alternative to the presently addressed dark QCD are worth investigat-
ing. In closing, we provide one general “recipe”. First of all, try to introduce new Dirac
massless quarks, which act as a spectator of the global chiral SU(2) symmetry for the up
and down quarks. They are generically allowed to feel the electroweak charge, whichever
way it is ganged vectorlikely or chirally. The former case would be phenomenologically
viable in light of the electroweak precision tests, and the limit on the number of quark
generations placed from the Z boson decays. Those new quarks would be preferable not to
form the Yukawa interaction with ordinary quarks and Higgs fields (doublets and triplets,
and so on), which develop the vacuum expectation values at the weak scale, and yield the
mass for the new quarks. If new quarks could be coupled to such Higgses, solving the
strong CP problem (without introducing an axion), as well as keeping the light enough
new quarks down until the QCD scale, would be hard and challenging.

Given this recipe, one might think that though it would sound somewhat ad hoc, the
presumably most minimal setup would be to introduce an electroweak-singlet quark with
a negative charge under a new parity while assigning a positive charge for ordinary quarks,
so as to avoid spoiling the successful light hadron spectroscopy. In the dark QCD model
introduced in the present paper, the role of such a new parity has been played by the dark
QCD color charge. Such alternatives are to be addressed in detail elsewhere.
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Appendix A. Chiral Ward Identities and Topological Susceptibility: Road to
Equation (1) in the Main Text

A set of generic anomalous Ward identities for the three-flavor chiral SU(3)L × SU(3)R
symmetry in QCD is derived by the corresponding chiral variations for the generating
functional of QCD [12,40,41] (see also Appendix E):

⟨ūu⟩+ ⟨d̄d⟩ = −mlχπ ,

⟨ūu⟩+ ⟨d̄d⟩+ 4⟨s̄s⟩ = −
[

ml

(
χuu

P + χdd
P + 2χud

P

)
− 2(ms + ml)

(
χus

P + χds
P

)
+ 4msχss

P

]
,

⟨ūu⟩+ ⟨d̄d⟩ − 2⟨s̄s⟩ = −
[

ml

(
χuu

P + χdd
P + 2χud

P

)
+ (ml − 2ms)

(
χus

P + χds
P

)
− 2msχss

P

]
, (A1)

where the isospin-symmetric mass mu = md ≡ ml has been taken for up and down quarks;
χuu

p , χdd
P , χud

P , χss
P , χus

P , and χds
P are the pseudoscalar susceptibilities; and χπ is the pion

susceptibility, defined as

χ
f1 f2
P =

∫
d4x⟨(q̄ f1(0)iγ5q f1(0))(q̄ f2(x)iγ5q f2(x))⟩ ,

for q f1,2
= u, d, s ,

χπ =
∫

d4x

[
⟨(ū(0)iγ5u(0))(ū(x)iγ5u(x))⟩conn

+ ⟨(d̄(0)iγ5d(0))(d̄(x)iγ5d(x))⟩conn

]
, (A2)

with ⟨· · ·⟩conn being the connected part of the correlation function.
The topological susceptibility χtop is related to the θ vacuum configuration of the QCD.

It is defined as the curvature of the θ-dependent vacuum energy V(θ) in the QCD at θ = 0:

χtop = −
∫

d4x
δ2V(θ)

δθ(x)δθ(0)

∣∣∣∣∣
θ=0

. (A3)

Performing the U(1)A rotation for quark fields together with the flavor-singlet condi-
tion [42,43], one can transfer the θ dependence coupled to the topological gluon configura-
tions, via the axial anomaly, into current quark mass terms. Thus, χtop is as follows [41]:

χtop = m̄2

[
⟨ūu⟩
ml

+
⟨d̄d⟩
ml

+
⟨s̄s⟩
ms

+ χuu
P + χdd

P + χss
P + 2χud

P + 2χus
P + 2χds

P

]

=
1
4

[
ml
(
⟨ūu⟩+ ⟨d̄d⟩

)
+ m2

l

(
χuu

P + χdd
P + 2χud

P

)]
= ms⟨s̄s⟩+ m2

s χss
P , (A4)
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where m̄ ≡
(

1
mu

+ 1
md

+ 1
ms

)−1
. χtop → 0, when either of quarks becomes massless (ml or

ms → 0), reflecting the flavor-singlet nature of the QCD vacuum.
By combining the Ward identities in Equation (A1), χtop in Equation (A3) is expressed as

χtop =
1
2

mlms

(
χus

P + χds
P

)
=

1
4

m2
l (χη − χπ) , (A5)

where χη is the η meson susceptibility, which is defined as

χη =
∫

d4x

[
⟨(ū(0)iγ5u(0))(ū(x)iγ5u(x))⟩

+ ⟨(d̄(0)iγ5d(0))(d̄(x)iγ5d(x))⟩

+ 2⟨(ū(0)iγ5u(0))(d̄(x)iγ5d(x))⟩
]

= χuu
P + χdd

P + 2χud
P . (A6)

Equation (A5) can be written as

(χη − χδ) = (χπ − χδ) +
4

m2
l

χtop , (A7)

where χδ is the susceptibility for the δ meson channel (which is a0 meson in terms of the
Particle Data Group identification), defined in the same way as χπ in Equation (A1) with
the factors of (iγ5) replaced with identity 1. (χη − χδ) and (χπ − χδ) play the roles of the
chiral and axial breaking indicators, respectively, which signal the restorations when those
(asymptotically) reach zero.

Renaming (χη − χδ) and (χπ − χδ) as

χchiral ≡ χη − χδ ,

χaxial ≡ χπ − χδ , (A8)

one reaches Equation (1) in the main text.
In deriving Equation (1), one could choose another scalar susceptibility χσ, which

makes the chiral SU(2) and axial partners for χπ and χη , respectively. (The definition of
χσ is the same as χη with the (iγ5) factors replaced by the identity (1).) Then, Equation (1)

would be replaced by χ′
chiral = χ′

axial +
4χtop

m2
l

, where χ′
chiral ≡ χσ − χπ and χ′

axial ≡ χσ − χη .

Even if this alternative identification is taken, the present proposal of the new fine-tuning
problem still holds: a big gap between χ′

axial and the χ′
chiral is relaxed by a symmetry

sending ms → 0 to make χtop/m2
l vanishing. Thus, the presently proposed new fine-tuning

problem is robust and unambiguous.

Appendix B. Nambu–Jona–Lasinio Model Description

The Nambu–Jona–Lasinio (NJL) model with three flavors, which is adapted in the
main text, takes the form (for a review, see [16]):

L = q̄(iγµ∂µ −M)q + L4 f + LKMT ,

L4 f =
GS
2

8

∑
a=0

[(q̄λaq)2 + (q̄iγ5λaq)2] ,

LKMT = GD[det
i,j

q̄i(1 + γ5)qj + h.c.] , (A9)

where the quark field q is represented as the triplet of SU(3) group in the flavor space,
q = (u, d, s)T , and λa (a = 0, 1, · · · , 8) are the Gell–Mann matrices with λ0 =

√
2/3 · 13×3.

The determinant in LKMT acts on the flavor indices, and M = diag{ml , ml , ms}.
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L4 f is the standard-scalar four-Fermion interaction term with the coupling strength GS.
This is the most minimal interaction term involving the smallest number of quark fields for
Lorentz scalar and pseudoscalar channels, which could be generated at low-energy QCD via
the gluon exchange. The L4 f is U(3)L × U(3)R invariant under the chiral transformation:
q → U · q with U = exp[−iγ5 ∑8

a=0(λ
a/2)θa] and the chiral phases θa. The mass term

in L explicitly breaks U(3)L × U(3)R symmetry. The determinant term LKMT is called
the Kobayashi–Maskawa–‘t Hooft [44–48] term, which is a six-point interaction induced
from the QCD instanton configuration coupled to quarks, with the effective coupling
constant GD. This interaction gives rise to the mixing between different flavors and also
uplifts the η′ mass to be no longer a Nambu–Goldstone boson. The KMT term preserves
SU(3)L × SU(3)R invariance (associated with the chiral phases labeled as a = 1, · · · , 8),
but breaks the U(1)A (corresponding to a = 0) symmetry.

The approximate chiral SU(3)L × SU(3)R symmetry is spontaneously broken down to
the vectorial symmetry SU(3)V , when the couplings Gs and/or GD become strong enough,
by nonperturbatively developing nonzero quark condensates ⟨q̄q⟩ ̸= 0, to be consistent
with the underlying QCD feature. The present NJL model monitors the spontaneous
breakdown by the large Nc expansion, where Nc stands for the number of QCD colors.

The NJL model itself is a (perturbatively) nonrenormalizable field theory because L4 f and
LKMT describe the higher dimensional interactions with mass dimensions greater than four.
Therefore, a momentum cutoff Λ needs to be introduced to make the NJL model regularized.

Appendix C. Scalar and Pseudoscalar Susceptibilities in the NJL Model

In this section, the explicit formulae for scalar and pseudoscalar susceptibilities derived
from the NJL model Equation (A9) are listed. We will leave the details of the calculations
here and refer readers to a review paper [16], which contains all necessary information to
reach the final formulas that we will present below. In what follows, we use the notation
for quark condensates as α = ⟨ūu⟩, β = ⟨d̄d⟩, and γ = ⟨s̄s⟩, and will work on computations
in Euclidean momentum space.

Appendix C.1. Pseudoscalar Meson Channel

In the η–η′-coupled channel, the pseudoscalar meson susceptibility on the generator
basis of U(3) is defined as

χ
ij
P =

∫
d4x⟨(iq̄(x)γ5λiq(x))(iq̄(0)γ5λjq(0))⟩ , (A10)

where i, j = 0, 8.
In the NJL model, after prescribing the resummation technique, this χ

ij
P takes the

form [16]

χP =
−1

1 + GPΠP
· ΠP , (A11)

where GP is the coupling strength matrix, and ΠP is the polarization tensor evaluated at
zero momentum transfer:

GP =

(
G00

P G08
P

G80
P G88

P

)
=

(
GS − 2

3 (α + β + γ)GD −
√

2
6 (2γ − α − β)GD

−
√

2
6 (2γ − α − β)GD GS − 1

3 (γ − 2α − 2β)GD

)
, (A12)

ΠP =

(
Π00

P Π08
P

Π80
P Π88

P

)
=

(
2
3 (2Iuu

P + Iss
P ) 2

√
2

3 (Iuu
P − Iss

P )
2
√

2
3 (Iuu

P − Iss
P ) 2

3 (Iuu
P + 2Iss

P )

)
, (A13)
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with Iii
P(ω, p) being the pesudoscalar one-loop polarization functions, and the relevant quantities:

Iii
P = −Nc

π2

∫ Λ

0
dp p2 1

Ei
, for i = u, d, s ,

Ei =
√

M2
i + p2 ,

Mu = ml − 2GSα − 2GDβγ ,

Md = ml − 2GSβ − 2GDαγ ,

Ms = ms − 2GSγ − 2GDαβ ,

⟨q̄iqi⟩ = −2Nc

∫ Λ dp
(2π)3

Mi
Ei

. (A14)

By performing the basis transformation, the pseudoscalar susceptibilities in the flavor
basis are obtained as  1

2 χuu
P + 1

2 χud
P

χus
P

χss
P

 =


1
6

√
2

6
1

12
1
6 −

√
2

12 − 1
6

1
6 −

√
2

3
1
3


χ00

P
χ08

P
χ88

P

 , (A15)

where we have taken the isospin-symmetric limit into account, i.e., χuu
P = χdd

P and χus
P = χds

P .
The χη is then given as in Equation (A6).

In a way similar to Equation (A11), the present NJL model gives the explicit formula
of χπ defined in Equation (A2) as

χπ =
−1

1 + GπΠπ
· Ππ , (A16)

where Gπ = GS + GDγ, which is the coupling strength in the pion channel, and Ππ is the
quark-loop polarization function for χπ, which is evaluated by using Iii

P in Equation (A14) as

Ππ = Iuu
P + Idd

P = 2Iuu
P . (A17)

Appendix C.2. Scalar Meson Channel

The definitions of scalar susceptibilities are similar to those for pseudoscalars’, which are
given just by removing iγ5 in the definition of pseudoscalar susceptibilities, and supplying
the appropriate one-loop polarization functions and the corresponding coupling constants.

In the same way as in the pseudoscalar susceptibilities in the 0–8 coupled channel in
Equation (A10), the scalar susceptibility matrix χS is evaluated in the present NJL on the
generator basis as

χS =
−1

1 + GSΠS
· ΠS , (A18)

where GS is the coupling strength matrix,

GS =

(
G00

S G08
S

G80
S G88

S

)
=

(
GS +

2
3 (α + β + γ)GD

√
2

6 (2γ − α − β)GD√
2

6 (2γ − α − β)GD GS +
1
3 (γ − 2α − 2β)GD

)
. (A19)

The coupling constant matrices in the scalar and pseudoscalar channels
(Equations (A12) and (A19)) are different in sign in front of GD, reflecting attractive
and repulsive interactions, respectively. The scalar polarization tensor matrix ΠS in
Equation (A18) is given by
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ΠS =

(
Π00

S Π08
S

Π80
S Π88

S

)
=

(
2
3 (2Iuu

S + Iss
S ) 2

√
2

3 (Iuu
S − Iss

S )
2
√

2
3 (Iuu

S − Iss
S ) 2

3 (Iuu
S + 2Iss

S )

)
, (A20)

Iii
S = −Nc

π2

∫ Λ

0
p2dp

E2
ip − M2

i

E3
i

, for i = u, d, s . (A21)

By moving on to the flavor base via the base transformation, the scalar susceptibilities
are cast into the form: 1

2 χuu
S + 1

2 χud
S

χus
S

χss
S

 =


1
6

√
2

6
1

12
1
6 −

√
2

12 − 1
6

1
6 −

√
2

3
1
3


χ00

S
χ08

S
χ88

S

 , (A22)

in which we have read χuu
S = χdd

S and χus
S = χds

S .
Similarly to χπ in Equation (A16), in the NJL model the explicit formula for χδ reads

χδ =
−Πδ

1 + GδΠδ
, (A23)

where Gδ = GS − GDγ, which is the coupling strength in the δ channel, and Πδ = Iuu
S +

Idd
S = 2Iuu

S is the corresponding quark-loop polarization function.

Appendix D. The Best-Fit NJL Model

Table A1. The result of the least χ2 statistical test of the present NJL model derived by fitting to
the lattice QCD data with 2 + 1 flavors in the isospin-symmetric limit at the physical point [17,18].
Details of the global fit of the NJL model including other available lattice data can be found in
another publication.

Observable Lattice Data Best-Fit Value

fπ (MeV) 92.07 ± 0.99 [17] 91.93 ± 1.35
mπ (MeV) 138 ± 0.3 [17] 137.95 ± 1.95
mK (MeV) 494.2 ± 0.4 [17] 493.50 ± 8.09
mη (MeV) 554.7 ± 9.2 [18] 503.82 ± 15.37
mη′ (MeV) 930 ± 21 [18] 978.77 ± 61.59

Table A2. The best-fit values of the model parameters.

Model Parameter Best-Fit Value

ml (MeV) 5.75 ± 0.05

ms (MeV) 130.69 ± 0.98

GS (MeV−2) (14.34 ± 0.41)× 10−6

GD (MeV−5) (−18.17 ± 1.35)× 10−14

Λ (MeV) 569.4 ± 16.5

There are five model parameters that need to be fixed: the light quark mass ml , the
strange quark mass ms, the coupling constants GS and GD, and the (three-) momentum
cutoff Λ. Since the present NJL model does not incorporate the isospin breaking as well
as radiative electromagnetic and weak interactions, it would not be suitable to input ex-
perimental values of QCD observables that implicitly include all those corrections. We
thus use as inputs observables in lattice QCD with 2 + 1 flavors in the isospin-symmetric
limit at the physical point available from the literature [17,18], which are exclusive for the
gauge interactions external to QCD. We apply the least-χ2 test to fix the parameters by
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using five representative observables as in Table A1. The resultant values of the best-fit
model parameters are given in Table A2. The least χ2 test shows good agreement with
the lattice data within the 1σ uncertainties. The best-fit NJL model predicts the suscepti-
bilities relevant to R in Equation (6) of the main text as χchiral = (2.2784 ± 0.0026)× 105,
χaxial = (4.8597 ± 0.0077)× 106, and χtop/m2

l = (−1.158 ± 0.064)× 106, in unit of MeV2.

Appendix E. Anomalous Chiral Ward Identities and Topological Susceptibility, with
One Extra Quark

This section provides derivation of anomalous chiral Ward identities, including one
extra quark in three flavors of QCD.

The anomalous chiral Ward identities are directly read off from chiral variations of the
generating functional of the QCD action with N quark flavors. The central formula then
takes the form

⟨δaOb(0)⟩ = i
∫

d4x⟨Ob(0) · Q̄(x)iγ5{Ta, M}Q(x)⟩ , (A24)

where Q denotes a quark field forming N-plet of SU(N); Ta (a = 1, · · · , N2 − 1) are genera-
tors of SU(N); δa stands for the infinitesimal variation of the chiral SU(N) transformation
associated with the generator Ta, under which Q transforms as δaQ = iγ5TaQ; Ob(0)
(b = 0, · · · , N2 − 1) is an arbitrary operator; M is the Q-quark mass matrix, taken to be
diagonal, like M = diag{m1, m2, · · · , mN}.

In particular, for the pseudoscalar operators Ob = Q̄iγ5TbQ, taking the case with
N = 3, with Q = (ql , s)T = ((u, d), s)T , m1 = m2 = ml , and m3 = ms, and choosing
a = 1, 2, 3, 8 and b = 0, 8, we get the first and second identities in Equation (A1) in the
main text.

Including a new quark field χ with mass m4 = mχ into the Q-field to form the SU(4)-
quartet: Q = (ql , s, χ)T , we work on the chiral SU(4) transformations. Among the SU(4)
generators, we focus only on the subgroup part of SU(3) embedded as

Ta=1,··· ,8 = 1
2

(
λa 01×3

03×1 0

)
, and the Cartan generator Ta=15 = 1

2
√

6

(
−13×3 01×3
03×1 3

)
,

together with the unit matrix Ta=0 = 1
2
√

2
· 14×4. We thus find a couple of additional Ward

identities, except for the first two in Equation (A1):

(a, b) = (8, 0) : ⟨ūu⟩+ ⟨d̄d⟩ − 2⟨s̄s⟩

= −
[

ml

(
χuu

P + χdd
P + 2χud

P

)
+ (ml − 2ms)

(
χus

P + χds
P

)
− 2msχss

P

+ mχ

(
χ

uχ
P + χ

dχ
P

)
− 2msχ

sχ
P

]
;

(a, b) = (15, 8) : ⟨ūu⟩+ ⟨d̄d⟩ − 2⟨s̄s⟩

= −
[

ml

(
χuu

P + χdd
P + 2χud

P

)
+ (ms − 2ml)

(
χus

P + χds
P

)
− 2msχss

P − 3mχ

(
χ

uχ
P + χ

dχ
P

)
+ 6mχχ

sχ
P

]
;

(a, b) = (8, 15) : ⟨ūu⟩+ ⟨d̄d⟩ − 2⟨s̄s⟩

= −
[

ml

(
χuu

P + χdd
P + 2χud

P

)



Universe 2024, 10, 68 16 of 19

+ (ml − 2ms)
(

χus
P + χds

P

)
− 2msχss

P

− 3ml

(
χ

uχ
P + χ

dχ
P

)
+ 6msχ

sχ
P

]
;

(a, b) = (15, 0) : ⟨ūu⟩+ ⟨d̄d⟩+ ⟨s̄s⟩ − 3⟨χ̄χ⟩

= −
[
ml

(
χuu

P + χdd
P + 2χud

P

)
+ (ml + ms)

(
χus

P + χds
P

)
+ msχss

P

+ (ml − 3mχ)
(

χ
uχ
P + χ

dχ
P

)
+ (ms − 3mχ)χ

sχ
P − 3mχχ

χχ
P

]
;

(a, b) = (15, 15) : ⟨ūu⟩+ ⟨d̄d⟩+ ⟨s̄s⟩+ 9⟨χ̄χ⟩

= −
[
ml

(
χuu

P + χdd
P + 2χud

P

)
+ (ml + ms)

(
χus

P + χds
P

)
+ msχss

P − 3(ml + mχ)
(

χ
uχ
P + χ

dχ
P

)
− 3(ms + mχ)χ

sχ
P + 9mχχ

χχ
P

]
, (A25)

where pseudoscalar susceptibilities including the χ quark are defined in the same way as
those for other quarks in Equation (A2). From these with Equation (A1), we have(

χ
uχ
P + χ

dχ
P

)
=

ms

mχ

(
χus

P + χds
P

)
,

χ
sχ
P =

ml
2mχ

(
χus

P + χds
P

)
,

⟨χ̄χ⟩ = −mχχ
χχ
P +

mlms

2mχ

(
χus

P + χds
P

)
. (A26)

Using the first two relations in Equation (A26), we see that the first Ward identity in
Equation (A25) becomes the same as the third one in Equation (A1).

Including the new χ quark, the topological susceptibility defined in Equation (A3)
now takes the form

χtop = m̄2

[
⟨ūu⟩
ml

+
⟨d̄d⟩
ml

+
⟨s̄s⟩
ms

+
⟨χ̄χ⟩
mχ

+
(

χuu
P + χdd

P + 2χud
P

)
+ 2
(

χus
P + χds

P

)
+ χss

P

+ 2
(

χ
uχ
P + χ

dχ
P

)
+ 2χ

sχ
P + χ

χχ
P

]
, (A27)

with m̄−1 =
(

2
ml

+ 1
ms

+ 1
mχ

)
. Using the relations in Equation (A26) together with those in

Equation (A1), we find

χtop =
1
2

mlms

(
χus

P + χds
P

)
=

1
2

mlmχ

(
χ

uχ
P + χ

dχ
P

)
= msmχχ

sχ
P

=
1
4

[
ml
(
⟨ūu⟩+ ⟨d̄d⟩

)
+ m2

l

(
χuu

P + χdd
P + 2χud

P

)]
= ms⟨s̄s⟩+ m2

s χss
P = mχ⟨χ̄χ⟩+ m2

χχ
χχ
P . (A28)
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In the case of dark QCD modeling as in the main text, actually, the dark QCD coupling
to the χ quark explicitly breaks the chiral SU(4)L × SU(4)R symmetry, as well as the mass
terms. However, this breaking effect does not modify the anomalous identities associated
with the chiral transformations for a = 1, 2, 3, 8, 15, because the dark QCD coupling to the
χ quark only breaks the vectorial SU(4) flavor symmetry down to SU(3)× U(1), which

still keeps those chiral symmetries:
[

Ta,
(

03×3
1

)]
∼ [Ta, Tb=15] = 0.

The argument in this section can straightforwardly be extended to the case with more
extra quarks, like 3 + Nd quarks.

The presence of the dark QCD theta parameter and the QCD’s one modifies χtop

in Equation (A28) as χtop → χtop + (Ncm̄/mχ)χd
top with the dark QCD topological sus-

ceptibility χd
top, Nc = 3, and mχ in the original χtop as well as m̄ replaced by mχ/Nd.

Notes
1 One example is the tiny mass difference between the proton and neutron. Individual masses, being mainly fed by the isospin-

symmetric dynamical quark mass, are of O(1) GeV on the typical QCD scale, but the mass difference is of O(10−3) GeV. This
is regarded as a big subtraction and can be explained due to a small violation of the isospin symmetry for up and down
quarks, including the current quark masses mu and md arising from the Higgs via the electroweak-symmetry breaking and their
electromagnetic charge difference. The mass difference, in fact, goes to zero in the symmetric limit.

2 Susceptibilities are not direct observables in terrestrial experiments, nor astrophysical observatories, in contrast to the existing
fine-tuning problems as aforementioned. Those can rather be observed in the lattice QCD, though they would not have a
correlation with definite phenomenological observables.

3 Throughout the present paper, we take the signs of quark condensates and quark masses to be negative and positive, respectively,
so that χtop < 0.

4 This is mainly because, firstly, it has not been well motivated, and moreover, costs of lattice calculations for small mass are
proportional to 1/m, where m is the lightest quark mass. Simulations for light strange quarks can be performed using the same
technology as in [13], and employing similar calculations in [11,14] with light ms.

5 The best-fit NJL model predicts χtop = (0.025 ± 0.002) /fm4. For this χtop, comparison with the results from the lattice QCD
simulations with 2 + 1 flavors is available, which are χtop = 0.019(9)/fm4 [19], and χtop = 0.0245(24)stat(03)flow(12)cont/fm4 [20].
Here, for the latter, the first error is statistical; the second one comes from the systematic error; and the third one arises due to
changing the upper limit of the lattice spacing range in the fit. Although their central values do not agree with each other, we
may conservatively say that the difference between them is interpreted as a systematic error from the individual lattice QCD
calculation. Thus, the present NJL model is, in that sense, in good agreement with the lattice QCD results also on χtop.

6 The dark QCD running coupling (αd) contributes to the running of αs at the two-loop level. This contribution is, however, safely
negligible: when αs ∼ αd at low-energy, because αd ≪ αs at high energy due to the smaller number of dark QCD quarks (with
the net number 3 coming in the beta function of αd) than that of the ordinary QCD quarks (with the net number 5 or 6 + Nd in
the beta function of αs). Taking into account only the additional Nd quark-loop contributions to the running of αs, we are thus
allowed to evaluate the two-loop beta function at the leading order.

7 Other stringent bounds on the extra light quarks or colored scalars come from the ALEPH search for gluino and squark pairs
tagged with the multijets at the Large Electron Positron (LEP) collider experiment [30]. However, this limit has no sensitivity
below the mass ∼ 2 GeV and hence is not applicable to the present benchmark model.

8 More details on this beyond the SM have been presented in a separate paper [33].
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