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Abstract: The Hamiltonian description of classical gauge theories is a very well studied subject. The
two best known approaches, namely the covariant and canonical Hamiltonian formalisms, have
received a lot of attention in the literature. However, a full understanding of the relation between
them is not available, especially when the gauge theories are defined over regions with boundaries.
Here, we consider this issue, by first making it precise what we mean by equivalence between
the two formalisms. Then, we explore several first-order gauge theories and assess whether their
corresponding descriptions satisfy the notion of equivalence. We shall show that, even when in
several cases the two formalisms are indeed equivalent, there are counterexamples that signal that
this is not always the case. Thus, non-equivalence is a generic feature of gauge field theories. These
results call for a deeper understanding of the subject.

Keywords: hamiltonian formalism; gauge theories; field theories with boundaries

1. Introduction

Gauge theories defined on spacetime regions with a boundary can have degrees of
freedom and observables localized on the boundary. One can study them following one of (at
least) two approaches to Hamiltonian formalism: covariant and canonical methods. It is a
reasonable expectation that, at the classical level, these two descriptions should be equivalent.
There are several papers that have dealt with this issue (see for instance [1,2]), where the
claim is made that both methods are equivalent. This question is of great importance and
should also be considered when there are boundaries present, since the derived Hamiltonian
descriptions may result in inequivalent physical predictions. The purpose of this manuscript
is to revisit this issue, for simple cases of (first-order) gauge theories defined over regions
with boundaries, where both covariant and canonical methods are well understood. As we
shall see, there are nontrivial examples for which such assumed equivalence is at odds with
previously found results. Thus, we shall point out some such instances, in the hope that more
thorough investigations shall fully clarify the issues at hand.

The first question one might ask is how the two descriptions, and in particular the
symplectic structure (fundamental for the definition of dynamics), can be equivalent when
the corresponding phase spaces are different objects. To be precise, in the canonical approach,
the phase space Γcan is given by initial data on a hypersurface Σ, and the (so called kine-
matical) symplectic structure is the ‘canonical’ structure on the cotangent bundle over the
configuration space (more below). On the other hand, the covariant Hamiltonian formalism
is based on the covariant phase space Γcov defined as the space of solutions to the equations
of motion. Are there instances where a diffeomorphism between these two spaces can be
defined? The answer is in the affirmative for some systems. Consider, for instance, a scalar
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field satisfying a linear equation of motion on an arbitrary, globally hyperbolic spacetime.
If the corresponding fields are appropriately well behaved, one might have the existence
and uniqueness of solutions to the equations of motion, given initial data. In that case, one
can define a mapping I : Γcan → Γcov. It is invertible, so we can define all kinds of 1-1
mappings between objects, such as the symplectic structure, defined on both spaces [3].

When we consider Hamiltonian gauge theories, namely singular systems with so-
called first-class constraints (FCC), then one immediately runs into problems. The first
issue is that a bijection is lost. Given a solution to the covariant equations of motion, one
can induce initial data on (a preferred) hypersurface Σ0, which satisfies the constraints of
canonical theory. If we now evolve these initial data, there will not be a unique solution,
precisely due to the freedom of adding arbitrary linear combinations of the constraints
to the Hamiltonian. Thus, we cannot define a 1-1 map between Γcov and the constraint
surface Γ̄can. All this should be such that, when one quotients out the gauge orbits and
arrives at the corresponding reduced phase space for each approach, then there is complete
equivalence between them. That is, at the level of reduced phase spaces, one expects them
to be fully equivalent. The problem is that, in practice, it is very difficult to work in the
reduced phase space (one may not even have control over it, in generic cases). So, the best
one can do is to obtain, at the level of pre-symplectic spaces, similar expressions for the
pre-symplectic structures. This is precisely the issue that we shall examine here. It is, of
course, important to be clear about what one is comparing, so we shall further make precise
what we mean by equivalence below.

We present some preliminaries regarding both formalisms in Section 2, and we state
precisely the notion of equivalence that we shall consider. Next, we explore in detail several
simple gauge theories, in regions with boundaries. In Section 3, we start with one of
the better known gauge theories in four dimensions, corresponding to the Maxwell field.
Here, it is well known that, given the linearity of the theory, both canonical and covariant
descriptions are equivalent (see for instance [4] for such an analysis). We shall provide a
brief review of such a theory. The next system we shall consider is a topological theory,
namely U(1) Pontryagin in the bulk. In Section 4, we shall analyze both covariant and
canonical approaches and show how different the descriptions are. At the end of the day, of
course, we arrive at a description that is ‘trivial’, with no local physical degrees of freedom.
The next system we will consider, in Section 5, is a U(1) Chern–Simons theory on the
boundary (related to the Pontryagin theory). It is known that, at the level of action, both
theories are equivalent. It has also been shown that, when considering the canonical phase
space, there is also equivalence in a precise sense [5]. In Section 6, we shall analyze the
Maxwell–Pontryagin using both approaches. Here, we see that they are not equivalent in
the sense we shall describe below. To be specific, the two structures, at the pre-symplectic
level, differ by a boundary term. Finally, in Section 7, we consider Maxwell in the bulk
with the Chern–Simons term on the boundary. We see, in this case, that the pre-symplectic
structures are also equivalent.

Throughout this manuscript, we are considering generic globally-hyperbolic space-
times without any specific choice of metric, nor a coordinate system. Furthermore, we em-
ploy the language of forms, since that simplifies the calculations and allows for shorter ex-
pressions. When needed, we have rewritten previously known results to match this notation.

It is a pleasure to dedicate this contribution to Prof. Ashtekar, who has been a pioneer
in the application of both canonical [6–9] and covariant approaches [10,11] to general rela-
tivity. His insights have always been a motivation for the gravitational physics community.
We can only hope that this contribution shall add to our collective understanding of the
relation between canonical and covariant Hamiltonian methods.

2. Preliminaries on Covariant and Canonical Hamiltonian Analysis

In this section, we will give a very short reminder of the basic ideas of both approaches,
based mostly on [1,10,12,13] for the covariant case, and [14–18] for the canonical one, among
many others. For simplicity and concreteness, here, we shall consider first-order gauge
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theories, whose configuration space is formed from U(1) connection 1-form A(x) given on
a spacetime region M with boundary, ∂M = Σ1 ∪ Σ2 ∪ B, where Σ1,2 are two (arbitrary)
Cauchy surfaces and B is a time-like hypersurface. The connections should satisfy certain
appropriate boundary conditions that can be either given a priori, from some (physical)
considerations, or can be obtained in the process of constructing a consistent theory, or the
combination of both. Here, we want to compare the two approaches, the covariant and the
canonical. Let us first recall both formalisms.

The covariant phase space (Γcov, ωωω) consists of Γcov, the space of solutions to the
equations of motion, which satisfy some appropriate boundary conditions, together with a
pre-symplectic structure ωωω, which is a degenerate, closed 2-form of Γcov. The degenerate
directions Zi are such that ωωω(Y, Zi) = 0 for every Y ∈ TΓcov. This degeneracy signals the
existence of gauge orbits in Γcov, that relate physically equivalent states. The space of such
orbits Γ̂cov, corresponding to different physical states, is the so-called reduced phase space,
where the projection ω̂ωω under the quotient map is non-degenerate.

On the other hand, the canonical phase space (Γcan, Ω) is the space of all allowed initial
data Γcan equipped with a non-degenerate, closed 2-form Ω, the kinematical symplectic
structure. In gauge theories, there are first-class constraints and when we restrict to the
constraint surface, the pullback of the symplectic structure Ω̄ becomes degenerate. Then,
in principle, one could solve the constraints and impose some gauge fixing conditions
(if possible), in order to obtain a reduced phase space with a non-degenerate symplectic
structure Ω̂.

In both cases, the starting point is a covariant action. In the covariant analysis, we
find the geometric structures and arrive at a symplectic description in a natural way,
without the need to foliate the underlying spacetime region, nor project the fields onto
some hypersurfaces. In the canonical case, one has to perform a decomposition of the
spacetime region, of the fields and of the covariant action, to arrive at a canonical one.
Since M has a boundary, both symplectic structures can have a boundary contribution,
but, as it turns out, they do not necessarily coincide. In the following, we shall recall
both constructions.

2.1. Covariant Hamiltonian Analysis

Let us start from a generic, first-order covariant action, without boundary terms:

S[A] =
∫
M

L . (1)

Its variation can be written as

δS[A] =
∫
M

E ∧ δA +
∫
M

dθ(A, δA). (2)

The second term of the RHS is obtained after integration by parts. If it vanishes, we
obtain the Euler–Lagrange equations of motion, E = 0, in the bulk. Though its vanishing
is a condition needed for a well defined action principle, this term, called the symplectic
potential, is also a starting point for the construction of a symplectic structure for the theory.
Using Stokes’ theorem, this can be written as

Θ(δA) :=
∫

∂M
θ(A, δA) . (3)

The exterior derivative of the symplectic potential, acting on tangent vectors δ1 and δ2
at a point s ∈ Γcov is given by

dΘ(δ1, δ2) := δ1Θ(δ2)− δ2Θ(δ1) = 2
∫

∂M
δ[1θ(δ2]) , (4)
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where d denotes the exterior derivative in the phase space, and where one identifies
variations of the fields with tangent vectors to the space Γcov. From this expression, we can
define a space-time 3-form, the symplectic current J(δ1, δ2), as

J(δ1, δ2) := δ1θ(δ2)− δ2θ(δ1) . (5)

On the space of solutions, dS(δ) = Θ(δ), therefore, we obtain

0 = d
2S(δ1, δ2) = dΘ(δ1, δ2) =

(
−

∫
Σ1

+
∫

Σ2

+
∫
B

)
J . (6)

In some examples, the boundary conditions ensures that the integral
∫
B J vanishes, in

that case it follows that
∫

Σ J is independent of the Cauchy surface. This allows us to define
a conserved pre-symplectic form over an arbitrary space-like Cauchy surface Σ,

ωωω(δ1, δ2) =
∫

Σ
J(δ1, δ2) . (7)

In this case, there is no boundary contribution in ωωω.
The boundary term appears when J = dj on B. Then,

∫
B J = (−

∫
∂Σ1

+
∫

∂Σ2
)j, and the

conserved pre-symplectic structure takes the form

ωωω(δ1, δ2) =
∫

Σ
J(δ1, δ2) +

∫
∂Σ

j(δ1, δ2) . (8)

In the following, we shall revise various examples of the theories where the covariant
action has an additional topological term. Let us recall why this term does not affect the
covariant symplectic structure. In this case, we have

S[A] =
∫
M

L +
∫
M

dΦ . (9)

Using the equation of motion, we obtain

δS[A] =
∫
M

d[θ(A, δA) + δ(Φ(A))] . (10)

and the symplectic potential now has an additional term:

Θ̃(A, δA) :=
∫

∂M
[θ(A, δA) + δ(Φ(A))] . (11)

From (11), it follows that the corresponding symplectic current is of the form

J̃(δ1, δ2) = 2
(
δ[1θ(δ2]) + δ[1δ2]Φ

)
. (12)

Now, we see that the term δ[1δ2]Φ vanishes due to antisymmetry. Therefore, when we
add a topological term to the original action, this will not change the symplectic current
nor, as a consequence, the symplectic structure of the original theory [13].

In the covariant phase space framework, the energy of the system, H is determined
(up to an additive constant) from

δH := dH(δ) = ωωω(δ, δt) , (13)

where δtA = LtA, and δ ∈ TΓcov.
It is interesting that, in diffeomorphism invariant theories, such as the theory of gravity

in first-order fomalism, ωωω(δ1, δ2) = ωωωbulk(δ1, δ2) +ωωωbound(δ1, δ2). It turns out that in the
asymptotic region (for asymptotically flat configurations) and on the (weakly) isolated
horizon, as an internal boundary, ωωωbulk(δ, δt) reduces to an integral over a 2D surface ∂Σ,
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while ωωωbound(δ, δt) vanishes. As a consequence, H is determined as an integral over a 2D
surface ∂Σ; see, for example, [11].

2.2. Canonical Hamiltonian Analysis

In this section, we shall briefly recall the procedure to arrive at the canonical phase
space Γcan. The starting point is again a covariant action (1) or (9), with spacetime region
M of the form I × Σ, with I being a closed interval. The 3+1 decomposition of the action,
through a spacetime foliation and a choice of time evolution vector field, amounts to a field
redefinition or change in variables in configuration space, which allows writing the action
in canonical form:

Scan =
∫
I
(P[LtA]− HC)dt , (14)

where HC is the (candidate for) canonical Hamiltonian of the theory (that can also have a
boundary term) and P[LtA] is the kinetic term, which can also have a contribution from
the boundary [18],

P[LtA] =
∫

Σ
P ∧ LtA +

∫
∂Σ

πππ ∧ Ltααα . (15)

Here, (A(x), P(x)) are the bulk canonical variables and (ααα(y), πππ(y)) are interpreted as
boundary degrees of freedom.

In general, boundary fields are not the pullback of bulk phase space variables to ∂Σ.
Thus, one can obtain coordinates for the cotangent bundle T∗C =: Γcan, where (A, ααα) are
coordinates for the canonical configuration space in the bulk and boundary, respectively.
Furthermore, (P, πππ) are the corresponding momenta over C.

The kinetic term determines the kinematical non-degenerate symplectic structure of
the theory, which can also have a boundary term1

Ω(δ1, δ2) = 2
∫

Σ
δ[1P ∧ δ2]A + 2

∫
∂Σ

δ[1πππ ∧ δ2]ααα . (16)

As mentioned before, in gauge theories, there are first-class constraints Ci ≈ 0,
i = 1, . . . , n, and in general there can be bulk and boundary constraints. The theory
can also have second-class constraints (SCC), Dk ≈ 0, k = 1, . . . , m. For our purposes, it is
sufficient to restrict our considerations to the subspace of the phase space where the SCC
constraints are imposed as strong equalities, ΓD ⊂ Γcan.

The evolution is tangent to the first-class constraint surface, Γ̄can ⊂ Γcan and the
pullback of Ω to Γ̄can becomes degenerate. The Hamiltonian that governs the dynamics
of the theory is obtained by adding to the canonical Hamiltonian a linear combination
of the smeared FCC constraints H = HC + Ci[ui], where ui are arbitrary multipliers. For
any choice of multipliers, there is a unique corresponding Hamiltonian vector field XH
defined as

dH(Y) = Ω(Y, XH) , (17)

where Y ∈ TΓcan. The vector field XH should be tangent to Γ̄can. Let us denote by Zi the
Hamiltonian vector fields that correspond to first-class constraints, then

Ω̄(Zi, XH) = 0 , i = 1, . . . , n , (18)

where Ω̄ is the pullback of Ω to Γ̄can.
Even when one has the same Hamilton equations in both formalisms, there is a subtle

difference in how one uses them. Contrary to in covariant formalism, in the canonical ap-
proach, one starts from H and constructs the corresponding XH . There are two possibilities,
depending on the form of the symplectic structure. In the first, Ω has a vanishing contribu-
tion from the boundary, so there cannot be any boundary terms in (17) and (18), and that
imposes some boundary conditions on bulk canonical variables. This corresponds to the
standard Regge–Teitelboim scenario. In the second case, Ω has a non-vanishing contribu-
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tion from the boundary. Then, there is a boundary contribution to the Hamiltonian vector
fields, and generally there are also boundary conditions on the bulk configurations [18].

Let us now compare both formalisms and recall how they are related, as well as how
one can pose the problem of having equivalent structures at the pre-symplectic level.

2.3. Comparison and Statement of the Problem

In the introduction, we saw that one can define a mapping from the space of solutions
to the constraint surface in the canonical phase space. The 3+1 decomposition provides
a ‘canonical’ method to implement this map through a spacetime foliation, assigning to
each solution s in Γcov its ‘instantaneous’ value d at some ‘initial’ hypersurface Σ0. Let us
call this map Π̄ : Γcov → Γ̄can, the canonical projection. For gauge theories, there are many
solutions that induce the same initial data, so this map is non-injective. In analogy with the
Lee–Wald construction [1], let us assume Π̄ : Γcov → Γ̄can gives Γcov the structure of a fiber
bundle over Γ̄can.

As we have seen, one expects that all these different solutions mapping to the same
initial data d, that is, all the points along the fiber Π̄−1(d), belong to the same gauge orbit
in Γcov. There are, furthermore, the gauge orbits in Γ̄can generated by the constraints. Those
points along the orbit of d in Γ̄can, associated with initial data for different solutions, will
have corresponding fibers over them. Those fibers should also belong to the same gauge
orbit in Γcov as the initial fiber we started with. Thus, intuitively, the gauge orbits in Γcov
should be larger (of higher dimension per point) than the gauge orbits in Γ̄can (See Figure 1).

FIG. 1: Gauge ‘plane’ on Γcov: Directions δA along the fiber Π̄−1(d) necessarily represent infinites-

imal gauge transformations on M with support outside Σ0. Transverse gauge directions on Γcov

(infinitesimal gauge transformations on M which are nontrivial on Σ0) should connect fibers over

the gauge orbit of d in the constraint surface Γ̄can. Note that there are several transverse vectors

at s that project to the same vector in d.

by Lee and Wald, the many-to-one mapping Π̄LW : Γcov → Γ̄can is a priori different from the
canonical projection Π̄ arising from the 3+1 decomposition, so the fiber bundle structure
induced on Γcov by these mappings may in general be different: In [1], the degenerate
directions of ω in the whole configuration space F of the covariant theory are shown to be
integrable and hence to define a foliation of F . The complete canonical phase space Γcan

is identified with the set of equivalence classes defined by these submanifolds of degenerate
directions of ω, with ΠLW : F → Γcan, the projection to the equivalence classes. The
mapping Π̄LW : Γcov → Γ̄can is the restriction of this projection to the space of solutions to
the equations of motion.

By construction, the projection of ω to the phase space Γcan gives rise to a well defined
symplectic structure ΩLW. This symplectic structure and its pullback Ω̄LW to the constraint
surface Γ̄can, will hence, by construction, satisfy the analogous of Eq.(19). While the authors
verify the equivalence of Ω̄LW with the pre-symplectic structure Ω̄ arising from the 3+1
decomposition for specific examples (which implies also correctly identifying their phase
space of equivalence classes with initial data), the whole analysis does not consider regions
with boundaries and a general discussion of equivalence is lacking. Our Eq.(19) is asking for

8

Figure 1. Gauge ‘plane’ on Γcov: Directions δA along the fiber Π̄−1(d) necessarily represent infinites-
imal gauge transformations on M with support outside Σ0. Transverse gauge directions on Γcov

(infinitesimal gauge transformations on M, which are nontrivial on Σ0) should connect fibers over
the gauge orbit of d in the constraint surface Γ̄can. Note that there are several transverse vectors at s
that project to the same vector in d.

The question that was left open in the introduction was a precise way of defining
an equivalence. In the discussion, we argued that this can be achieved at the level of
pre-symplectic spaces; that is, relating Γcov and Γ̄can. Let us now see this in detail. Using
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the canonical projection Π̄(s) = d, with s being a solution and d its corresponding initial
data, the pullback Ω̃(s) := Π̄∗Ω̄(d) of the pre-symplectic structure Ω̄ at each point d on
Γ̄can defines a pre-symplectic structure on Γcov (a closed 2-form). Since Π̄ is a projection,
directions along the fibers Π̄−1(d) are also degenerate directions of Ω̃(s). It follows then, by
using Cartan’s formula, that the induced pre-symplectic structure Ω̃ is constant along the
fibers, and therefore it also has a well defined projection onto Γ̄can. The question at hand is
whether the induced structure Ω̃(s) coincides with the naturally defined ω(s) coming from
the covariant phase space formalism. If that happens, namely if,

Ω̃(s) = ω(s) (19)

we shall say that there is a precise sense of equivalence between the two formalisms. In
that case, let us name both pre-symplectic structures Π̄-equivalent (See Figure 2).

FIG. 2: Ω̃, the pullback under the canonical projection map of the pre-symplectic structure Ω̄ on

the constraint surface, defines a pre-symplectic structure on the covariant phase space. Directions

δA along the fiber Π̄−1(d) are degenerate directions of Ω̃(s). Since Ω̃ is closed, by Cartan’s formula

then LδAΩ̃ = 0. So Ω̃ also has a well defined projection.

such a comparison, even when written on the point s on the fibre. One could project down
the equation to the base point in Γ̄can, and re-estate the equivalence there. Both possibilities
are mathematically equivalent.

In the recent paper [2], the authors make a strong claim of equality between symplectic
structures, for generic theories and with the inclusion of boundaries. It is not clear whether
their results apply to gauge theories. In what follows we shall consider several examples,
and will find that even when in several cases we do have Π̄-equivalence, we find one example
for which Eq.(19) is violated. This counterexample is enough to invalidate Π̄-equivalence (or
correspondingly the equivalence of Ω̄LW with Ω̄), as a generic property for gauge theories.
Let us now consider several concrete examples.

III. MAXWELL THEORY

Our first example is the Maxwell theory defined on (M, gab), a spacetime regionM with
boundary, ∂M = Σ1 ∪ Σ2 ∪ B, where Σ1,2 are two (arbitrary) Cauchy surfaces and B is a
time-like hypersurface.

9

Figure 2. Ω̃, the pullback under the canonical projection map of the pre-symplectic structure Ω̄ on
the constraint surface, defines a pre-symplectic structure on the covariant phase space. Directions δA
along the fiber Π̄−1(d) are degenerate directions of Ω̃(s). Since Ω̃ is closed, using Cartan’s formula
then LδAΩ̃ = 0. So, Ω̃ also has a well-defined projection.

We have made explicit the sense in which the two pre-symplectic structures are
equivalent, namely if Equation (19) is satisfied. At this stage, we should point out that in
the pioneering paper by Lee and Wald, the many-to-one mapping Π̄LW : Γcov → Γ̄can was
a priori different from the canonical projection Π̄ arising from the 3+1 decomposition, so
the fiber bundle structure induced on Γcov by these mappings may, in general, be different:
In [1], the degenerate directions of ω in the whole configuration space F of the covariant
theory were shown to be integrable and hence to define a foliation of F . The complete
canonical phase space Γcan is identified with the set of equivalence classes defined by these
submanifolds of degenerate directions of ω, with ΠLW : F → Γcan, the projection to the
equivalence classes. The mapping Π̄LW : Γcov → Γ̄can is the restriction of this projection to
the space of solutions to the equations of motion.

By construction, the projection of ω to the phase space Γcan gives rise to a well-defined
symplectic structure ΩLW. This symplectic structure and its pullback Ω̄LW to the constraint
surface Γ̄can, will hence, by construction, satisfy the analogous of Equation (19). While the
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authors verified the equivalence of Ω̄LW with the pre-symplectic structure Ω̄ arising from
the 3 + 1 decomposition for specific examples (which also implies correctly identifying
their phase space of equivalence classes with initial data), the overall analysis did not
consider regions with boundaries, and a general discussion of equivalence was lacking.
Our Equation (19) is asking for such a comparison, even when written on the point s on
the fiber. One could project down the equation to the base point in Γ̄can, and re-state the
equivalence there. Both possibilities are mathematically equivalent.

In a recent paper [2], the authors made a strong claim of equality between symplectic
structures, for generic theories and with the inclusion of boundaries. It is not clear whether
their results apply to gauge theories. In what follows, we shall consider several examples
and find that, even when in several cases we do have Π̄-equivalence, we find one example
for which Equation (19) is violated. This counterexample is enough to invalidate Π̄-
equivalence (or correspondingly the equivalence of Ω̄LW with Ω̄), as a generic property for
gauge theories. Let us now consider several concrete examples.

3. Maxwell Theory

Our first example is the Maxwell theory defined in (M, gab), a spacetime region M
with boundary, ∂M = Σ1 ∪ Σ2 ∪ B, where Σ1,2 are two (arbitrary) Cauchy surfaces and B
is a time-like hypersurface.

We start from a covariant action that takes the form (up to the multiplicative factor)

SM =
∫
M

F ∧ ⋆F , (20)

where F = dA is the field strength two-form, the curvature of the U(1) connection one-
form A, and ⋆F is the Hodge dual in four dimensions of F. Let us now see how the two
Hamiltonian descriptions arise, recalling some of the results of [4], and taking into account
contributions from the boundary.

3.1. Covariant Approach

The variation in (20) takes the form

δSM = 2
∫
M

d⋆F ∧ δA + 2
∫

∂M
⋆F ∧ δA , (21)

resulting in vacuum Maxwell equations in the bulk

dF = 0 and d⋆F = 0 , (22)

and the boundary condition ∫
∂M

⋆F ∧ δA = 0 , (23)

which needs to be satisfied to obtain a consistent action principle. The covariant phase
space (ΓCovM, ωωωM) is the space of solutions of (22) that satisfy the boundary conditions (23).
We will assume that

∫
B ⋆F ∧ δA = 0, so that the pre-symplectic structure is of the form

ωωωM(δ1, δ2) = 4
∫

Σ
δ[1⋆F ∧ δ2]A. (24)

It is easy to show that δA = dα are degenerate directions of ωωωM.
As shown in [4], ωωωM can be rewritten in terms of variables defined on Σ as

ωωωM(δ1, δ2) = 4
∫

Σ
δ[1 ∗ (n · F) ∧ δ2]A , (25)

where ∗ denotes a three-dimensional Hodge star, and na is unit normal to Σ. The normal
component of F is proportional to the electric field E on Σ. Let us now consider the structure
of the canonical formalism.
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3.2. Canonical Approach

The first step in the Hamiltonian analysis is to perform a 3 + 1-decomposition of
the action SM. We shall consider that M = I × Σ, with I being a closed interval. Σ is
a three-dimensional manifold with boundary ∂Σ that has the topology of a two sphere
S2. We introduce an everywhere timelike vector field ta and a ‘time’ function t, such that
hypersurfaces t = const. are diffeomorphic to Σ and ta∇at = 1. The kinematical symplectic
structure ΩM is of the form

ΩM(δ1, δ2) = 2
∫

Σ
δ[1Pφ ∧ δ2]φ + δ[1P ∧ δ2]A , (26)

where φ = t · A. The theory has two first class constraints:

Cφ := Pφ ≈ 0 , (27)

C := ∗dP ≈ 0 , (28)

where the Gauss constraint C is obtained from the consistency condition of the primary
constraint Cφ. There are no further constraints.

In this case, the symplectic structure ΩM does not have a boundary contribution, so
that the variation in the allowed phase space functionals cannot have any boundary terms,
which impose some boundary conditions. The Hamiltonian HM and the corresponding
boundary conditions needed for its differentiability are given in [4].

In order to compare the covariant and the canonical symplectic structure, we can
rewrite ΩM using the definition of the canonical momenta, where the canonical momenta
are given by

Pφ = 0 , (29)

P = 2 ∗ (n · F) . (30)

As a result, we obtain

Ω̃M(δ1, δ2) = 4
∫

Σ
δ[1 ∗ (n · F) ∧ δ2]A , (31)

which is Π̄-equivalent to the covariant symplectic structure ωωωM(δ1, δ2) (25).
Let us now see how one can understand equivalence at the level of reduced phase

spaces [4]. In the covariant approach, the reduced phase space Γ̂cov can be characterized
using the equivalence class of 4D connections [A] or using the curvature tensor F satisfying
both of Maxwell’s equations (22). Equivalently, given a hypersurface Σ, F can be decom-
posed into a pair (B, E), namely the electric and magnetic field, such that E satisfies the
initial data constraints. In turn, this characterization is equivalent to the canonical one,
where the reduced phase space Γ̂can is given by pairs ([A], E), where the equivalence class
is now of spatial U(1) connections and E satisfies Gauss’ law.

4. Pontryagin Theory

As another example of a gauge theory defined in a region with boundary, let us
consider a topological theory, defined in the bulk, namely the U(1) Pontryagin theory on
the 4D spacetime region M, with boundary. This section has two parts. In the first, we
perform a covariant Hamiltonian analysis of the theory, and in the second, we recall some
results of the corresponding canonical analysis [5].

The Pontryagin action for the Abelian theory is

SP = θ
∫
M

F ∧ F , (32)

where θ is an arbitrary real parameter.
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4.1. Covariant Approach

The variation in (32) only has one boundary contribution, since the bulk equation of
motion, dF = 0, is trivially satisfied,

δSP = 2θ
∫

∂M
F ∧ δA , (33)

where ∂M = Σ1 ∪Σ2 ∪B, with B = I × ∂Σ. This term should vanish to have a well-defined
variational principle, even in this case where there are no equations of motion in the bulk.
Since δA = 0 on Σ1 and Σ2, we see that the condition∫

B
F ∧ δA = 0 , (34)

defines boundary conditions of the theory. One possibility is that

F = 0 , on B, (35)

but (34) can be fulfilled even without (35), as is the case for perfect conductor boundary
conditions [18]. The covariant phase space (ΓPcov, ωωωP) is then defined as a space of all
connections, such that (34) holds.

The corresponding symplectic structure ωωωP must vanish identically, since (32) is a
topological term. Indeed, (33) can be rewritten as

dSP(δ) := δSP = θ
∫

∂M
δ(F ∧ A) . (36)

As a consequence, as we have seen in Section 2, the symplectic current J(δ1, δ2) van-
ishes, as does the symplectic structure on the covariant phase space of the theory

ωωωP(δ1, δ2) = 0 . (37)

This implies that every direction δA ∈ TΓPcov is a degenerate one. The reduced
phase space (Γ̂Pcov, ω̂ωωP) is then trivial, in the sense that it does not have local degrees of
freedom. There can only be global boundary degrees of freedom when the boundary has
non-trivial cohomology.

4.2. Canonical Approach

The first step in the Hamiltonian analysis is to perform a 3 + 1-decomposition of the
action. As before, we introduce an everywhere timelike vector field ta and a ‘time’ function
t, such that ta∇at = 1. Then, the canonical form of SP is

SPcan = 2θ
∫

I
dt

∫
Σ
(t · F) ∧ F = 2θ

∫
I

dt
∫

Σ
[LtA − dφ] ∧ F . (38)

From (38), we can read off the form of the kinematical symplectic structure

ΩP(δ1, δ2) = 2
∫

Σ
δ[1ΠPφ ∧ δ2]φ + δ[1ΠP ∧ δ2]A , (39)

and the corresponding proposal for the canonical Hamiltonian, HP =
∫

Σ dφ ∧ ΠP. There
are four primary constraints

CPφ := ΠPφ ≈ 0 , (40)

CP := ΠP − 2θ F ≈ 0 . (41)

Following Dirac’s algorithm, we define the total Hamiltonian as HPT =
∫

Σ(dφ ∧ ΠP +
u ∧ CP + v ∧ CPφ), where u and v are the corresponding smearing one-form and function.



Universe 2024, 10, 60 11 of 18

The total Hamiltonian defines the evolution via its corresponding Hamiltonian vector fields
(HVF) XH , given by

dHPT = ΩP(·, XH) . (42)

Since ΩP only has a bulk contribution, it follows that dHPT cannot have any boundary
terms, leading to two conditions:

∫
∂Σ ΠP ∧ δφ = 0 and

∫
∂Σ u ∧ δA = 0.

It is known that all of the primary constraints are first-class and that there are no new
secondary-class constraints. If we denote the HVF corresponding to the four FC constraints
(CPφ, CPa) as Zi

2, then the pullback of ΩP to the constraint surface, Γ̄Pcan, is degenerate,
Ω̄P(Y, Zi) = 0, for every Y ∈ TΓ̄Pcan. In particular,

Ω̄P(Zi, Zj) = 0 . (43)

Since HVF Zi spans the four-dimensional TΓ̄Pcan, the corresponding pullback of the
symplectic structure Ω̄P is trivial

Ω̄P(X, Y) = 0 , (44)

for every X, Y ∈ TΓ̄Pcan.
It is at this level where we can ask for the equivalence between covariant and canonical

pre-symplectic structures. The first observation is that the Π̄-map does not exist. To begin
with, the space ΓPcov of solutions is the full space of field configurations F . If we induce
initial data from any such configurations on a hypersurface Σ0, these data will not in general
satisfy the four first class constraints of the canonical theory. Thus, if the Π̄-map does not
exist, the two descriptions can not possibly be Π̄-equivalent. They are equivalent, however,
at the level of reduced phase spaces. We have seen that the covariant pre-symplectic
structure is trivial, so every direction is a gauge direction. In the canonical case, the induced
structure Ω̄MP is also trivial in Γ̄Pcan, so all tangent directions to it are also gauge directions.
The final description is that, in canonical theory, the reduced phase space Γ̂Pcan has no local
degrees of freedom either.

5. Chern–Simons Theory on the Boundary

It is well known that the Pontryagin action, being the integral of a total derivative,
can be rewritten as an integral of the Chern–Simons action over the boundary ∂M of the
spacetime region under consideration. In [5], the Pontryagin theory on M and the Chern–
Simons term on B = I × ∂Σ were compared within the canonical Hamiltonian description
and shown to be equivalent. In this section, we shall perform a covariant analysis in the
first part. In the second, we recall the results of the canonical theory and compare them.

5.1. Covariant Approach

The action given by the Pontryagin term on M is equivalent to Chern–Simons action
on ∂M, We shall consider the Chern–Simons theory on B = I × ∂Σ instead, since we want
to compare the covariant Hamiltonian theory with the canonical analysis of [5]. This choice
might have some consequences, as we shall discuss below. The starting action has the form

SCS = θ
∫
B

A ∧ F . (45)

Then,
dSCS(δ) := δSCS = 2θ

∫
B

F ∧ δA − θ
∫

∂B
A ∧ δA , (46)

where ∂B = ∂Σ1 ∪ ∂Σ2. The corresponding equations of motion are given by F = 0, on B.
Note that the last integral vanishes, since δA = 0 on Σ1 and Σ2.

The symplectic current JCS(δ1, δ2) is obtained from

d
2SCS(δ1, δ2) :=

∫
∂B

JCS(δ1, δ2) = −2θ
∫

∂B
δ1A ∧ δ2A = 0 , (47)



Universe 2024, 10, 60 12 of 18

resulting in the conserved pre-symplectic structure

ωωωCS(δ1, δ2) = −2θ
∫

∂Σ
δ1A ∧ δ2A . (48)

Note that it does not identically vanish, as in the case of the Pontryagin term. Never-
theless, since F = 0 on B, this implies that, locally, the allowed variations are of the form
δA = dα on ∂Σ.3 Then, for such generic tangent vectors to Γcov, we have

ωωωCS(δ1, δ2) = −2θ
∫

∂Σ
dα1 ∧ dα2 = 0 . (49)

Thus, every tangent vector to Γcov is a degenerate direction of ωωωCS, which means that
the space of orbits defined by the gauge directions is trivial leading, as expected, to the
same result as in the covariant Pontryagin theory on M. Let us now recall the canonical
description of the CS-theory [5].

5.2. Canonical Approach

The canonical action is

SCScan = −θ
∫

I
dt

∫
∂Σ
[LtA ∧ A + φ ∧ F] , (50)

from which we can read off the form of the kinematical symplectic structure

ΩCS(δ1, δ2) = 2
∫

∂Σ
δ[1ΠCSφ ∧ δ2]φ + δ[1ΠCS ∧ δ2]A , (51)

and the corresponding proposal for the canonical Hamiltonian, HCS = θ
∫

∂Σ φ ∧ F . There
are three primary constraints

CCSφ := ΠCSφ ≈ 0 , (52)

CCS := ΠCS + θ A ≈ 0 . (53)

The HVF δC corresponding to the smeared constraint CCS[u] =
∫

∂Σ u ∧ CCS , is ob-
tained from

dCCS[u](δ) = ΩCS(δ, δC) . (54)

It turns out that ΩCS(δC1 , δC2) = 2θ
∫

∂Σ u1 ∧ u2 ̸= 0 , so that there are two primary
second-class constraints CCSa ≈ 0. The total Hamiltonian is

HTCS =
∫

∂Σ
[θ φ ∧ F + v ∧ CCS + w ∧ CCSφ] , (55)

and its corresponding HVF δH is defined as

dHTCS(δ) = ΩCS(δ, δH) . (56)

The consistency condition for the primary constraint CCSφ[w1] leads to a secondary
constraint

LtCCSφ[w1] := ΩCS(δCφ , δH) =
∫

∂Σ
w1 ∧ F ⇒ F = 0 on ∂Σ , (57)

while from the consistency condition for CCS[u], we obtain the multiplier v,

LtCCS[u] := ΩCS(δC, δH) = θ
∫

∂Σ
(dφ − 2v) ∧ u = 0 ⇒ v =

1
2

dφ on ∂Σ . (58)

There are no tertiary constraints. Let us define ΓCSD ⊂ ΓCScan as a hypersurface where
CCS ≈ 0. Then, the pullback of the symplectic structure to ΓCSD is non-degenerate,
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ΩCSD(δ1, δ2) = 2
∫

∂Σ
−θ δ1A ∧ δ2A + δ[1ΠCSφ ∧ δ2]φ . (59)

ΓCSD is four-dimensional (per point), and there are still two first-class constraints

ΠCSφ ≈ 0 , F ≈ 0 . (60)

These constraints define Γ̄CScan ⊂ ΓCSD, whose tangent vectors are such that δΠCSφ ≈ 0
and locally δA ≈ dα. The resulting degenerate pre-symplectic structure is trivial

Ω̄CSD(X, Y) = 0 , (61)

for every X, Y ∈ TΓ̄CScan. Note that, in this case, the Π̄-map is well-defined, since we have
covariant equations of motion. Furthermore, just as in the covariant description, at the pre-
symplectic level, both ωωωCS and Ω̄CSD act trivially on tangent vectors to the corresponding
spaces. Thus, we can conclude that Π̄-equivalence is satisfied in a trivial way.

6. Maxwell-Pontryagin Theory

In this section, we consider the Maxwell–Pontryagin theory in 4D. We start from
the covariant action and develop the two Hamiltonian descriptions. In the first part, we
consider the covariant theory, and in the second, we recall the canonical analysis of [18].

The starting point is the covariant action, which is a sum of the action for the Maxwell
theory and the Pontryagin term and which takes the form (up to the multiplicative factor)

SMP =
∫
M

F ∧ ⋆F + θ F ∧ F , (62)

where ⋆F is the Hodge dual in four dimensions of F.

6.1. Covariant Approach

The variation in (62) takes the form

δSMP = 2
∫
M

d⋆F ∧ δA + 2
∫

∂M
(⋆F + θ F) ∧ δA , (63)

resulting in vacuum Maxwell equations in the bulk

dF = 0 and d⋆F = 0 , (64)

and the boundary condition ∫
∂M

(⋆F + θ F) ∧ δA = 0 . (65)

The covariant phase space (ΓMPcov, ωωωMP) is the space of the solutions of (64), which
satisfy the θ-dependent boundary conditions (65) (which makes it different to the pure
Maxwell theory). Furthermore, we shall impose that there is no symplectic leakage across
the boundary, namely

∫
B δ[1⋆F ∧ δ2]A = 0.4 This is a necessary condition for the existence

of the conserved pre-symplectic structure of the form

ωωωMP(δ1, δ2) = 4
∫

Σ
δ[1⋆F ∧ δ2]A = ωωωM(δ1, δ2) . (66)

As we showed in Section 2, the Pontryagin term does not contribute to ωωωMP. It is easy
to show that δA = dα are degenerate directions of ωωωMP, which are precisely the gauge
directions of the Maxwell theory.

As shown in [4], ωωωMP can be rewritten in terms of variables defined on Σ

ωωωMP(δ1, δ2) = 4
∫

Σ
δ[1 ∗ (n · F) ∧ δ2]A , (67)
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where ∗ denotes a three-dimensional Hodge star and na is unit normal to Σ.
Let us now consider the canonical description, starting from the same action.

6.2. Canonical Approach

We start with the 3 + 1 decomposition of the covariant action SMP, from which we
arrive at the corresponding canonical action [18]. The kinematical symplectic structure is of
the form

ΩMP(δ1, δ2) = 2
∫

Σ
δ[1Πφ ∧ δ2]φ + δ[1Π ∧ δ2]A . (68)

The symplectic structure does not have any boundary contribution, so the variation in the
allowed phase space functionals cannot have any boundary terms. This condition imposes
some boundary conditions for the fields. The Hamiltonian HMP and the corresponding
(θ-dependent) boundary conditions needed for its differentiability are given in [18].

The theory has two first-class constraints:

Cφ := Πφ ≈ 0 , (69)

C := ∗dΠ ≈ 0 , (70)

where the Gauss constraint C is obtained from the consistency condition of the primary
constraint Cφ. There are no further constraints.

In order to compare the covariant and the canonical symplectic structure, we can
rewrite ΩMP, using the definition of the canonical momenta,

Πφ = 0 , (71)

Π = 2 ∗ (n · F)− θ F . (72)

As a result, we obtain

Ω̃MP(δ1, δ2) = 4
∫

Σ
δ[1 ∗ (n · F) ∧ δ2]A − 2θ

∫
∂Σ

δ1A ∧ δ2A , (73)

which, apart from the covariant pre-symplectic structure of the Maxwell theory, has an
additional Chern–Simons boundary contribution. Since F ̸= 0 on ∂Σ, the boundary term in
Ω̃MP does not vanish.

Thus, we see that, in this case, there is no Π̄-equivalence between the pre-symplectic
structures. This is precisely the counterexample that shows that Π̄-equivalence is not a
generic feature of gauge theories.

Let us now consider the final model of this manuscript, namely Maxwell+Chern–
Simons, which is known to be equivalent to the Maxwell–Pontryagin theory in this section.

7. Maxwell + Chern–Simons

Let us now analyze the case where the Pontryagin term on M is replaced by the
Chern–Simons term on the boundary B,

SMCS =
∫
M

F ∧ ⋆F + θ
∫
B

A ∧ F . (74)

7.1. Covariant Approach

Now, the variation in the action is of the form

δSMCS = 2
∫
M

d⋆F ∧ δA + 2
∫

∂M
⋆F ∧ δA + 2θ

∫
B

F ∧ δA − θ
∫

∂B
A ∧ δA , (75)

again leading to the Maxwell equations in the bulk. In the third integral, we can replace
B with ∂M = B ∪ Σ1 ∪ Σ2, since δA = 0 on Σ1,2, with this also being the reason for the
vanishing of the last integral. In this way, we can obtain the same condition as in the
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Maxwell–Pontryagin theory, which now can be interpreted in two ways: as a boundary
condition on ∂M, or as the equation of motion on B

⋆F + θ F = 0 , on B .

The corresponding symplectic structure now has a boundary term

ωωωMCS(δ1, δ2) = 2
∫

Σ
δ[1⋆F ∧ δ2]A − 2 θ

∫
∂Σ

δ1A ∧ δ2A . (76)

Again, the boundary term in the symplectic structure does not vanish, as was the case
in Chern–Simons theory.

7.2. Canonical Approach

Here, we shall recall the main results from [18]. After performing a 3+1 decomposition
of the action (74), we can arrive at a kinematical symplectic structure, which now has a
boundary term and is of the form

ΩMCS(δ1, δ2) = 2
∫

Σ
δ[1Pφ ∧ δ2]φ + δ[1P ∧ δ2]A + 2

∫
∂Σ

δ[1Pφ∂ ∧ δ2]φ
∂ + δ[1P∂ ∧ δ2]A

∂ , (77)

where A∂ is the pullback of A to ∂Σ, φ∂ is φ evaluated on ∂Σ. Furthermore, P∂ and Pφ∂ are
the corresponding canonical momenta, which are not related to the canonical momenta
in the bulk. The bulk part of the symplectic structure corresponds to the Maxwell theory,
while the boundary contribution comes from the Chern–Simons term on the boundary.

As in the case of Maxwell–Pontryagin, this theory has two first-class constraints in
the bulk:

Cφ := Pφ ≈ 0 , (78)

C := ∗dP ≈ 0 , (79)

where, as before, the Gauss constraint C is obtained from the consistency condition of the
primary constraint Cφ.

There are also constraints on the boundary, all of them primary, given by

Cφ∂ := Pφ∂ ≈ 0 , (80)

C∂ := P∂ + θA∂ ≈ 0 . (81)

The consistency condition for Cφ∂ leads to the boundary condition for the bulk variables,
∗(r · P)− θF = 0 |∂Σ , where ra is the exterior unit normal to ∂Σ, such that rana = 0. These
are the same boundary conditions that were obtained in the Maxwell–Pontryagin theory, as
one of the necessary conditions for the differentiability of the Hamiltonian [18]. On the other
hand, the consistency conditions for C∂ lead to the determination of the corresponding
multipliers in the boundary term of the Hamiltonian of the theory, due to the second-class
nature of these constraints.

As in the previous case, we can compare the covariant and the canonical pre-symplectic
structures, using the definition of the canonical momenta, given by

Pφ = 0 , (82)

P = 2 ∗ (n · F) , (83)

Pφ∂ = 0 , (84)

P∂ = −θA∂ . (85)

The resulting pre-symplectic structure takes the form
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Ω̃MCS(δ1, δ2) = 4
∫

Σ
δ[1 ∗ (n · F) ∧ δ2]A − 2θ

∫
∂Σ

δ1A ∧ δ2A , (86)

where, in the second integral, we have written A instead of A∂, in order to simplify the
notation. In this case, we can see there is Π̄-equivalence between the pre-symplectic
structures (as opposed to the Maxwell–Pontryagin case).

8. Discussion and Conclusions

The main objective of this manuscript was to address the issue of equivalence between
covariant and canonical Hamiltonian descriptions of gauge field theories when boundaries
are present. Notwithstanding the previous efforts to tackle this issue, we approached the
problem from a natural ‘canonical perspective’. That is, we followed standard procedures
to both Hamiltonian formalisms and compared them using a natural notion of equivalence
(referred to as Π̄-equivalence) between them. This notion seems not to fully coincide with
previous studies on the question at hand (see, for instance, [1,2]). The main question we
tried to answer was motivated by physical considerations: How can we be assured that
the physical predictions of both approaches can be regarded as equivalent? At first, we
formulated the problem within the available formalisms and put forward a proposal for
equivalence. The main idea is that we should compare the two formalisms at the level of pre-
symplectic structures; that is, before taking any quotients through gauge directions. This is
the context within which we prescribed our notion of equivalence. Next, we considered
several examples of gauge theories that have previously been studied in the literature,
in order to revisit them from a new perspective. This novel perspective allowed us to
approach some well-known systems.

We started by considering Maxwell theory, where it is easy to show that both de-
scriptions are Π̄-equivalent. Next, we analyzed the Pontryagin term. Here, due to the
topological nature of the action, we found somewhat ‘singular’ formulations, which lie
outside the realm of comparison. One can see, though, that both descriptions become equiv-
alent at the level of (trivial) reduced phase spaces. Next, we considered the Chern–Simons
theory induced at the boundary through the Pontryagin term. In this case, one can show
that both formulations are equivalent. The Maxwell–Pontryagin theory was then analyzed.
Here, we found that both descriptions are indeed inequivalent; in the covariant approach,
there is only a contribution to the pre-symplectic structure from the Maxwell term, while
in the canonical analysis, we found, apart from the Maxwell contribution, a θ-dependent
boundary contribution. This result shows that Π̄-equivalence is not a generic feature of gauge
field theories. Finally, we analyzed Maxwell+Chern–Simons theory. In this case, there was
a contribution to the pre-symplectic structure that arises from both descriptions, so they
turned out to be Π̄-equivalent.

In this manuscript, the examples we considered can be regarded as ‘pure gauge
theories’, in the sense that the only dynamical variable is a U(1) connection A. There
are, however, other gauge theories (as defined by having FCC or degenerate directions
in the pre-symplectic structure) in regions with boundaries, where both methods have
been compared (see, for instance [19,20]). The most notable example is the treatment of
isolated horizons (IH); that is, generalizations of Killing horizons used to model black holes
in equilibrium. These systems have been treated both with canonical formalism [8,9,21]
and with the covariant approach [11,22]. By comparing these results, we can immediately
see that there is an important difference between them. The most salient feature appears
within the theory in the vacuum. Here, one can see that the boundary contribution to the
pre-symplectic structure in the covariant theory is entirely different from the (standard)
contribution to the canonical description [8,9,21]. Moreover, when coupling to the Maxwell
field, there is a contribution on the IH to the pre-symplectic structure in the covariant
approach [11], while there is none in the canonical approach [8,9].

In this contribution, we have shown that a natural definition for equivalence, when
comparing standard covariant and canonical approaches, fails to be generically satisfied.
Can we conclude, therefore, that both methods are not equivalent? Our viewpoint is that
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we need a deeper understanding of the reasons for equivalence (or non-equivalence) or,
perhaps, a refined notion of equivalence, different to the one proposed here and in the
literature [1,2]. We believe that a satisfactory answer to this issue is highly relevant, since
both approaches might lead to different physical predictions for theories of interest (as they
do, for example, when dealing with BH entropy). We can only hope that this contributions
might provide motivation for further studies.
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Notes
1 More specifically, assuming a well-defined tangent and cotangent bundle structures for the configuration space F , P[LtA] allows

one to identify the symplectic potential and symplectic structure determined by the Euler–Lagrange equations in the tangent
space TF and to map them through the Legendre transform to the canonical 1- and 2-forms on the cotangent bundle T∗C.

2 In order to have well defined HVF Zi we need to impose certain restrictions on the smearing functions on ∂Σ, as shown in [5].
3 Recall that we are assuming ∂Σ having a vanishing first cohomology group.
4 Note that, as pointed out in the preliminaries, there could be boundary conditions that render the symplectic current exact on B,

in which case we would have a contribution to the pre-symplectic structure from the boundary of Σ.

References
1. Lee, J.; Wald, R.M. Local symmetries and constraints. J. Math. Phys. 1990, 31, 725. [CrossRef]
2. Margalef-Bentabol, J.; Villaseñor, E.J.S. Proof of the equivalence of the symplectic forms derived from the canonical and the

covariant phase space formalisms. Phys. Rev. 2022, D105, L101701. [CrossRef]
3. Wald, R. Quantum Field Theory in Curved Space and Black Hole Thermodynamics; Chicago University Press: Chicago, IL, USA, 1994.
4. Corichi, A. Introduction to the Fock quantization of the Maxwell field. Rev. Mex. Fís. 1998, 44, 402. [CrossRef]
5. Corichi, A.; Vukašinac, T. Hamiltonian analysis of a topological theory in the presence of boundaries. Int. J. Mod. Phys. 2019,

D28, 1950075. [CrossRef]
6. Ashtekar, A. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244. [CrossRef]
7. Ashtekar, A. New Hamiltonian Formulation of General Relativity. Phys. Rev. 1987, D36, 1587. [CrossRef] [PubMed]
8. Ashtekar, A.; Corichi, A.; Krasnov, K. Isolated horizons: The Classical phase space. Adv. Theor. Math. Phys. 1999, 3, 419. [CrossRef]
9. Ashtekar, A.; Beetle, C.; Fairhurst, S. Mechanics of isolated horizons. Class. Quant. Grav. 2000, 17, 253. [CrossRef]
10. Ashtekar, A.; Bombeli, L.; Reula, O. The covariant phase space of asymptotically flat gravitational fields. In Analysis, Geometry and

Mechanics: 200 Years after Lagrange; Francaviglia, M., Holm, D., Eds.; North-Holland: Amsterdam, The Netherlands, 1991.
11. Ashtekar, A.; Fairhurst, S.; Krishnan, B. Isolated horizons: Hamiltonian evolution and the first law. Phys. Rev. 2000, D62, 104025.

[CrossRef]
12. Crnkovic, C.; Witten, E. Covariant description of canonical formalism in geometrical theories. In Three Hundred Years of Gravitation;

Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1987.
13. Corichi, A.; Rubalcava-García, I.; Vukašinac, T. Actions, topological terms and boundaries in first-order gravity: A review. Int. J.

Mod. Phys. 2016, D25, 1630011. [CrossRef]
14. Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1992.
15. Gotay, M.J.; Nester, J.M.; Hinds, G. Presymplectic manifolds and Dirac-Bergmann theory of constraints. J. Math. Phys. 1978,

19, 2388. [CrossRef]
16. Barbero, J.F.; Prieto, J.; Villaseñor, E.J.S. Hamiltonian treatment of linear field theories in the presence of boundaries: A geometric

approach. Class. Quant. Grav. 2014, 31, 045021. [CrossRef]
17. Barbero, J.F.; Díaz, G.B.; Margalef-Bentabol, J.; Villaseñor, E.J.S. Dirac’s algorithm in the presence of boundaries: A practical

guide to a geometric approach. Class. Quant. Grav. 2019, 36, 205014. [CrossRef]
18. Corichi, A.; Vukašinac, T. Canonical analysis of field theories in the presence of boundaries: Maxwell + Pontryagin. Class. Quant.

Grav. 2020, 37, 085018. [CrossRef]
19. Liu, L.; Montesinos, M.; Perez, A. A Topological limit of gravity admitting an SU(2) connection formulation. Phys. Rev. D 2010, 81,

064033. [CrossRef]

http://doi.org/10.1063/1.528801
http://dx.doi.org/10.1103/PhysRevD.105.L101701
http://dx.doi.org/10.48550/arXiv.physics/9804018
http://dx.doi.org/10.1142/S0218271819500755
http://dx.doi.org/10.1103/PhysRevLett.57.2244
http://dx.doi.org/10.1103/PhysRevD.36.1587
http://www.ncbi.nlm.nih.gov/pubmed/9958340
http://dx.doi.org/10.4310/ATMP.1999.v3.n3.a1
http://dx.doi.org/10.1088/0264-9381/17/2/301
http://dx.doi.org/10.1103/PhysRevD.62.104025
http://dx.doi.org/10.1142/S0218271816300111
http://dx.doi.org/10.1063/1.523597
http://dx.doi.org/10.1088/0264-9381/31/4/045021
http://dx.doi.org/10.1088/1361-6382/ab436b
http://dx.doi.org/10.1088/1361-6382/ab778f
http://dx.doi.org/10.1103/PhysRevD.81.064033


Universe 2024, 10, 60 18 of 18

20. Barnich, G.; Henneaux, M.; Schomblond, C. On the covariant description of the canonical formalism. Phys. Rev. D 1991, 44,
R939–R941. [CrossRef] [PubMed]

21. Corichi, A.; Reyes, J.D.; Vukašinac, T. Weakly isolated horizons: 3+1 decomposition and canonical formulations in self-dual
variables. Class. Quant. Grav. 2023, 40, 015011. [CrossRef]

22. Corichi, A.; Reyes, J.D.; Vukašinac, T. Weakly isolated horizons: First order actions and gauge symmetries. Class. Quant. Grav.
2017, 34, 085005. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevD.44.R939
http://www.ncbi.nlm.nih.gov/pubmed/10014003
http://dx.doi.org/10.1088/1361-6382/aca867
http://dx.doi.org/10.1088/1361-6382/aa631c

	Introduction
	Preliminaries on Covariant and Canonical Hamiltonian Analysis
	Covariant Hamiltonian Analysis
	Canonical Hamiltonian Analysis
	Comparison and Statement of the Problem

	Maxwell Theory
	Covariant Approach
	Canonical Approach

	Pontryagin Theory
	Covariant Approach
	Canonical Approach

	Chern–Simons Theory on the Boundary
	Covariant Approach
	Canonical Approach

	Maxwell-Pontryagin Theory
	Covariant Approach
	Canonical Approach

	Maxwell + Chern–Simons
	Covariant Approach
	Canonical Approach

	Discussion and Conclusions
	References

