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Abstract: A new gravity model with the function F (R) = (1/β) arctan (βR− β2R2)

instead of the Ricci scalar in the Einstein–Hilbert action, describing inflation of the Universe,
is suggested and analyzed. We obtain constant curvature solutions of the model in the Jordan
frame. Performing the conformal transformation of the metric, the potential and the mass of
a scalar degree of freedom in the Einstein frame are found. The slow-roll and cosmological
parameters of the model are evaluated. It was demonstrated that the index of the scalar
spectrum power law, ns, is in agreement with the PLANCK data.
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1. Introduction

In modern cosmology, the inflationary scenario may solve the initial conditions problem and explain
the formation of galaxies and irregularities in the microwave background. The Λ Cold Dark Matter
(ΛCDM ) model [1] describes correctly the inflationary epoch in accordance with the experimental
data, and is a good candidate for a description of dark energy (DE) and observational data of the
accelerated universe. Nevertheless, the ΛCDM model has difficulty with the theoretical proof of the
cosmological constant smallness. Accelerated universe at the present time can be described by dynamical
DE introducing the scalar field [2]. At the same time F (R) gravity theories modifying general relativity
(GR), without introduction of the fundamental scalar field, may be an alternative to the ΛCDM model.
In such models the Ricci scalar, R, in the Einstein–Hilbert action, is replaced by the function F (R) [3,4].
It should be noted that F (R) gravity models effectively contain a scalar degree of freedom (scalaron)
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and can be represented in a scalar-tensor form by using the conformal transformation and can describe
the inflation and late time acceleration. Viable F (R) gravity models were suggested in [5–11]. Such
models can unify DE with inflation in a natural way. Some models of F (R) gravity theories were given
in [3,4,12–24] and in other publications. The condition of classical stability is F ′′(R) > 0 (primes
denote the derivatives with respect to the argument) and it means that the scalar field is not a tachyon and
a ghost. The requirement of quantum stability F ′(R) > 0 assures that a graviton is not a ghost [8]. The
F (R) gravity models are phenomenological effective models which can describe inflation and current
acceleration. The problem is to derive the F (R) function from first principles (probably from string or M
theories) to describe the present and primordial DE and the evolution of our Universe. Such derivation
is absent and, therefore, different F (R) gravity models describing early time inflation and late time
Universe acceleration are of great interest. In this paper we suggest and analyze the particular model of
modified gravity which is the modification of arctan-gravity model introduced in [15]. Such modified
model contains only one dimensional parameter β.

The paper has the structure as follows. In Section 2 the Lagrangian of the model (possessing the
classical stability) is formulated. We obtain the constant curvature solutions of field equations. In
Section 3, after performing the conformal transformation of the metric, the scalar-tensor form of the
model in the Einstein frame is found. The potential and the mass of a scalar degree of freedom (scalaron)
are obtained and the plots of the functions φ(βR), V (βR), and m2

φ(βR) are presented. In Section 4 the
slow-roll and cosmological parameters of the model are given and the plots of ε(βR), η(βR), and ns(βR)

are represented. In Section 5 we draw the conclusion.
The Minkowski metric ηµν = diag(−1, 1, 1, 1) is explored, and we use c = ~ = 1.

2. The Model

We suggest the F (R) gravity theory with the function

F (R) = (1/β) arctan
(
βR− β2R2

)
, (1)

where the constant β (β > 0) has the dimension of (length)2. The theory based on Equation (1) is the
modification of the model studied in [15]. The action in the Jordan frame is given by

S =

∫
d4x
√
−g
[

1

2κ2
F (R) + Lm

]
, (2)

where κ = M−1
Pl (MPl is the reduced Planck mass), and Lm is the matter Lagrangian density. Here we

investigate a pure gravitation field and put Lm = 0. If βR � 1, we move from Equation (1) to the
Lagrangian density

L ≈ R− βR2, (3)

which was considered in [3]. From Equation (1) we obtain the derivatives of the function (1)

F ′(R) =
1− 2βR

1 + (βR− β2R2)2
,

F ′′(R) = −2β
1 + (βR− β2R2) (1− 3βR + 3β2R2)

[1 + (βR− β2R2)2]2
. (4)
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The condition F ′′(R) > 0 ensures the classical stability of the solution at high curvature and the
condition F ′(R) > 0 leads to quantum stability. The condition F ′(R) > 0 gives 0 < βR < 0.5, and the
condition F ′′(R) > 0 leads to

βR >
1

2

(√
1 +

2

3
(
√

13− 1) + 1

)
≈ 1.3272. (5)

In the high curvature regime, the model violates the condition F ′(R) > 0, which leads to a negative
effective Newton’s constant, Geff = G/F ′(R), and antigravity. Thus, it is impossible to satisfy the
requirements of the classical and quantum stabilities simultaneously. Therefore, we consider the case of
the classical stability, F ′′(R) > 0.

2.1. Constant Curvature Solutions

Now we find constant curvature solutions to the equations of motion [25]

2F (R)−RF ′(R) = 0. (6)

With the help of Equations (1), (4) and (6), one obtains

2 arctan(βR− β2R2) =
βR(1− 2βR)

1 + (βR− β2R2)2
. (7)

Equation (7) has the solution R0 = 0, corresponding to flat spacetime (the Minkowski spacetime).
There is also non-trivial solution to Equation (7): βR1 ≈ 1.6846. For this value, F ′′(R1) > 0 and the
condition of classical stability is satisfied. We will see later that the value βR1 ≈ 1.6846 corresponds to
the minimum of the effective potential of the scalar degree of freedom in Einstein’s frame.

3. The Scalar-Tensor Form

Making a conformal transformation of the metric [26], we come to the Einstein frame corresponding
to the scalar-tensor theory of gravity,

g̃µν = F ′(R)gµν =
1− 2βR

1 + [βR− (βR)2]2
gµν . (8)

Then action (2), at Lm = 0, becomes

S =

∫
d4x
√
−g
[

1

2κ2
R̃− 1

2
g̃µν∇µφ∇νφ− V (φ)

]
, (9)

where R̃ is calculated using the new metric (8) and ∇µ is the covariant derivative. The field φ,
corresponding to the scalar degree of freedom (scalaron), and the potential V (φ) are given by

φ = −
√

3 lnF ′(R)√
2κ

=

√
3√

2κ
ln

(
1 + [βR− (βR)2]2

1− 2βR

)
, (10)

V (φ) =
RF ′(R)− F (R)

2κ2F ′2(R)
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=
1 + [βR− (βR)2]2

2κ2β(1− 2βR)

[
βR− (1 + [βR− (βR)2]2) arctan[βR− (βR)2]

1− 2βR

]
. (11)

In Equation (11) the curvature R is the function of φ given in Equation (10). The function κφ(R) is
given in Figure 1.
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Figure 1. κφ versus βR.
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Figure 2. βκ2V versus βR.

The function φ(R) possesses a singularity at βR = 0.5 and thus we imply that βR > 0.5. It should be
noted that the extremum of the potential (11), V ′(φ) = 0, is realized by the constant curvature solutions
to Equation (7) and by the condition F ′′(R) = 0. The condition F ′′(R) = 0 gives the value βR ≈ 1.3272

(κφ ≈ −0.405) and the constant curvature solution βR1 ≈ 1.6846 (κφ ≈ −0.020) corresponds to the
minimum of the potential. The plot of the function V (R) (11) is given in Figure 2.

The plot of the function V (κφ) is represented in Figure 3.
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Figure 3. βκ2V versus κφ.

It follows from Figure 3 that the constant curvature solution κφ ≈ −0.020 realizes the minimum of
the potential. The shape of the potential in Figure 3 is similar to one describing chaotic inflation [2]. The
mass squared of a scalar degree of freedom is given by

m2
φ =

d2V

dφ2
=

1

3

(
1

F ′′(R)
+

R

F ′(R)
− 4F (R)

F ′2(R)

)
=

1 + (x− x2)2

3β

[
− 1 + (x− x2)2

2[1 + (x− x2)(1− 3(x− x2))]

+
x(1− 2x)− 4[1 + (x− x2)2] arctan(x− x2)

(1− 2x)2

]
, (12)

where x = βR. From Equation (12), at the minimum of the potential, βR1 ≈ 1.6846 (κφ ≈ −0.020),
we obtain βm2

φ = 0.7706 > 0, which indicates the stability of the de Sitter phase. Therefore, this phase
describes the case of eternal inflation [2]. The plot of the function m2

φ is given in Figure 4.
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Figure 4. βm2
φ versus βR.
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The value m2
φ is negative, and corresponds to unstable states for the range 0.5 < βR < 1.3272.

This behavior of the function m2
φ(βR) is in accordance with the shape of the potential V (βR) (see

Figure 2). The stability of solutions in F (R) gravity was discussed in [27]. At the values of βR ≈ 0.5

and βR ≈ 1.3272, the function m2
φ approaches −∞, and corrections to Newton’s law are negligible.

4. Cosmological Parameters

The slow-roll parameters are given by [28]

ε(φ) =
1

2
M2

Pl

(
V ′(φ)

V (φ)

)2

=
1

3

[
RF ′(R)− 2F (R)

RF ′(R)− F (R)

]2
,

η(φ) = M2
Pl

V ′′(φ)

V (φ)
=

2

3

[
F

′2(R) + F ′′(R) [RF ′(R)− 4F (R)]

F ′′(R) [RF ′(R)− F (R)]

]
, (13)

where MPl = κ−1 is the reduced Planck mass. The slow-roll approximation takes place if the conditions
ε(φ) < 1, | η(φ) |< 1 are satisfied. One can obtain the slow-roll parameters expressed through curvature
from Equations (1), (4) and (13). The plots of the functions ε(βR), η(βR) are presented in Figures 5 and
6 respectively.

One can verify from Equation (13) that the slow-roll condition ε < 1 is satisfied at 1.87453 > βR >

0.579892. The second condition |η| < 1 holds at 1.15265 > βR > 1. Thus, both inequalities ε < 1,
|η| < 1 take place at 1.15265 > βR > 1. Inflation ends when ε = 1 or |η| = 1. As a result, the slow-roll
approximation is justified in the model suggested.
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Figure 5. The function ε versus βR.

The index of the scalar spectrum power law due to density perturbations is as follows [28]:

ns = 1− 6ε+ 2η. (14)

With the help of Equations (13) and (14), the function of ns versus βR is given by Figure 7.
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Figure 6. The function η versus βR.
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Figure 7. The function ns versus βR.

The tensor-to-scalar ratio is [28] r = 16ε. The PLANCK experiment gives the values [29]

ns = 0.9603± 0.0073, r < 0.11. (15)

From Equation(14) (see Figure 7) we obtain the experimental value of ns (15) at βR ≈ 0.9797. The
condition r < 0.11 is satisfied at 1.64644 < βR < 1.71575. Thus, conditions (15) can not be satisfied
simultaneously. The model can explain the PLANCK experimental data for the index of the scalar
spectrum power law due to density perturbations at βR ≈ 0.9797, but the bound r < 0.11 is violated.
We note that this constraint was challenged by BICEP2 experimental data [32] yielding an upper limit
r < 0.12.

5. Conclusions

It should be noted that the model considered, as well as any F (R) gravity models, are effective
models that are not renormalizable. The quantum gravity corrections (one-loop divergences) include
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a Ricci scalar squared, R2, and a Ricci tensor squared, RµνR
µν [30,31]. The justification of the

particular F (R) functions, describing modified gravity, is absent, and has to follow from the fundamental
theory (quantum gravity). The arctan-gravity model suggested admits the constant curvature solution
to Equation (7)—βR1 ≈ 1.6846—that is a stable state corresponding to the de Sitter spacetime. This
solution matches the minimum of the effective potential and corresponds to the de Sitter phase describing
the eternal inflation with the cosmic acceleration. The scenario of inflation, due to the form of the
potential function, can be described in the similar way as chaotic inflation [33]. The parameter β
introduced is connected with the fundamental length l =

√
β, probably arising from quantum gravity, so

that the value βR is dimensionless. At βR → 0, action (2) (Lm = 0) approaches the EH action, and as
GR passes local tests the parameter β should be small.

We show that the cosmological parameter evaluated, ns (at βR ≈ 0.9797), agrees with the observed
PLANCK experiment data but the constraint r < 0.11 is violated. The model may be observationally
acceptable and GR can be an approximation to the intermediate cosmic time. To describe all the
cosmological periods and to verify the viability of the model, one needs further investigation. We leave
such a study for the future.
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