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Abstract: The food-based empirical dietary index for hyperinsulinemia (EDIH) score assesses the
insulinemic potential of diet. This cross-sectional study evaluated associations between EDIH scores
from food frequency questionnaires with c-peptide concentrations and with 448 metabolites, from
fasting plasma samples, in multivariable linear regression analyses. Metabolites were measured
with liquid chromatography tandem mass spectroscopy. Using a robust two-stage study design,
discovery of metabolite associations was conducted among 1109 Women’s Health Initiative (WHI)
Hormone Therapy (HT) trial participants and results replicated in an independent dataset of 810
WHI Observational Study (OS) participants. In both discovery and replication datasets, statistical
significance was based on the false-discovery rate adjusted P < 0.05. In the multivariable-adjusted
analyses, EDIH was significantly associated with c-peptide concentrations among 919 women (HT &
OS) with c-peptide data. On average, c-peptide concentrations were 18% higher (95% CI, 6%, 32%;
P-trend < 0.0001) in EDIH quintile 5 compared to quintile 1. Twenty-six metabolites were significantly
associated with EDIH in the discovery dataset, and 19 of these were replicated in the validation dataset.
Nine metabolites were found to decrease in abundance with increasing EDIH scores and included:
C14:0 CE, C16:1 CE, C18:1 CE, C18:3 CE, C20:3 CE, C20:5 CE, C36:1 PS plasmalogen, trigonelline, and
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eicosapentanoate, whereas the 10 metabolites observed to increase with increasing EDIH scores were:
C18:2 SM, C36:3 DAG, C36:4 DAG-A, C51:3 TAG, C52:3 TAG, C52:4, TAG, C54:3 TAG, C54:4 TAG,
C54:6 TAG, and C10:2 carnitine. Cholesteryl esters, phospholipids, acylglycerols, and acylcarnitines
may constitute circulating metabolites that are associated with insulinemic dietary patterns.

Keywords: dietary patterns; insulinemic diets; metabolomics; postmenopausal women

1. Introduction

Diet has been shown to influence chronic disease development and progression, but the specific
biological mechanisms through which diet influences disease risk are not fully understood. However,
excess insulin secretion may be one such pathway. Thus, dietary patterns associated with sustained high
insulin secretion and blood concentrations may also predispose to higher risk of certain chronic diseases
and morbidity and mortality. We have developed an empirical dietary index for hyperinsulinemia
(EDIH) score [1,2], in a sample of the Nurses’ Health Study (NHS), and evaluated its construct validity
in two independent cohorts of health professionals [1,2]. Our goal was to empirically create a score
to assess the insulinemic potential of whole diets defined using food groups. Higher EDIH scores,
indicating dietary patterns that tend to lead to higher insulin secretion, have been associated with
higher risk of developing colorectal cancer [3] and other cancers of the gastrointestinal track [4].
While it is important to know that the insulinemic potential of the diet is implicated in chronic
disease development, identifying specific biological pathways through which diet and insulin may
act to influence disease development will further elucidate mechanisms of action to inform effective
prevention and intervention strategies. Integrating diet and metabolomics data may be helpful in
this regard.

Metabolomic approaches, compared to single analytes, allow for a broader view of multiple
pathways implicated in the pathophysiology of disease, by profiling multiple metabolites in biofluids,
cells, and tissues. Metabolomics therefore has the potential to identify new biomarkers and provide
insights on the biological pathways underlying disease development and progression. In previous
population-based prospective studies, global metabolomics profiling has been used to predict the
incidence and progression of several diseases including cardiovascular disease [5–7], cancer [8–10],
type 2 diabetes [11,12] and all-cause mortality [13]. Some of these population-based studies have
aimed to identify new or novel biomarkers of disease or metabolite profiles that may be influenced
and modulated by different human exposures such as diet and lifestyle [14,15].

It is well established that insulin secretion and resistance are influenced by adiposity, and high
insulin secretion may be a central initiator of insulin-related weight gain [16]. Before the development of
clinically significant metabolic diseases, individuals often show dyslipidemia, elevated fasting insulin
and insulin resistance [17]. Insulin is the principal anabolic hormone responsible for tissue uptake and
storage of energy rich nutrients following ingestion of a meal, and previous studies have documented a
positive relationship between obesity status and elevated insulin concentrations in animal models and
humans [18]. In this cross-sectional study in a population of postmenopausal women, our objectives
were 3-fold: 1) To evaluate the construct validity of the EDIH score in the Women’s Health Initiative
(WHI), 2) to use the score to characterize the metabolomic profiles of insulinemic dietary patterns,
and 3) to examine the role of body weight.

2. Results

2.1. EDIH Validation Study

Among the 919 women with c-peptide data, included in the EDIH construct validation study
(Table 1), women with dietary patterns with the lowest insulinemic potential (EDIH quintile 1) had
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lower c-peptide concentrations, lower BMI and reported higher physical activity levels, compared to
those consuming hyperinsulinemic diets (EDIH quintile 5). The proportions of overweight or obese
women, African Americans, and those with lower educational levels increased across EDIH quintiles,
(Table 1). The Spearman correlation coefficient between EDIH scores and c-peptide concentrations
was 0.26, p < 0.0001, and the EDIH multivariable model explained 16% (r-square) of the variance
in c-peptide.

Table 1. Characteristics of the empirical dietary index for hyperinsulinemia (EDIH) score validation
study population, n = 919 1,2.

Characteristic
Quintile 1

(−4.44 to
<−0.81), n = 183

Quintile 2
(–0.81 to

<–0.31), n = 184

Quintile 3
(–0.31 to <0.07),

n = 184

Quintile 4
(0.07 to <0.66),

n = 184

Quintile 5
(0.66 to 4.93),

n = 184

C-peptide, ng/mL 1.14 ± 0.80 1.20 ± 0.77 1.32 ± 0.76 1.36 ± 0.72 1.54 ± 0.78

Age at screening, years 66.7 ± 6.9 66.9 ± 6.7 67.1 ± 6.5 67.1 ± 6.6 65.3 ± 6.6

Body mass index, kg/m2 26.1 ± 4.5 26.6 ± 4.9 27.2 ± 5.5 28.0 ± 5.4 29.0 ± 5.7

Body mass index
categories, %

15–<18.5 (thin) 1.1 1.1 1.1 1.1 0

18.5–<25 (normal weight) 46.4 39.7 40.2 29.3 25.0

25–<30 (overweight) 36.6 39.7 34.2 44.6 38.0

30–50 (obese) 15.9 19.5 24.5 25.0 37.0

Physical activity,
MET-hour/week 10.0 ± 11.7 9.4 ± 12.3 9.1 ± 11.0 7.3 ± 10.1 5.3 ± 7.7

Aspirin/NSAID user, % 53 56 57.1 53.3 52.3

Educational level, %

Some high school or lower
educational level 2.7 3.8 3.3 5.4 6.5

High school
graduate/some college or

associate degree
45.9 57.1 48.4 65.2 69.6

≥4y of college 51.4 39.1 48.4 29.4 23.9

Race/ethnicity, %

African American 6.0 6.5 8.7 9.2 13.0

European American 89.6 86.4 84.2 89.1 79.4

Other 4.4 7.1 7.1 1.7 7.6

Smoking status, %

Never 42.6 50.5 51.1 56.0 48.4

Former 51.9 43.5 44.0 37.5 42.4

Current 5.5 6.0 4.9 6.5 9.2

Menopausal hormone
use, %

Unopposed estrogen
use, ever 32.8 39.7 37.0 42.9 34.8

Estrogen plus progestin
use, ever 29.0 26.6 18.5 19.0 21.7

EDIH, empirical dietary index for hyperinsulinemia score; 1 Values are percentages or means ± standard deviations.
2 EDIH scores were adjusted for total energy intake using the residual method. Lower EDIH scores indicate low
insulinemic diets whereas higher scores indicate hyperinsulinemic diets. 3 The EDIH score was calculated from the
following food group (servings per day): Foods that contributed to higher c-peptide concentrations were: Red meat,
high-energy sugary beverages (the WHI FFQ did not assess low-energy beverages separately from other sugary
beverages), cream soup, processed meat, butter, margarine, poultry, French fries, non-dark or non-oily fish, low-fat
dairy, eggs. Foods that contributed to lower c-peptide concentrations were: Wine, coffee or tea, fruits, high-fat dairy,
and green leafy vegetables.
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Table 2 shows the absolute and relative concentrations of plasma c-peptide in quintiles of the EDIH
score. In multivariable-adjusted models, the relative difference in plasma c-peptide concentrations was
26% (95% CI, 12%, 42%; P-trend < 0.0001) higher in EDIH quintile 5 compared to quintile 1. When
additionally adjusted for BMI, the association was attenuated but remained statistically significant:
18% (95% CI, 6%, 32%; P-trend < 0.0001). When models were stratified by BMI and additionally
adjusted for continuous BMI within BMI strata (P-interaction = 0.02), the association was no longer
significant among normal weight women (BMI: 15 to <25 kg/m2, n = 340; 8%; 95% CI, -11%, 30%;
P-trend = 0.09); whereas among overweight or obese women (BMI: 25 to 50 kg/m2, n = 579), plasma
c-peptide concentration was 23% (95% CI, 6%, 42%; P-trend = 0.0005) higher in EDIH quintile 5
compared to quintile 1 (Table 2).

Table 2. Adjusted absolute and relative concentrations (95% CI) of plasma c-peptide in quintiles of the
empirical dietary index for the hyperinsulinemia score; Women’s Health Initiative (n = 919) 1,2,3.

Statistical
Models

EDIH Quintiles
P-Trend 4

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Absolute concentrations (ng/mL)

Model 1 1.14 (1.07, 1.22) 1.20 (1.12, 1.28) 1.33 (1.24, 1.42) 1.37 (1.28, 1.46) 1.54 (1.44, 1.64) <0.0001

Model 2 1.21 (0.94, 1.56) 1.26 (0.99, 1.61) 1.40 (1.10, 1.80) 1.37 (1.08, 1.76) 1.53 (1.19, 1.96) <0.0001

Model 3 1.19 (0.95, 1.50) 1.22 (0.98, 1.53) 1.30 (1.04, 1.63) 1.41 (1.04, 1.63) 1.41 (1.13, 1.77) <0.0001

Relative concentrations (percent change)

Model 1 0 (ref) 5 (−7, 18) 16 (3, 31) 20 (6, 35) 34 (19, 51) <0.0001

Model 2 0 (ref) 4 (−7, 17) 16 (3, 30) 13 (1, 28) 26 (12, 42) <0.0001

Model 3 0 (ref) 3 (−8, 14) 12 (1, 25) 9 (−2, 22) 18 (6, 32) <0.0001

Normal weight (BMI: 15 to <25 kg/m2, n = 340): absolute concentrations (ng/mL)

Model 1 + BMI 0.98 (0.89, 1.05) 0.94 (0.87, 1.03) 1.14 (1.04, 1.24) 1.07 (0.97, 1.18) 1.09 (0.97, 1.22) 0.02

Model 3 0.90 (0.67, 1.21) 0.87 (0.65, 1.17) 1.09 (0.73, 1.32) 0.98 (0.73, 1.32) 0.97 (0.71, 1.32) 0.09

Normal weight (BMI: 15 to <25 kg/m2, n = 340): relative concentrations (percent change)

Model 1 + BMI 0 (ref) −2 (−16, 13) 18 (1, 37) 10 (−6, 30) 12 (−5, 34) 0.02

Model 3 0 (ref) −3 (−17, 14) 21 (3, 42) 9 (−8, 30) 8 (−11, 30) 0.09

Overweight/obese (BMI: 25 to 50 kg/m2, n = 579): absolute concentrations (ng/mL)

Model 1 + BMI 1.37 (1.26, 1.50) 1.44 (1.33, 1.57) 1.47 (1.36, 1.60) 1.51 (1.40, 1.63) 1.68 (1.56, 1.80) 0.008

Model 3 1.48 (1.10, 1.99) 1.55 (1.16, 2.08) 1.59 (1.19, 2.13) 1.60 (1.20, 2.13) 1.82 (1.36, 2.42) 0.0005

Overweight/obese (BMI: 25 to 50 kg/m2, n = 579): relative concentrations (percent change)

Model 1 + BMI 0 (ref) 5 (−9, 22) 7 (−7, 25) 10 (−6, 27) 22 (6, 41) 0.008

Model 3 0 (ref) 5 (−10, 22) 8 (−7, 25) 8 (−7, 25) 23 (6, 42) 0.0005
1 Values are absolute back-transformed (ex) c-peptide concentrations since data were LN-transformed prior to
the analyses. 2 Women who reported diabetes at the baseline (n = 56) were excluded from all analyses. Model
1 was adjusted for age at screening; model 2 was adjusted for covariates in model 1 and for physical activity,
educational level, race/ethnicity, income, non-steroidal anti-inflammatory drug use, statin use, smoking status,
duration of postmenopausal hormone use (separately for unopposed estrogen, combined estrogen and progestin),
high cholesterol, hypertension, colitis, arthritis, dietary modification trial arm, hormone therapy trial arm, calcium
and vitamin D trial arm; model 3 included all covariates in model 2 and body mass index (continuous). C-peptide
concentrations were calculated at the mean values of the continuous covariates and at the reference category of the
categorical covariates. 3 Wald p value for the interaction term was 0.02 between EDIH and BMI. 4 The p-value for
the linear trend across EDIH quintiles was the p-value of the ordinal variable constructed by assigning quintile
medians to all participants in the quintile. Models for the linear trend were adjusted for all covariates listed in the
corresponding model.
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2.2. Metabolomic Profiles of Insulinemic Diets

2.2.1. Characteristics of the EDIH Metabolomics Study Population

Table S1 (in supplementary materials) presents characteristics of the 1919 women in the
metabolomics study, by EDIH quintiles, and the characteristics are quite similar to those in the
validation study (n = 919), though a separate sample. In both the discovery (n = 1109) and replication
(n = 810) datasets, women consuming diets with the lowest insulinemic potential (EDIH quintile 1) had
lower BMI, lower glucose concentrations, lower triglycerides, higher physical activity levels and higher
high-density lipoprotein cholesterol concentrations compared to those consuming hyperinsulinemic
diets (quintile 5). The proportions of overweight or obese women, African Americans, Hispanic/Latinos,
and those with lower educational levels increased across EDIH quintiles. We note that both the
validation and metabolomics study populations were similar to the overall WHI population in terms
of several demographic and lifestyle factors including education, race (though ancillary biomarker
studies tended to oversample minority populations), and BMI. For example, the proportion of African
Americans was 10.8% in the WHI-dietary modification trial, 8.2% in the WHI-OS [19,20], 8.7% in the
current EDIH validation subsample (comprised of both WHI-CT and WHI-OS), 9.9% in the discovery
subsample (WHI-CT) and 12.7% in the metabolite validation subsample (WHI-OS).

In terms of weekly food intake, women with low insulinemic diets consumed on average three
servings less processed meat, 11 servings less sugar-sweetened beverages, three servings less fries
and 1.5 servings less red meat than women classified with hyperinsulinemic diets. In addition,
women with low insulinemic diets consumed on average 13 glasses more wine, 1.6 cups more tea or
coffee, three servings more fruit and two servings more green leafy vegetables than the women with
hyperinsulinemic dietary patterns. Servings are defined in Table 3, footnote #3.

Table 3. Distribution of dietary intakes across quintiles of the EDIH score (metabolomics study
samples—combined discovery and replication datasets) 1,2,3.

-
Quintile 1
(–5.36 to

<–0.72) n = 383

Quintile 2
(–0.72 to

<–0.21) n = 384

Quintile 3
(–0.21 to <0.20)

n = 384

Quintile 4
(0.20 to <0.74)

n = 384

Quintile 5
(0.74 to 6.64)

n = 384

Food/food groups, servings/week
Red meat 3.3 ± 3.2 3.0 ± 2.8 3.2 ± 3.1 3.4 ± 2.7 4.8 ± 4.2

Sugar-sweetened
beverages 0.4 ± 1.0 0.5 ± 1.4 0.5 ± 1.3 1.3 ± 2.8 4.3 ± 9.0

Cream soup 0.2 ± 0.4 0.2 ± 0.3 0.3 ± 0.4 0.3 ± 0.4 0.5 ± 0.8
Processed meat 1.2 ± 1.5 1.3 ± 1.5 1.7 ± 1.7 1.9 ± 2.1 3.7 ± 3.5

Butter and margarine 3.0 ± 3.6 3.3 ± 3.8 4.5 ± 4.3 6.0 ± 4.8 10.5 ± 9.0
Poultry 2.3 ± 1.7 2.3 ± 1.7 2.4 ± 1.8 2.5 ± 1.8 3.2 ± 2.4

White/non-oily fish 1.6 ± 1.5 1.4 ± 1.3 1.4 ± 1.2 1.5 ± 1.6 1.7 ± 1.8
French fries 0.2 ± 0.3 0.2 ± 0.3 0.2 ± 0.4 0.3 ± 0.5 0.7 ± 1.1
Tomatoes 3.6 ± 3.2 3.7 ± 3.6 3.2 ± 3.0 3.7 ± 3.6 4.4 ± 4.8

Low-fat dairy 14.8 ± 12.5 13.4 ± 11.8 14.2 ± 13.2 12.3 ± 11.9 13.5 ± 13.8
Eggs 0.7 ± 1.0 0.8 ± 1.4 0.9 ± 1.1 1.0 ± 1.1 1.6 ± 2.3

Refined grains 25.2 ± 14.5 21.4 ± 12.2 20.2 ± 12.7 19.8 ± 11.8 24.4 ± 14.4
Whole grains 9.9 ± 6.5 8.3 ± 5.3 7.6 ± 5.1 6.7 ± 4.6 7.3 ± 5.6

Wine 3.9 ± 6.0 1.1 ± 2.1 0.6 ± 1.3 0.5 ± 1.4 0.3 ± 1.0
Tea/coffee 21.1 ± 15.2 16.4 ± 12.0 14.0 ± 12.4 12.9 ± 11.7 13.0 ± 12.5

Whole fruit 18.3 ± 10.4 16 ± 8.8 13.0 ± 7.6 10.0 ± 7.0 9.4 ± 7.3
High-fat dairy 3.2 ± 4.1 2.3 ± 3.4 2.3 ± 3.1 2.1 ± 2.4 2.8 ± 3.3

Green-leafy
vegetables 7.8 ± 6.1 6.3 ±4.5 5.7 ± 4. 5.0 ± 4.5 4.7 ± 4.0

Nutrient intakes
Fiber, g/d 19.8 ± 7.6 16.8 ± 6.2 14.7 ± 5.6 12.8 ± 5.5 13.6 ± 6.3

Carbohydrate, g/d 235 ± 83 202 ± 66 185 ± 70 170 ± 65 204 ± 93
Protein, g/d 72.9 ± 29.0 64.1 ± 26.3 62.5 ± 28.5 59.7 ± 24.7 72.0 ± 32.9
Total fat, g/d 58.5 ± 29.0 50.8 ± 28.4 53.7 ± 30.2 56.1 ± 28.0 75.6 ± 41.7

Saturated fat, g/d 19.8 ± 10.7 17.0 ± 9.9 18.0 ± 10.9 18.6 ± 10.0 25.3 ± 15.0
Cholesterol, g/d 201 ± 119 191 ± 130 198 ± 119 207 ± 109 286 ± 191
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Table 3. Cont.

-
Quintile 1
(–5.36 to

<–0.72) n = 383

Quintile 2
(–0.72 to

<–0.21) n = 384

Quintile 3
(–0.21 to <0.20)

n = 384

Quintile 4
(0.20 to <0.74)

n = 384

Quintile 5
(0.74 to 6.64)

n = 384

Calcium, mg/d 978 ± 496 817 ± 413 780 ± 469 671 ± 380 737 ± 425
Lycopene, mcg/d 5539 ± 3657 5125 ± 3246 4164 ± 2557 4389 ± 3466 4651 ± 3465

EDIH, empirical dietary index for the hyperinsulinemia score; 1 Values are means ± standard deviations. 2 EDIH
scores were adjusted for total energy intake using the residual method. Lower EDIH scores indicate low insulinemic
diets whereas higher scores indicate hyperinsulinemic diets. 3 The EDIH component foods (servings per day)
in the WHI were the following: Red meat (ground meat including hamburgers, beef, pork and lamb as a main
dish, or as a sandwich; stew, pot pie and casseroles with meat; gravies made with meat drippings); high-energy
sugary beverages, (all regular - not diet - soft drinks); low-energy sugary beverages (the WHI FFQ did not assess
low-energy beverages separately from other sugar-sweetened beverages); cream soup (such as chowders, potato,
tomato, cheese, ajiaco); processed meat (hot dogs, chorizo; other sausage, bacon, breakfast sausage, scrapple; lunch
meat such as ham, turkey; other lunch meat such as bologna); butter, margarine (butter, margarine or oil, on bread
or tortillas; margarine or butter added to cooked cereal or grits; butter, margarine, sour cream, oils, or other fat
added to vegetables, beans, rice, and potatoes, after cooking); poultry (poultry); French fries (French fries, fried
potatoes, fried rice, fried cassava and fritters); non-dark or non-oily fish (fried fish, shrimp, lobster, crab and oysters,
canned tuna, tuna salad, and tuna casserole, white fish such as sole, snapper, cod); tomatoes (fresh tomato, tomato
juice, tomato sauce, cooked tomato, salsa and salsa picante); low-fat dairy (part-skim or reduced fat cheeses, such as
Mexican-type cheeses or mozzarella. Include cheese added to foods and in cooking; low-fat cottage cheese; low-fat
or no-fat frozen desserts, such as frozen yogurt, sherbet, ice milk, and low-fat milkshakes; non-fat yogurt (not
frozen); all other yogurt (not frozen); low-fat milk; Milk, cream, or creamer in coffee or tea); eggs (eggs); wine (red
wine, white wine); coffee or tea (all types); fruits (all types); high-fat dairy (whole milk, evaporated/condense milk,
ice cream, cottage cheese and ricotta cheese, other cheese); green leafy vegetables (cooked greens such as spinach,
mustard greens, turnip greens, collards; lettuce and plain lettuce salad; mixed lettuce or spinach salad with vegetables).

2.2.2. Two-stage Discovery and Replication of Metabolites Associated with Insulinemic Diets

In the discovery dataset, the EDIH score was associated with 126 metabolites at an FDR adjusted
P-value < 0.05 in multivariable-adjusted models without BMI, and after additionally adjusting for BMI,
26 metabolites remained significantly associated (Table 4). Of the 26 metabolites, 19 were replicated in
the WHI-OS after adjustment for all covariates (including BMI). The nine metabolites with inverse
associations with the EDIH score included: C14:0 CE, C16:1 CE, C18:1 CE, C18:3 CE, C20:3 CE, C20:5
CE, C36:1 PS plasmalogen, trigonelline, and eicosapentanoate. In contrast, the 10 metabolites that were
positively associated with EDIH, included the following: C18:2 SM, C36:3 DAG, C36:4 DAG-A, C51:3
TAG, C52:3 TAG, C52:4, TAG, C54:3 TAG, C54:4 TAG, C54:6 TAG, and C10:2 carnitine (Table 4).

Table 4. Associations of the empirical dietary index for the hyperinsulinemia score with metabolites
in the discovery of Women’s Health Initiative-Hormone Therapy (WHI-HT) and replication of WHI-
Observational Study (WHI-OS) datasets 1,2,3.

- - - Associations in WHI-HT
(Discovery, n = 1109)

Associations in WHI-OS
(Replication, n = 810)

Metabolite HMDB ID Category Beta Estimate
(95% CI)

FDR-Adjusted
P-value

Beta Estimate
(95% CI)

FDR-Adjusted
P-value

C14:0 CE HMDB0006725 Cholesterol
esters

−0.57 (−0.87,
−0.27) 0.015 −0.63 (−0.96,

−0.30) 1.83 × 104

C16:1 CE HMDB0000658 Cholesterol
esters

−0.63 (−0.91,
−0.33) 0.008 −0.88 (−1.24,

−0.52) 6.26 × 106

C18:1 CE HMDB0000918 Cholesterol
esters

−0.50 (−0.78,
−0.21) 0.018 −0.46 (−0.79,

−0.12) 0.009

C18:3 CE HMDB0010370 Cholesterol
esters

−0.49 (−0.78,
−0.20) 0.018 −0.41 (−0.76,

−0.05) 0.026

C20:3 CE HMDB0006736 Cholesterol
esters

−0.49 (−0.78,
−0.21) 0.018 −0.43 (−0.77,

−0.08) 0.016

C20:5 CE HMDB0006731 Cholesterol
esters

−0.48 (−0.76,
−0.19) 0.024 −0.46 (−0.83,

−0.08) 0.016

Trigonelline HMDB0000875 Alkaloid and
derivatives

−0.54 (−0.82,
−0.25) 0.015 −0.61 (−0.97,

−0.27) 5.14 × 104
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Table 4. Cont.

- - - Associations in WHI-HT
(Discovery, n = 1109)

Associations in WHI-OS
(Replication, n = 810)

C36:1 PS
plasmalogen Unknown Other −0.49 (−0.80,

−0.18) 0.030 −0.69 (−1.03,
−0.35) 8.93 × 105

Eicosapentaenoate HMDB0001999 Fatty acids −0.47 (−0.74,
−0.19) 0.018 −0.37 (−0.72,

−0.02) 0.038

Myristoleic acid HMDB0002000 Fatty acids 0.43 (0.14, 0.73) 0.047 0.16 (−0.16,
0.49) 0.325

C4−OH
carnitine HMDB0013127 Acylcarnitines 0.40 (0.12, 0.68) 0.048 0.25 (−0.12,

0.61) 0.179

C10:2 carnitine HMDB0013325 Acylcarnitines 0.47 (0.17, 0.77) 0.030 0.58 (0.24, 0.92) 9.09 × 104

C18:2 SM HMDB0012101 Sphingomyelins 0.42 (0.13, 0.71) 0.048 0.78 (0.43, 1.14) 3.40 × 105

C36:3 DAG HMDB0007219 Diacylglycerols 0.46 (0.16, 0.75) 0.030 0.51 (0.15, 0.86) 0.005

C36:4 DAG−A HMDB0007248 Diacylglycerols 0.53 (0.23, 0.83) 0.018 0.68 (0.33, 1.03) 1.62 × 104

C51:3 TAG Unknown Triacylglycerols 0.48 (0.18, 0.77) 0.030 0.62 (0.27, 0.97) 4.78 × 104

C52:3 TAG HMDB0005384 Triacylglycerols 0.47 (0.16, 0.77) 0.033 0.38 (0.05, 0.72) 0.026

C52:4 TAG HMDB0005363 Triacylglycerols 0.58 (0.28, 0.88) 0.015 0.56 (0.20, 0.91) 0.002

C54:2 TAG HMDB0005403 Triacylglycerols 0.44 (0.15, 0.73) 0.035 0.20 (−0.15,
0.55) 0.269

C54:3 TAG HMDB0005405 Triacylglycerols 0.47 (0.17, 0.77) 0.030 0.35 (−0.01,
0.71) 0.054

C54:4 TAG HMDB0005370 Triacylglycerols 0.53 (0.23, 0.84) 0.018 0.54 (0.17, 0.92) 0.004

C54:6 TAG HMDB0005391 Triacylglycerols 0.55 (0.25, 0.86) 0.018 0.46 (0.10, 0.82) 0.013

cAMP HMDB0000058 Purines and
Pyrimidines 0.37 (0.12, 0.62) 0.047 0.20 (−0.68,

0.27) 0.401

N4-acetylcytidine HMDB0005923 Purines and
Pyrimidines 0.43 (0.16, 0.71) 0.030 0.10 (−0.24,

0.44) 0.563

Isoleucine HMDB0000172 Amino acids 0.47 (0.20, 0.74) 0.018 0.13 (−0.23,
0.49) 0.472

Cystathionine HMDB0000099 Amino Acids 0.51 (0.23, 0.79) 0.018 0.07 (−0.28,
0.42) 0.689

1 All values are beta estimates obtained from multivariable-adjusted linear regression modeling 5-unit increments of
EDIH as the main predictor of interest and metabolite as the main response variable of interest. 2 Models were
adjusted for body mass index (continuous) age, physical activity, educational level, race/ethnicity, aspirin/NSAIDs
use, smoking status, WHI Hormone Therapy trial arm, and CHD case-control status. 3 Statistical significance was
defined as false-discovery rate adjusted P < 0.05 (in addition, significant p values in the replication dataset are
highlighted in bold font).

Figure 1 is a heat map in the replication dataset showing Spearman correlations (r) between
the 26 metabolites and EDIH score, BMI and physical activity; ordered by hierarchical clustering.
The cholesterol esters were highly clustered and showed inverse associations with EDIH and BMI
and positive associations with physical activity. The strongest inverse correlations with the EDIH
were shown by physical activity, −0.16; C14:0 CE, –0.14; and C16:1 CE, –0.12 (all P < 0.0001). The
diglycerides and triglycerides were also highly clustered and positively associated with EDIH and
BMI, and inversely associated with physical activity. The strongest positive correlations with the EDIH
were shown by BMI, 0.20; C52:3 TAG, 0.14; and C52:4 TAG, 0.14 (all P < 0.0001) (Figure 1).
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Figure 1. Heat map in the replication dataset showing Spearman correlations between the 26 discovered
metabolites and EDIH score, BMI and physical activity (PA). Ordering is by hierarchical clustering. BMI,
body mass index; cAMP, cyclic adenosine monophosphate; CE, cholesterol ester; DAG, diacylglycerol;
EDIH, empirical dietary index for hyperinsulinemia score; PA, physical activity; TAG, triacylglycerol.

2.2.3. Among Underweight and Normal Weight Women (BMI: 15 to <25 kg/m2, n = 630)

Among underweight (n = 20) and normal weight (n = 610) women, after adjustment for covariates,
including continuous BMI; 12 metabolites were associated with the EDIH score at FDR adjusted P
< 0.05 and an additional 17 metabolites at an FDR adjusted P < 0.10. The 12 metabolites that were
significant at an FDR adjusted P < 0.05 included seven of the 19 metabolites replicated in the main
analyses, namely C16:1 CE, C18:2 SM, C14:0 CE, C54:4 TAG, C36:4 DAG-A, C36:1 PS plasmalogen,
C54:6 TAG; and an additional three replicated metabolites from the main analyses (C20:5 CE, C51:3
TAG and C54:3 TAG) were significant at an FDR adjusted P < 0.10 (Table 5). In an exploratory analysis
among normal weight women in the discovery dataset (n = 317), 37 metabolites were associated with
EDIH at the nominal P < 0.05. Of these, only two (C18:2 SM, C16:1 CE) met the threshold of an
FDR-adjusted P < 0.05 and an additional two (C32:1 PC, C14:0 CE) satisfied an FDR-adjusted P < 0.20
(Table S2); due to limitations of statistical power, no independent replication was conducted among
normal weight women.

Table 5. Metabolite discovery among normal weight women (n = 630) 1,2,3.

Metabolite HMDB ID Category Beta Estimate
(95% CI)

FDR-Adjusted
P-value

C14:0 CE HMDB0006725 Cholesteryl esters −0.75 (−1.15, −0.35) 0.016

C16:1 CE HMDB0000658 Cholesteryl esters −1.05 (−1.49, −0.61) 0.001

C20:5 CE HMDB0006731 Cholesteryl esters −0.65 (−1.09, −0.22) 0.057

N-acetylornithine HMDB0003357 Other −0.82 (−1.23, −0.42) 0.006

C22:6 LPE HMDB0011526 Lysophosphatidylethanolamine −0.56 (−0.98, −0.14) 0.097

C34:0 PS HMDB0012356 Other −0.68 (−1.12, −0.24) 0.053

C30:0 PC HMDB0007869 Phosphatidylcholines −0.60 (−1.02, −0.18) 0.079
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Table 5. Cont.

Metabolite HMDB ID Category Beta Estimate
(95% CI)

FDR-Adjusted
P-value

C30:1 PC HMDB0007870 Phosphatidylcholines −0.53 (−0.93, −0.14) 0.097

C32:1 PC HMDB0007873 Phosphatidylcholines −0.85 (−1.27, −0.42) 0.008

C32:1 PC
plasmalogen-A HMDB0013404 Phosphatidylcholine

plasmalogens −0.53 (−0.92, −0.15) 0.095

C34:1 PC HMDB0007972 Phosphatidylcholines −0.77 (−1.19, −0.35) 0.019

C36:1 PS
plasmalogen Unavailable Phosphatidylethanolamine

plasmalogens −0.68 (−1.10, −0.25) 0.045

C36:4 PE HMDB0008937 Phosphatidylethanolamine −0.58 (−1.01, −0.15) 0.097

C36:5 PC HMDB0007890 Phosphatidylcholines −0.76 (−1.20, −0.32) 0.031

1-methylguanosine HMDB0001563 Purines and Pyrimidines −0.61 (−1.02, −0.21) 0.057

Urate HMDB0000289 Purines and Pyrimidines −0.54 (−0.93, −0.15) 0.095

Palmitoleic acid HMDB0003229 Fatty acids −0.61 (−1.03, −0.19) 0.079

Myristoleic acid HMDB0002000 Fatty acids 0.69 (0.27, 1.12) 0.043

C18:0 LPC
plasmalogen HMDB0011149 Lysophosphatidylcholine

plasmalogens 0.55 (0.14, 0.97) 0.097

C18:1 LPC
plasmalogen HMDB0011149 Lysophosphatidylcholine

plasmalogens 0.56 (0.14, 0.98) 0.097

C18:2 SM HMDB0012101 Sphingomyelins 0.90 (0.50, 1.31) 0.002

C22:1 MAG HMDB0011582 Monoacylglycerols −0.60 (−1.01, −0.19) 0.076

C36:4 DAG-A HMDB0007248 Diacylglycerols 0.68 (0.26, 1.11) 0.043

C51:3 TAG Unavailable Triacylglycerols 0.58 (0.17, 0.99) 0.085

C54:3 TAG HMDB0005405 Triacylglycerols 0.55 (0.13, 0.98) 0.106

C54:4 TAG HMDB0005370 Triacylglycerols 0.76 (0.31, 1.20) 0.037

C54:6 TAG HMDB0005391 Triacylglycerols 0.70 (0.26, 1.15) 0.050

Trimethylamine-N-oxideHMDB0000925 Other 0.56 (0.15, 0.98) 0.096

Glycoursodeoxycholate HMDB0000708 Bile acids 0.58 (0.15, 1.02) 0.097
1 All values are beta estimates obtained from multivariable-adjusted linear regression modeling 5-unit increments of
EDIH as the main predictor of interest and metabolite as the main response variable of interest. 2 Models were
adjusted for body mass index (continuous) age, physical activity, educational level, race/ethnicity, aspirin/NSAIDs
use, smoking status, WHI Hormone Therapy trial arm, and CHD case-control status. 3 Statistical significance was
defined as false-discovery rate adjusted P < 0.05 (in addition, all 12 significant p values are highlighted in bold,
including the 7 metabolites that are among the 19 replicated metabolites in the primary analysis).

2.2.4. Among Overweight and Obese Women (BMI: 25 to 50 kg/m2, n = 1289)

Among overweight or obese women, after adjustment for covariates, including continuous
BMI, 64 metabolites were significantly associated with the EDIH score (FDR adjusted P < 0.05).
All 19 replicated metabolites were among the 64 and were among the top nine hits (Table 6).
Of the 64 metabolites, 38 were inversely associated with EDIH and included cholesterol esters,
phosphatidylcholines, lysophosphatidylcholines, lysophosphatidyletanolamines and sphingomyelins;
whereas the 26 positively associated metabolites were mostly glycerides and carnitines. In an
exploratory analysis among overweight and obese women restricted to the metabolite discovery
dataset (n = 792), we found 83 metabolites to be significantly associated with EDIH at an FDR-adjusted
P < 0.20 (Table S3). In the replication dataset (Observational Study: n = 497), 23 of these metabolites
remained associated with the EDIH score at an FDR-adjusted P < 0.05 and an additional 10 metabolites
at an FDR-adjusted P < 0.10. Fourteen of the 19 metabolites replicated in the main analyses were also
discovered and replicated in these exploratory analyses at an FDR-adjusted P < 0.05, and an additional
four metabolites at an FDR-adjusted P < 0.20 (Table S3).
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Table 6. Metabolite discovery among overweight or obese women (n = 1289) 1,2,3.

Metabolite HMDB ID Category Beta Estimate
(95% CI)

FDR-Adjusted
P-value

Eicosapentaenoate HMDB0001999 Fatty acids −0.65 (−0.91, −0.40) 7.63 × 105

Palmitoleic acid HMDB0003229 Fatty acids −0.39 (−0.67, −0.12) 0.032
Myristoleic acid HMDB0002000 Fatty acids 0.38 (−0.11, 0.64) 0.035
2−hydroxyhexadecanoate HMDB0031057 Fatty acids 0.39 (0.12, 0.66) 0.032
C14:0 CE HMDB0006725 Cholesterol esters −0.54 (−0.81, −0.27) 0.003
C16:1 CE HMDB0000658 Cholesterol esters −0.61 (−0.87, −0.34) 5.93 × 104

C18:1 CE HMDB0000918 Cholesterol esters −0.49 (−0.76, −0.22) 0.006
C18:3 CE HMDB0010370 Cholesterol esters −0.45 (−0.72, −0.18) 0.012
C20:3 CE HMDB0006736 Cholesterol esters −0.49 (−0.76, −0.22) 0.006
C20:5 CE HMDB0006731 Cholesterol esters −0.37 (−0.64, −0.10) 0.035
Trigonelline HMDB0000875 Alkaloid and derivatives −0.67 (−0.93, −0.41) 7.63 × 105

C16:1 LPC HMDB0010383 Phosphatidylcholines −0.54 (−0.81, −0.26) 0.003
C20:1 LPC HMDB0010391 Phosphatidylcholines −0.54 (−0.82, −0.27) 0.003
C24:0 LPC HMDB0008038 Phosphatidylcholines −0.49 (−0.76, −0.23) 0.005
C28:0 PC HMDB0007866 Phosphatidylcholines −0.37 (−0.65, −0.10) 0.040
C30:0 PC HMDB0007869 Phosphatidylcholines −0.40 (−0.67, −0.13) 0.026
C30:1 PC HMDB0007870 Phosphatidylcholines −0.43 (−0.70, −0.17) 0.014
C32:1 PC HMDB0007873 Phosphatidylcholines −0.40 (−0.66, −0.13) 0.026
C34:1 PC HMDB0007972 Phosphatidylcholines −0.35 (−0.62, −0.08) 0.046
C40:10 PC HMDB0008511 Phosphatidylcholines −0.34 (−0.61, −0.08) 0.050
C32:1 PC plasmalogen-A HMDB0013404 Phosphatidylcholine plasmalogens −0.40 (−0.67, −0.13) 0.024
C34:2 PC plasmalogen-B HMDB0011210 Phosphatidylcholine plasmalogens −0.44 (−0.70, −0.18) 0.012
C14:0 LPC HMDB0010379 Lysophosphatidylcholines −0.39 (−0.66, −0.12) 0.032
C14:0 LPC-A HMDB0010379 Lysophosphatidylcholines −0.44 (−0.71, −0.17) 0.014
C18:1 LPC HMDB0002815 Lysophosphatidylcholines −0.36 (−0.63, −0.09) 0.042
C18:3 LPC HMDB0010387 Lysophosphatidylcholines −0.38 (−0.66, −0.10) 0.040
C20:3 LPC HMDB0010393 Lysophosphatidylcholines −0.37 (−0.64, −0.09) 0.040
C16:0 LPE HMDB0011503 Lysophosphatidylethanolamines −0.45 (−0.72, −0.18) 0.012
C18:1 LPE HMDB0011506 Lysophosphatidylethanolamines −0.38 (−0.66, −0.11) 0.036
C22:6 LPE-B HMDB0011526 Lysophosphatidylethanolamines −0.36 (−0.63, −0.09) 0.040
C14:0 SM HMDB0012097 Sphingomyelins −0.45 (−0.71, −0.18) 0.012
C18:2 SM HMDB0012101 Sphingomyelins 0.39 (0.12, 0.66) 0.032
C24:1 SM HMDB0012107 Sphingomyelins −0.43 (−0.70, −0.16) 0.017
C4-OH carnitine HMDB0013127 Acylcarnitines 0.43 (0.17, 0.68) 0.012
C6 carnitine HMDB0000705 Acylcarnitines 0.47 (0.20, 0.74) 0.011
C7 carnitine HMDB0013238 Acylcarnitines 0.47 (0.21, 0.72) 0.006
C9 carnitine HMDB0013288 Acylcarnitines 0.43 (0.17, 0.70) 0.014
C10:2 carnitine HMDB0013325 Acylcarnitines 0.60 (0.34, 0.87) 7.01 × 104

C14:2 carnitine HMDB0013331 Acylcarnitines 0.38 (0.11, 0.65) 0.032
C36:3 DAG HMDB0007219 Diacylglycerols 0.46 (0.19, 0.73) 0.012
C36:4 DAG-A HMDB0007248 Diacylglycerols 0.56 (0.29, 0.83) 0.002
C51:3 TAG Unknown Triacylglycerols 0.53 (0.26, 0.79) 0.003
C52:2 TAG HMDB0005369 Triacylglycerols 0.34 (0.08, 0.60) 0.047
C52:3 TAG HMDB0005384 Triacylglycerols 0.46 (0.19, 0.73) 0.011
C52:4 TAG HMDB0005363 Triacylglycerols 0.59 (0.32, 0.86) 0.001
C54:2 TAG HMDB0005403 Triacylglycerols 0.38 (0.12, 0.65) 0.032
C54:3 TAG HMDB0005405 Triacylglycerols 0.37 (0.10, 0.64) 0.036
C54:4 TAG HMDB0005370 Triacylglycerols 0.45 (0.18, 0.72) 0.012
C54:6 TAG HMDB0005391 Triacylglycerols 0.45 (0.18, 0.72) 0.012
Isoleucine HMDB0000172 Amino acids 0.47 (0.22, 0.72) 0.005
Dimethylglycine HMDB0000092 Amino Acids 0.40 (0.12, 0.66) 0.032
Cystathionine HMDB0000099 Amino Acids 0.33 (0.08, 0.58) 0.046
2-aminooctanoate HMDB0000991 Amino Acids 0.38 (0.10, 0.66) 0.038
Pantothenate HMDB0000210 Amino Acids 0.34 (0.61, 0.08) 0.047
N-methylproline HMDB0094696 Amino Acids 0.44 (0.70, 0.17) 0.012
C36:1 PS plasmalogen Unknown Other 0.55 (0.83, 0.27) 0.003
X4-pyridoxate Unknown Other 0.42 (0.67, 0.16) 0.014
Proline betaine HMDB0004827 Other 0.40 (0.66, 0.14) 0.024
Indole-3-propionate HMDB0002302 Other 0.35 (0.61, 0.09) 0.040
Cortisol HMDB0000063 Steroids 0.37 (0.64, 0.10) 0.040
C23:0 Ceramide (d18:1) HMDB0000950 Ceramides 0.39 (0.12, 0.66) 0.032
N4-acetylcytidine HMDB0005923 Purines and Pyrimidines 0.37 (0.11, 0.62) 0.032
Cytidine HMDB0000089 Purines and Pyrimidines 0.37 (0.10, 0.64) 0.040

1 All values are beta estimates obtained from multivariable-adjusted linear regression modeling 5-unit increments of
EDIH as the main predictor of interest and metabolite as the main response variable of interest. 2 Models were
adjusted for body mass index (continuous) age, physical activity, educational level, race/ethnicity, aspirin/NSAIDs
use, smoking status, WHI Hormone Therapy trial arm, and CHD case-control status. 3 Statistical significance was
defined as false-discovery rate adjusted P < 0.05 (in addition, all 19 metabolites replicated in the primary analysis
are highlighted in bold font).
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A summary of the associations of the 19 replicated metabolites in the discovery and replication
datasets and in the BMI categories, is presented in Figure 2.
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Figure 2. Summary of EDIH associations with the 19 replicated metabolites in the discovery (WHI-HT)
and replication (WHI-OS) datasets and in body mass index categories. Associations were adjusted for
body mass index (continuous) age, physical activity, educational level, race/ethnicity, aspirin/NSAIDs
use, smoking status, WHI Hormone Therapy trial arm, and CHD case-control status. P-value is the
FDR-adjusted p-value.

3. Discussion

In the current study, we showed that higher scores of the empirical dietary index for
hyperinsulinemia (EDIH) were significantly associated with higher c-peptide concentrations in
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the WHI; further demonstrating its validity for use in cohorts different than the one in which the
score was initially developed. Associations were stronger among overweight or obese women than
among normal weight women, in line with findings from previous studies of EDIH and c-peptide
concentrations [1,2]. In addition, using a robust 2-stage methodology, we identified and replicated 19
metabolites associated with the insulinemic potential of diet, after adjusting for total energy intake,
race/ethnicity, BMI, physical activity, smoking and other potential confounding variables. The 19
metabolites were comprised mainly of acylcarnitines and acylglycerols (diacylglycerols-DAG and
triacylglycerols-TAG) that were associated with higher dietary insulinemic potential, and cholesterol
esters and plasmalogens, associated with lower dietary insulinemic potential. In line with the
differences by BMI observed in the association of EDIH and c-peptide concentrations in the validation
study, body weight appeared to modify EDIH associations with metabolite abundances. For example,
among normal weight women, 12 metabolites were associated with the EDIH score at an FDR adjusted
P < 0.05, including seven of the 19 metabolites replicated in the primary analyses; whereas among
overweight or obese women, up to 64 metabolites were significantly associated with the EDIH score
at an FDR adjusted P < 0.05, including all 19 replicated metabolites. Though we observed five times
more significant associations among overweight or obese women than among normal weight women,
it is possible that some of the differences may be attributed to sample size that was twice higher among
overweight or obese women. We note however, that we observed more significant associations in
the overweight/obese sample than among the overall study population, including in the exploratory
analyses with much smaller samples.

The low insulinemic dietary pattern is high in whole fruit, wholegrains, high-fat dairy products
(e.g., cheese, whole milk, ice cream), green-leafy vegetables, coffee, wine, and low in red meat,
processed meat, sugar-sweetened beverages, poultry; and has been shown in the current study and
elsewhere [2,16] to have a nutrient profile high in fiber, calcium, total carbohydrates, and low in
cholesterol, total protein and total fat (including saturated fat-SFA). Therefore, while not strictly a
vegetarian diet, the low insulinemic dietary pattern is characteristic of a plant-based dietary pattern.
In the current study, the nine replicated metabolites that were higher with a low insulinemic dietary
pattern included one omega-3 PUFA (eicosapentaenoate-EPA), one phospholipid plasmalogen (C36:1
PS plasmalogen), one coffee-related alkaloid (trigonelline) and up to six cholesterol esters that included
cholesteryl oleate (C18:1 CE) and cholesteryl palmitoleate (C16:1 CE). The cholesterol esters may be
indicative of the plant-based nature of low EDIH diets [21]. A study that investigated whether vegan
diet improves the metabolic pathway of TAG-rich lipoproteins, consisting in lipoprotein lipolysis
and removal of the resulting remnants from circulation, found that remnant removal, estimated by
cholesteryl oleate clearance, was significantly faster in vegans compared to omnivores [22]. Vegans
showed better regulation of the metabolism of TAG-rich lipoproteins, because they were more efficient
in removing remnants that are potentially atherogenic [23]. Low EDIH diets may also reduce the
residence time of chylomicron remnants [24], which may have favorable effects in relation to chronic
disease development. A lipidomics and transcriptomics analysis in paired prostate cancer tumor
and adjacent non-tumor tissues revealed cholesteryl oleate with the highest ability in distinguishing
prostate cancer from non-malignant tissue or benign prostatic hyperplasia [25]. Cholesteryl palmitoleate
derives from palmitoleic acid and higher concentrations of palmitoleic acid in blood or adipose tissue
are consistently associated with a many undesirable outcomes including obesity and metabolic
syndrome [26], hypertriglyceridemia [27], type 2 diabetes [28], prostate cancer [29], among other
diseases. It is therefore possible that a habitual low insulinemic dietary pattern may reduce risk of
certain chronic diseases through its greater efficiency in clearing the blood stream of the remnants of
lipid metabolism.

A low EDIH diet was also favorably associated with EPA. Studies have shown that diets with
greater intake of EPA and docosahexaenoic (DHA) fatty acids may promote positive effects, especially
on TAG levels and increase high-density lipoprotein (HDL) concentrations [30] which may decrease
lipogenic activity and release adiponectin; which is associated with weight loss. Indeed, one of our
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previous studies showed that long-term dietary changes towards a low insulinemic dietary pattern
were associated with less weight gain compared to no or minimal dietary changes [16]. A low EDIH
diet may diminish TAG levels via reduced hepatic production of very low-density lipoprotein (VLDL)
cholesterol and by increasing lipoprotein lipase activity in chylomicron clearance [31]. Trigonelline,
an alkaloid in coffee, also associated favorably with the low EDIH diet. Trigonelline is degraded
to an extent during coffee roasting to produce vitamin B3 (niacin), which may suppress colonic
inflammation [32] and colon carcinogenesis in mice [33]. In addition, a randomized crossover trial
that enrolled 15 overweight men to evaluate the acute effects of coffee and major coffee compounds
including trigonelline and chlorogenic acid, found that these two metabolites reduced early glucose
and insulin secretion [34].

In contrast, the foods contributing to a hyperinsulinemic dietary pattern include red meat,
processed meat, cream soups, margarine, butter, French fries, sugar-sweetened beverages, poultry
and eggs [1], and the resulting nutrient profile is rich in total and saturated fat, cholesterol and
total protein, and low in fiber and total carbohydrates. The ten replicated metabolites that were
associated with a high insulinemic dietary pattern in the current study included one sphingolipid
(C18:2 SM), one acylcarnitine (C10:2 carnitine), two DAGs, and five TAGs. The acylglycerols may be
generally indicative of the meat-based components contributing to higher EDIH scores [35]. TAGs are
major components of very low-density lipoproteins (VLDL), and play an important role in storage of
energy, storage of fatty acids, and provision of precursors for phospholipid biosynthesis [35]. DAGs
consist of an ester derived from two long-chain fatty acids. Though DAGs are minor components
of cell membranes, they are important intermediates in lipid metabolism and key elements in cell
signaling [36]. Several studies have found adherence to higher dietary quality to be favorably associated
with TAG concentrations [37–39] in line with the current study findings. Another mechanistic aspect
relates to mitochondrial fatty acid oxidation. Mitochondrial dysfunction resulting in lower oxidative
capacity may lead to higher accumulation of intracellular lipids which interfere with insulin signaling,
leading to insulin resistance [40,41]. Given that acylcarnitine profiling has been shown to be predictive
of mitochondrial fatty acid oxidation defects [42,43], it is possible that higher insulinemic potential
of the diet, which correlates with higher acylcarnitines abundances, may influence health outcomes
through impaired mitochondrial fatty acid oxidation.

Previous studies [15,44–46] have investigated differences in metabolomic profiles among people
consuming a variety of other dietary patterns. For example, a previous study examined differences in
the abundances of 118 metabolites among meat eaters, fish eaters, vegetarians and vegans, and found
that 79% of metabolites significantly differed by diet group. In the majority of these metabolites, meat
eaters most often had the highest concentrations, whereas vegans had the lowest concentration of
acylcarnitines, sphingolipids and glycerophospholipids; and vegetarians or fish eaters had the highest
concentrations of amino acids. The metabolic profiles of vegans was clearly separated from that of the
other diet groups, with vegans having lower concentrations of some glycerophospholipids similar to
the current study [44]. Another study examined the correlation of four diet quality indices [the Healthy
Eating Index (HEI) 2010, the Alternate Mediterranean Diet Score (aMED), the WHO Healthy Diet
Indicator (HDI), and the Baltic Sea Diet (BSD)] with serum metabolites [15], and found that the HEI-2010,
aMED, HDI, and BSD were associated with 23, 46, 23, and 33 metabolites, respectively. Additionally,
the dietary indices were associated with metabolites correlated with most components used to score
adherence to the dietary pattern [15]. While specific metabolites may not always be reproduced across
different studies due to differences in metabolomic platforms, categories of metabolites may align
between studies in terms of diet quality more broadly. For example, a low-quality dietary pattern
(high EDIH) may be found to be associated with high concentrations of different acylcarnitines in
different studies.

Associations appeared to differ by body weight. Twelve metabolites were associated with EDIH
among normal weight women at the FDR adjusted P < 0.05, whereas up to 64 metabolites were
associated with EDIH among overweight or obese women at the FDR adjusted P < 0.05, including 10



Metabolites 2019, 9, 120 14 of 21

of the 12 metabolites among normal weight women, though the magnitudes of association among
normal weight women for these 10 metabolites were stronger. Among the 64 metabolites observed in
overweight and obese women, all five cholesterol esters and all 22 phospholipids or lysophospholipids
were associated with lower dietary insulinemic potential whereas all six acyl carnitines and all 10 TAGs
and DAGs were associated with higher dietary insulinemic potential. Lysophospholipids are signaling
molecules involved in modulating processes such as inflammation, insulin secretion and insulin
sensitivity through their interaction with G protein-coupled receptors [47,48]. Lysophospholipids may
therefore be important in obesity and related diseases. A study assessing plasma lysophospholipids
in obesity found that a combination of 26 lysophospholipids could discriminate between normal
weight and obese participants with an accuracy of 98% [49]. Among the obese participants, the
authors in that study, found decreased concentrations of different lysophospholipid species including
lysophosphatidylcholines, and lysophosphatidylethanolamines [49]. These results are consistent with
those observed in the current study.

Our study has several strengths, including a validated metabolomics platform, detailed covariate
data, and a robust methodology. Notably, our methodology includes the integration of dietary data with
metabolomics to characterize the metabolomics profiles of insulinemic diets. Limitations of our study
include known measurement error in using an FFQ for the assessment of diet, such as underreporting of
energy and protein intake [50,51]. Given that energy misreporting may depend on BMI, we adjusted all
models for BMI including the adjustment of BMI subgroup analysis for continuous BMI. Our findings
may also have limited generalizability, therefore additional data are needed to identify whether these
results are specific to postmenopausal women or whether there are similar metabolic profiles in men
or in premenopausal women. In addition, we had limited sample sizes in the BMI subgroup analyses
and could only explore statistical replication of the metabolites found, but we note that 14 of the 19
metabolites replicated in the primary analyses were also replicated in these exploratory analyses at an
FDR-adjusted P < 0.05 among overweight/obese women. In addition, given current eating patterns of
multiple regular meals and snacks, which lead to a perpetual postprandial state for the majority of the
day; it is ideal to have multiple measures of insulin or c-peptide concentrations over the course of a
day for each participant. However, we have previously shown that habitual diets predict a pattern of
c-peptide concentrations that approximates the expected physiologic pattern and a single blood sample
may therefore provide an unbiased mean estimate of c-peptide concentration for the population [2].

In summary, in two independent datasets of postmenopausal women, multiple metabolites
associated with the insulinemic potential of diet were identified and statistically replicated. We found
that metabolites involved in the metabolic pathways of cholesteryl esters, phospholipids, acylglycerols
and acylcarnitines may provide insights on the biological mechanisms through which insulinemic
dietary patterns influence disease risk and outcomes. The linkage of these findings to disease requires
further study.

4. Methods

4.1. Study Population

The Women’s Health Initiative (WHI) enrolled 161,808 postmenopausal women 50 to 79 years
old in 40 sites in the United States between 1993 and 1998 [52]. Participants were enrolled into an
observational study (OS) or one or more of four clinical trials, two of which were hormone therapy
(HT) trials. One of the HT trials randomly assigned 10,739 women with prior hysterectomy, to estrogen
or placebo, whereas the other randomized 16,608 women to estrogen plus progestin or placebo.
The full WHI-OS consisted of 93,676 women not eligible or unwilling to participate in the clinical
trials [52]. At the baseline clinic visit, trained study nurses drew blood samples and performed physical
measurements including blood pressure, height and weight.

For the EDIH validation study, using fasting plasma c-peptide data; we pooled data from two
nested case-control studies that measured plasma c-peptide at WHI baseline. The two studies comprised
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1005 women. We excluded women with very low or very high body mass index (BMI) values (<15
kg/m2 or >50 kg/m2), those with implausible total energy intake values (≤600 kcal/d or ≥5000 kcal/d),
and those who self-reported diabetes at the baseline. After the exclusions, 919 women were retained
for analyses in the EDIH validation study.

For the EDIH metabolomics study; we used data from 2306 participants from the Metabolomics
of CHD in the WHI study [6], a matched case-control study that selected participants from the OS and
HT. The cases (who developed coronary heart disease (CHD) after the baseline fasting blood draw)
were frequency matched to controls on race/ethnicity, hysterectomy status, 5-year age groups, and
2-year enrollment window. After exclusions, the analytic dataset included 1919 women: 1109 in the
WHI-HT (discovery dataset) and 810 in the WHI-OS (replication dataset).

There was very minimal overlap (n = 15) between participants with c-peptide data, and the
participants in the Metabolomics of CHD in the WHI study. Therefore, we conducted analyses using
separate study populations for EDIH construct validation and EDIH metabolomics. The WHI protocol
was approved by the institutional review boards at the Clinical Coordinating Center at the Fred
Hutchinson Cancer Research Center in Seattle, WA, and at each of the 40 Clinical Centers [52]. The
current study was approved by the institutional review board at the Brigham and Women’s Hospital
(IRB protocol # 2013P000568).

4.2. Dietary Assessment and Calculation of the Empirical Dietary Index for Hyperinsulinemia (EDIH) Score

At the baseline, all WHI participants completed a 122-item food frequency questionnaire (FFQ) by
self-report, developed for the WHI to estimate average daily dietary intake over the previous 3-month
period [52,53]. The WHI FFQ has produced results reasonably comparable to those from four 24-h
dietary recall interviews and four days of food diaries recorded within the WHI [51,54].

The development and validation of the EDIH score has been described in detail elsewhere [1].
Briefly, the score was developed in a sample of women in the Nurses’ Health Study (NHS), to empirically
create a score to assess the insulinemic potential of whole diets defined using foods. Thirty-nine foods
and food groups (servings/day) [55] were entered into stepwise linear regression analyses to identify a
dietary pattern most predictive of c-peptide concentrations. The EDIH score is a weighted sum of 18
food groups, with higher scores reflective of higher insulinemic potential of the diet (hyperinsulinemia)
and lower scores indicating lower insulinemic diets. The food groups contributing to high EDIH scores
include: Red meat, low-energy beverages, cream soups, processed meat, margarine, poultry, French
fries, non-dark (non-oily) fish, high energy beverages, tomatoes, low-fat dairy and eggs. The food
groups contributing to lower EDIH score include: Whole fruit, wine, coffee, high-fat dairy products
and green leafy vegetables [1].

In the NHS, the Spearman correlation coefficient between EDIH and c-peptide levels was 0.21;
and there was a 40% increase in c-peptide concentration among the women in EDIH quintile 5
compared to those in quintile 1 (adjusted relative concentration: 1.40; 95% CI, 1.32, 1.46) [1]. The
EDIH score was evaluated in two independent U.S.-based cohorts of women (NHS-II, n = 1,717)
and men-Health Professionals Follow-up Study (HPFS, n = 4002) and found to significantly predict
c-peptide concentrations. For example, the adjusted relative concentration of c-peptide in the highest
quintile compared to the lowest was 1.29 (95% CI, 1.22, 1.39) in the HPFS and 1.32 (95% CI, 1.21,
145) in the NHS-II [1]. In these validation studies, the correlation coefficients were 0.14 (men) and
0.20 (women) [1]. In the current study, we calculated EDIH scores for each participant based on
self-administered FFQ data collected at WHI baseline.

4.3. C-peptide Measurement

Blood was drawn from WHI participants at the first screening visit (1994–1998). All blood samples
were continuously stored in well-monitored liquid nitrogen freezers from blood collection to their
retrieval for analysis. Details on blood draw, transportation, and storage in these cohorts have been
described [56]. Procedures for the measurement of plasma c-peptide concentrations in the WHI have
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also been described [57]. Briefly, plasma c-peptide was measured using ELISA reagents (Diagnostic
Systems Laboratories/Beckman Coulter, Webster, TX, USA). In the nested case-control studies in which
c-peptide was measured, samples from cases (that developed after the baseline blood collection) and
their matched controls were analyzed in the same batch. Quality control samples were randomly
interspersed among the case-control samples, and laboratory personnel were blinded to quality control
and case-control status for all assays. The average intra-assay coefficients of variation from the internal
quality control samples were 3.02% and 2.65% for the two nested case-control studies.

4.4. Assessment of Metabolites

Plasma samples for the metabolomics study were collected and processed as described for the
validation study. Metabolomic measurements were conducted at the Broad Institute (Boston, MA,
USA), using four complimentary liquid chromatography tandem mass spectroscopy (LC-MS) methods,
described in detail elsewhere [6], resulting in 509 metabolites. For each method, pooled plasma
reference samples were included after running every 20 samples, and results were standardized using
the ratio of the value of the sample to the value of the nearest pooled reference multiplied by the
median of all reference values for the metabolite [6]. All signals were inspected to ensure quality
and integration, and a signal-to-noise ratio <10 was considered unquantifiable [58,59]. For each
method, metabolite identities were confirmed using authentic reference standards or reference samples.
Coefficients of variation (CVs) were calculated using pooled plasma samples from the first 800 WHI-OS
participants [6]. After excluding metabolites with a CV >20%, 448 known metabolites were retained
for analyses. In the pilot testing of the metabolomics platform, 92% of metabolites had acceptable
assay reproducibility (CV < 20%) and almost 90% of metabolites were stable over one to two years
(Spearman correlation or ICC ≥ 0.4) [60].

4.5. Covariates

Data on covariates were collected by self-administered questionnaires on medical history,
demographics, and lifestyle factors at the baseline, as previously described [52]. Covariates adjusted
for, were the following: Total energy intake (kcal/day); body mass index [BMI = weight (kg)/(height
(m) × height (m))]; age at WHI baseline (years); racial/ethnic groups (American Indian or Alaskan
Native, Asian or Pacific Islander, Hispanic/Latino, African American, European American, and other
race groups); smoking status (current, former, and never); educational levels categorized into some
high school or lower educational level, high school graduate or some college or associate degree, and
≥4 years of college; regular use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAID)
(yes/no); where regular use of medications was defined as: ≥2 times in each of the two weeks preceding
the interview; category and duration of estrogen use and category and duration of combined estrogen
and progestin use categorized into five groups (none, ≤4.9 y, 5–10.0 y, 10.1–14.9 y, and ≥15.0 y);
self-reported recreational physical activity, calculated by summing the metabolic equivalent tasks
for all reported activities for each individual (e.g., walking, aerobics, jogging, tennis, swimming,
biking outdoors, exercise machine, calisthenics, popular or folk dancing) (MET-hours/week) [61];
hormone therapy trial arm (estrogen-alone intervention, estrogen-alone control, combined estrogen
and progestin intervention, estrogen and progestin control, not randomized to trial); and calcium
and vitamin D arm (intervention, control, not randomized to trial), CHD case-control status, dietary
modification trial arm (intervention, control, not randomized to the trial). These covariates were
included in both the validation study and metabolomics study.

4.6. Statistical Analysis

We normalized the distributions of c-peptide and metabolites data by transforming them to the
natural log scale. Missing metabolite values below the limit of detection were assigned to half the
lowest observed value. We described participants’ characteristics using means (standard deviations)
for continuous variables, and frequencies (%) for categorical variables; across quintiles of the EDIH.
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For the EDIH validation analysis in the WHI, we used multivariable-adjusted linear regression
models to estimate the absolute and relative concentrations of plasma c-peptide in quintiles of the
EDIH. We stratified the association between EDIH score and c-peptide by BMI (normal weight,
overweight/obese women) and assessed potential effect modification using the Wald p value of the
EDIH x BMI interaction term.

For the discovery analysis in the larger WHI-HT dataset (n = 1109), each metabolite was evaluated
individually in multivariable-adjusted linear regression models in relation to 5-SD increments in the
EDIH score. All models included BMI and the other factors listed above. Statistical significance was
based on a two-sided P < 0.05 and a corresponding false discovery rate-adjusted P-value of 0.05.
Metabolites discovered in WHI-HT were evaluated individually in the independent WHI-OS dataset
(n = 810) using the same models as in the discovery analysis. Metabolite associations were considered
to have been replicated based on a two-sided P < 0.05 and a corresponding false discovery rate-adjusted
p value of 0.05. In all analyses, the EDIH score was modelled as a continuous variable.

In the secondary analyses, we conducted subgroup analysis in BMI categories: Normal weight
(15 to <25 kg/m2), overweight/obese (25 to ≤50 kg/m2), while adjusting for continuous BMI within BMI
categories. Due to power considerations, stratified analyses were conducted in the combined WHI-OS
and WHI-HT datasets. Statistical significance was based on a two-sided P < 0.05 and a corresponding
false discovery rate-adjusted P-value of 0.05. Additionally, and even though statistical power was
limited, we conducted exploratory analyses in the BMI subgroups in separate discovery and replication
datasets, similar to the primary analyses but at an FDR-adjusted P < 0.20 for statistical significance.

Supplementary Materials: The following supplementary tables are available online at https://www.mdpi.com/
xxx/s1. Table S1: Baseline characteristics of the study population across EDIH quintiles in the discovery and
replication datasets, Table S2: Thirty-seven metabolites were significantly associated with EDIH at the raw P-value
< 0.05, and none at an FDR-adjusted P < 0.20, among normal weight women in the discovery dataset (Hormone
Therapy trial: n = 317), Table S3: Metabolites associated with EDIH at an FDR-adjusted P < 0.20 in the discovery
and replication datasets, among overweight or obese women.
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