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Abstract: Exercise plays a beneficial role in the treatment of metabolic syndrome (MetS). Metabolomics
can provide new insights and facilitate the optimization of exercise prescription. This study aimed
to investigate whether the response of the human serum metabolic fingerprint to exercise depends
on exercise mode or the presence of MetS. Twenty-three sedentary men (nine with MetS and
fourteen healthy) completed four trials: Resting, high-intensity interval exercise (HIIE), continuous
moderate-intensity exercise (CME), and resistance exercise (RE). Blood samples were collected
pre-exercise, immediately after exercise, and 1 h post-exercise for targeted metabolomic analysis
in serum by liquid chromatography–mass spectrometry. Time exerted the strongest differentiating
effect, followed by exercise mode. The largest changes from baseline were found in the immediate
post-exercise samples. RE caused the strongest responses overall, followed by HIIE, while CME had
minimal effect. Unlike previous results in urine, no valid model could separate the two groups in
serum. Exercise exerted a beneficial effect on prominent serum biomarkers of metabolic risks, such as
branched-chain amino acids, alanine, acetylcarnitine, choline, and betaine. These findings contribute
to the ongoing research efforts to map the molecular responses to exercise and to optimize exercise
guidelines for individuals at cardiometabolic risk.

Keywords: metabolomics; serum metabolites; metabolic syndrome; exercise mode

1. Introduction

The metabolic syndrome (MetS), a condition that involves cardiometabolic risk factors, such as
visceral obesity, hyperglycemia, dyslipidemia, and hypertension, shows alarmingly increasing
rates [1,2]. MetS increases the risk of type 2 diabetes, cardiovascular disease, and all-cause
mortality [1,3,4]. Although the pathophysiological mechanisms behind the manifestation of MetS are far
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from clear, insulin resistance appears as the most widely accepted and unifying cause, as it affects many
major metabolic pathways [5]. Recent advances in the field of metabolomics have helped broaden the
characterization of the metabolic profile of obesity-related diseases. Metabolites, such as branched-chain
amino acids (BCAA), aromatic amino acids, glutamine, glutamate, glycine, alanine, serine, proline,
lysine, histidine, α-hydroxybutyrate, kynurenate, acylcarnitines, lysophosphatidylcholines, nicotinuric
acid, trimethylamine-N-oxide, choline, and betaine, have all been connected to obesity, insulin
resistance, MetS, diabetes, non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease [6–17].

Exercise plays an important role in the prevention and treatment of MetS, as it exerts a beneficial
effect on the associated risks [18–20]. It takes a single bout of exercise to acutely improve the lipidemic
profile, blood pressure, insulin sensitivity, glucose homeostasis, as well as immunological, vascular,
and hemostatic functions [21]. This means that the cardiometabolic benefits of exercise training could
be greatly attributed to recent exercise. The majority of relevant studies have implemented continuous
moderate-intensity exercise (CME). Studies that have implemented different exercise modes, i.e.,
high-intensity interval exercise (HIIE) and resistance exercise (RE), have also reported improvements
in insulin sensitivity and MetS risk factors [19,22,23].

Moreover, they show that different exercise modes or their combination could have better effects
on insulin resistance than CME [24–26]. Different exercise modes possibly exert their beneficial effects
through different molecular mechanisms [19,27]. These mechanisms and the best exercise mode (or the
best combination of exercise modes) for optimal clinical outcomes in individuals with MetS are yet to
be determined.

The approach of metabolomics can provide new insights into exercise metabolism and help
deepen our understanding of the beneficial effects of exercise [28–30]. As far as we know, the acute
effects of the aforementioned exercise modes have not been directly compared using metabolomics.
Moreover, the vast majority of exercise metabolomic studies so far have been on competitive athletes
or healthy, young, and active individuals. There are limited data from exercise metabolomic studies
on individuals with cardiometabolic risk factors or diseases. Most of these studies investigated the
effects of exercise training [31–38], a few investigated the effects of acute exercise [39–41], and all
included sedentary, overweight or obese individuals with metabolic risk factors, diabetes, or NAFLD,
but not MetS.

Thus, this study focuses on investigating whether the serum metabolic fingerprint responds
differently depending on the presence of MetS or the mode of exercise. More specifically, we compared
the effects of a resting trial (REST) along with three fundamentally different exercise modes (HIIE,
CME, and RE) on the serum metabolic fingerprints of sedentary, middle-aged men with or without
MetS. Moreover, we compared the results in serum with previously published results from the same
study in urine [42].

2. Results

Characteristics of the participants have been previously described [42]. Briefly, there is a significant
difference between the two groups (i.e., MetS and Healthy) in terms of the metabolic syndrome, visceral
fat, maximal oxygen uptake, and in the homeostatic model assessment 2 for insulin resistance.
Five serum metabolites, namely, alanine, glutamate, homocysteine, norvaline–valine, and proline,
were significantly higher in MetS in comparison to Healthy at baseline. Serum leucine–isoleucine was
also numerically higher in MetS, but the difference was marginally significant (p = 0.051). On the other
hand, nicotinamide and spermine were lower in MetS compared to Healthy at baseline.

As previously described [42], there were no significant differences in total distance covered
between the HIIE and CME trials or in exercise intensity between groups. The change in plasma
volume did not differ significantly among exercise trials or groups (post- to pre-exercise plasma volume
ratios, HIIE, 0.97 ± 0.09 and 0.96 ± 0.03; CME, 1.00 ± 0.07 and 1.01 ± 0.05; RE, 0.95 ± 0.08 and 0.96 ± 0.06
for MetS and Healthy, respectively). Total daily energy intake, macronutrient intake, and step count
did not differ significantly between groups or trials, with the exception that protein intake on the day
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before the CME trial was higher than on the day before the REST trial. However, since total energy,
carbohydrate, and fat intake did not differ significantly between those days, this finding was not
considered important during the interpretation of the results.

The serum glucose concentration presented significant trial× time interaction, as well as significant
main effects of time and group, with MetS being higher than Healthy (Supplementary Table S1). In HIIE,
glucose was significantly higher immediately post-exercise (1 h time point) compared to pre-exercise
(0 h time point) and 1 h post-exercise (2 h time point). In RE, glucose was significantly lower at 2 h
compared to 0 and 1 h. Immediately after CME, glucose was significantly lower compared to HIIE
and RE. The serum insulin concentration presented significant trial × time interaction, as well as
significant main effects of trial and time (Supplementary Table S1). It is noteworthy that insulin had
a large increase immediately after RE, compared to the other trials, and then returned to baseline at
2 h. There was no significant interaction involving the group factor, which suggests than changes in
glucose or insulin exhibited similar trends in both groups.

The spectrophotometrically determined serum lactate concentration was significantly different
between trials immediately after exercise (Supplementary Table S2). Lactate increased significantly
after RE and HIIE, but not after CME. The largest increase was after RE. There were no significant
differences between groups. Lactate measured spectrophotometrically was significantly correlated
with lactate determined by UPLC-MS/MS analysis (r = 0.885, p < 0.001).

2.1. Univariate Metabolomic Analysis

The heat map in Figure 1 presents the results of the three-way analysis of variance (ANOVA) on
the serum metabolite levels determined through UPLC-MS/MS analysis. Four metabolites, namely,
betaine, hypoxanthine, lysine, and pyroglutamate, presented a significant three-way interaction.
In particular, after immediately decreasing following RE in both groups, betaine (precisely, glycine
betaine, or trimethylglycine) remained low 1 h after RE in MetS, while it increased in Healthy. Betaine
also showed a delayed decrease after HIIE (2 h) in MetS, whereas in Healthy the decrease appeared at
1 h and remained through 2 h. Hypoxanthine, which presented a large increase immediately after RE,
started decreasing 1 h later in MetS, while remaining increased in Healthy. Lysine exhibited the highest
increase immediately after CME in Healthy and less so after HIIE, while it did not change remarkably
in MetS. Pyroglutamate deceased immediately after HIIE in MetS, while it increased in Healthy.

There was no significant two-way interaction of exercise mode and group. Only glutamine and
hypoxanthine showed a significant time × group interaction. These metabolites were significantly
higher in MetS at 1 h compared to the other two time points. Glutamine did not change in Healthy,
while hypoxanthine was higher at 1 and 2 h, compared to 0 h. Twenty-seven serum metabolites, namely,
2-hydroxyisobutyrate, 2-hydroxyisovalerate, acetylcarnitine, alanine, betaine, choline, citrate, citrulline,
creatine, glucose, glutamate, histidine, homocysteine, hypoxanthine, inosine, lactate, leucine-isoleucine,
norvaline-valine, pantothenate, phenylalanine, proline, pyruvate, serine, taurine, threonine, uridine,
and xanthine, showed significant exercise mode × time interactions. This was due to differences
between 1 h and the other two time points; and between CME and the other two exercise modes.

Regarding the main effects, choline and lysine were significantly different between groups.
Fifteen metabolites were found significantly different among exercise modes. Twelve of them differed
significantly between HIIE and CME; nine differed between CME and RE; and, six differed between
HIIE and RE. There was a significant change over time in twenty-seven metabolites. This time effect was
located in the difference of the first post-exercise sample (1 h) from the other samples. Moreover, twelve
metabolites were significantly different between 0 and 2 h. The Venn diagram presented in Figure 2
summarizes the significant main effects and interactions with regards to all 46 serum metabolites. The p
values and effect size values for all significant changes are summarized in Supplementary Table S4.
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RE,resistance exercise) in each group (MetS,metabolic syndrome; and Healthy). Significant 
interactions (p < 0.05) from the three-way repeated−measure ANOVA are noted as follows: 1Exercise 
mode × time × group, 2time × group, 3exercise mode × time. Notation for the significant main effects: 
4group, 5exercise mode, 6time. 

 

Figure 2. The results of three-way ANOVA in a Venn diagram. Numbers represent the sums of 
significant main effects and interactions with regards to all 46 serum metabolites determined by 
UPLC-MS/MS in serum (p < 0.05). 

2.2. Multivariate Metabolomic Analysis 

We consecutively set group, exercise mode, and time as the Y variable to perform a partial least 
square discriminant analysis (PLS-DA). Unlike in urine [42], no valid model could separate the two 
groups in serum. In contrast to the results from urine, however, PLS-DA separated all three exercise 
modes in one model in serum. Figures 3 and 4 show the score and loading plots for the separation of 

Figure 1. Percentage change from baseline in serum metabolites at 1 and 2 h for the three exercise modes
(HIIE,high-intensity interval exercise; CME, continuous moderate-intensity exercise; and RE,resistance
exercise) in each group (MetS,metabolic syndrome; and Healthy). Significant interactions (p < 0.05)
from the three-way repeated–measure ANOVA are noted as follows: 1Exercise mode × time × group,
2time × group, 3exercise mode × time. Notation for the significant main effects: 4group, 5exercise
mode, 6time.
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Figure 2. The results of three-way ANOVA in a Venn diagram. Numbers represent the sums of
significant main effects and interactions with regards to all 46 serum metabolites determined by
UPLC-MS/MS in serum (p < 0.05).

2.2. Multivariate Metabolomic Analysis

We consecutively set group, exercise mode, and time as the Y variable to perform a partial least
square discriminant analysis (PLS-DA). Unlike in urine [42], no valid model could separate the two
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groups in serum. In contrast to the results from urine, however, PLS-DA separated all three exercise
modes in one model in serum. Figures 3 and 4 show the score and loading plots for the separation
of the exercise modes at both post-exercise time points (i.e., 1 h and 2 h). Pairwise PLS-DA was also
performed, and discrimination by exercise mode was achieved at 1 h between HIIE and CME; between
CME and RE; and between HIIE and RE (Supplementary Figure S1). There was also a significant
difference at 2 h between HIIE and CME; and between CME and RE. Between HIIE and RE, the model
was marginally significant (CV-ANOVA, p = 0.070; Supplementary Figure S2).
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Figure 3. (A). Score plots concerning serum samples for the a partial least square discriminant analysis
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for the Healthy group. (B). Loading plot for the respective PLS-DA model. Blue triangles represent
HIIE (2), CME (3), and RE (4).
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Figure 4. (A). Score plot concerning serum samples for the PLS-DA model comparing exercise modes
at 2 h: HIIE (blue circles), CME (red squares), RE (green triangles). Inserts (subfigure) are permutation
plots. The number 1 is used for the MetS group and 2 for the Healthy group. (B). Loading plot for the
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Valid models also separated all three time points for HIIE and RE (Figures 5 and 6, respectively),
but not for CME. Pairwise separation by time was achieved for HIIE between 0 and 1 h; 0 and 2 h; and
1 and 2 h (Supplementary Figure S3). Like in urine [42], no valid models were constructed for CME.
All time points were significantly separated in RE. The Supplementary Figure S4 presents the score
plots for the pairwise comparisons of the different time points in RE.
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for the MetS group and 2 for the Healthy group. (B). Loading plot for the respective PLS-DA model.
Blue triangles represent 0 h (1), 1 h (2), and 2 h (3).
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Figure 6. (A). Score plot concerning serum samples for the PLS-DA model for RE: 0 h (blue circles), 1 h
(red squares), 2 h (green triangles). Inserts (subfigure) are permutation plots. The number 1 is used for
the MetS group and 2 for the Healthy group. (B). Loading plot for the respective PLS-DA model. Blue
triangles represent 0 h (1), 1 h (2), and 2 h (3).

Supplementary Table S3 shows a summary of the characteristics of all valid models concerning
serum samples. The important serum metabolites to explain the differences for valid PLS-DA models of
each pairwise comparison, according to their variable importance on projection (VIP) scores, are shown
in Table 1.
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Table 1. Important serum metabolites that explain the valid PLS-DA models.

Exercise Mode Time

1 h 2 h HIIE RE

HIIE vs. CME HIIE vs. RE CME vs. RE HIIE vs. CME HIIE vs. RE CME vs. RE 0 vs. 1 h 0 vs. 2 h 1 vs. 2 h 0 vs. 1 h 0 vs. 2 h 1 vs. 2 h

2−Hydroxyisobutyrate −0.42 *** - 0.75 *** - - - - - - - - -

2−Hydroxyisovalerate −0.14 * - - - - 0.38 *** - 0.26 *** - - 0.35 *** 0.24 ***

Acetylcarnitine −0.31 *** - - - −0.21 *** - 0.60 *** 0.46 *** - 0.49 *** - -

Alanine −0.28 *** - 0.43 *** −0.20 *** - 0.28 *** 0.48 *** 0.22 *** −0.18 *** 0.50 *** 0.23 *** −0.18 ***

Choline −0.10 * - - - - - - - - - - -

Creatine −0.18 *** - 0.19 ** - - - 0.26 *** - - 0.22 *** - −0.20 ***

Cystine - - - - - - - 0.37 *** - - - -

Histidine - - - - - - 0.28 *** - - - - -

Homocysteine −0.30 * - 0.42 ** - - - - - - - - -

Hypoxanthine - 1.12 *** 1.47 *** - 1.32 *** 1.29 *** - - - 1.68 *** 1.32 *** -

Lactate −0.61 *** 0.60 *** 3.04 *** - - - 1.54 *** - −0.52 *** 3.29 *** 0.37 *** −0.67 ***

Leucine−isoleucine - - - 0.12 *** - −0.16 *** - −0.11 *** −0.14 *** - −0.18 *** −0.15 ***

Norvaline−valine - - - - - - - - - - −0.15 *** -

Pantothenate −0.65 *** 0.71 *** 3.75 *** - - - 1.38 *** - - 3.01 *** - −0.59 ***

Phenylalanine - - - - - - 0.15 *** - −0.11 *** - - -

Pyruvate −0.80 *** 0.37 * 5.91 *** - - - 3.61 *** - −0.67 *** 6.29 *** 0.99 *** −0.73 ***

Threonine - - −0.15 *** - - - - - - - - -

Uridine −0.12 * - - - - - - - - - - -

Numbers indicate fold change and appear wherever a metabolite contributed to the discrimination. For example, the first number, −0.42, means that the value in CME was 0.42 fold lower
than the value in HIIE. * p < 0.05, ** p < 0.01, *** p < 0.001, significant difference following Student’s t test.
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The metabolites responsible for the separation of all three exercise modes or time points (in order
of descending VIP scores) are as follows:

(i) Concerning the separation of exercise modes at 1 h (Figure 3), HIIE caused a larger increase in
acetylcarnitine compared to the other exercises. RE caused a larger increase in lactate, pyruvate,
hypoxanthine, and pantothenate compared to the other exercises. Both HIIE and RE caused
similar increases in alanine, 2-hydroxyisobutyrate, and creatine, while CME caused a lesser
increase in alanine, a decrease in 2-hydroxyisobutyrate, and no change in creatine. CME increased
threonine, while HIIE and RE decreased it;

(ii) Concerning the separation of exercise modes at 2 h (Figure 4), HIIE caused a higher increase in
acetylcarnitine in comparison to other exercises. RE caused a higher increase in hypoxanthine
in comparison to other exercises. Both HIIE and RE caused similar increases in alanine,
2-hydroxyisovalerate, and 2-hydroxyisobutyrate. CME caused no change in alanine or
2-hydroxyisobutyrate, but it caused a decrease in 2-hydroxyisobutyrate. CME caused a lesser
decrease in leucine-isoleucine and norvaline-valine than HIIE or RE did;

(iii) The separation of time points in HIIE (Figure 5) was mainly due to the larger increases in
lactate, pyruvate, alanine, acetylcarnitine, histidine, pantothenate, and phenylalanine in the first
post-exercise sample (1 h). In addition, leucine-isoleucine, while remaining unchanged at 1 h,
presented a decrease at 2 h;

(iv) The separation of time points in RE (Figure 6) was mainly due to the larger increases in lactate,
pyruvate, alanine, hypoxanthine, pantothenate, creatine, and acetylcarnitine at 1 h. In addition,
2-hydroxyisovalerate presented a greater increase at 2 h than at 1 h.

3. Discussion

This study investigated the alterations in the human serum metabolic fingerprint, due to the effect
of three independent factors, that is, exercise mode, time after exercise, and the presence or not of
MetS. A targeted UPLC-MS/MS analytical method, which identifies polar compounds (e.g., amino
acids, amines, sugars, organic acids, nucleic acid components, and water-soluble vitamins), was used.
As far as we know, this was the first time that the serum metabolic fingerprints of three fundamentally
different exercise modes were compared. Following both univariate (ANOVA) and multivariate
(PLS-DA) statistical analysis, we showed that time had the strongest differentiating effect on the
metabolic fingerprints, with exercise mode coming second. The largest changes were seen in the
immediate post-exercise samples. Of the three exercise modes, the greatest responses were due to RE,
while CME had minimal effect. These results are in line with previously reported results from the
same study in urine samples [42]. Unlike in urine, however, where we found evidence for decreased
metabolic flexibility of MetS in response to exercise, no valid model could separate the two groups
in serum.

3.1. Between-Group Comparison of Baseline Metabolic Fingerprints

In blood, increases in metabolites, such as leucine, isoleucine, glucose, urate, and acetylcarnitine,
and decreases in glycine have been associated with impaired fasting glucose regulation [43,44].
Moreover, decreased glycine and increased valine, phenylalanine, and combined glutamine and
glutamate have been associated with insulin resistance [45]. Phenylalanine, leucine-isoleucine, valine,
tyrosine, methionine, alanine, and histidine have been found to distinguish metabolically well from
metabolically compromised individuals independent of body mass index (BMI) [6]. Serum BCAA were
also higher in metabolically unhealthy, centrally obese patients compared to metabolically healthy,
peripherally obese individuals [46]. In a similar male Mediterranean group with MetS, a plasma
amino acid pattern mainly involving BCAA and aromatic amino acids was positively associated with
MetS, while a second pattern involving glutamine, glycine, serine, and asparagine was inversely
associated with MetS [16]. In the present study, individuals with MetS had higher baseline values of
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serum BCAA, alanine, glutamate, homocysteine, and proline, in agreement with the literature [17].
However, it should be noted that most large observational studies were on individuals with obesity,
cardiometabolic risk factors and/or type 2 diabetes, who were compared to healthy, lean individuals.
By contrast, in the present study we compared individuals with MetS to individuals without MetS,
but with similar BMI and body composition [42], except for visceral adiposity, in order to dissect
the effects of central obesity in particular. This could explain the lack of significant differences in
baseline values of other aforementioned biomarkers and the lack of separation of the baseline metabolic
fingerprints of the two groups after multivariate statistical analysis.

3.2. Between-Group Comparison of Post-Exercise Metabolic Fingerprints—Serum vs. Urine

In contrast to urine [42], there was no separation of the post-exercise serum metabolic fingerprints
between groups. With the particular UPLC-MS/MS analytical method, we monitor the levels of
64 metabolites in urine and 46 in serum. Overall, 23 urinary metabolites were not detected in serum,
while five serum metabolites were not detected in urine. For example, kynurenate, riboflavin, and
thymine, three out of the ten metabolites that were responsible for the discrimination of the post-exercise
urinary metabolic fingerprints between groups [42], were not part of the serum metabolic fingerprint.
These differences are expected and are usually attributed to differences in consistency between biological
matrices. Compared to serum, urine is a less complex aqueous solution; therefore, it is easier to identify
polar compounds in it. Moreover, the concentration of a metabolite may differ in the two matrices by
orders of magnitude; therefore, it may be detected in one, but fail to reach the limit of detection in
the other. Lastly, ion suppression, which is the loss of a compound’s signal because of co-elution and
ionization of a similar, interfering compound, can be very different in different biological matrices.
Many researchers view urine as the ideal source of biomarkers, as it is under no homeostatic control,
non-invasively accessible, more stable, and less complex than other biofluids [47,48]. Indeed, urine
provided evidence for a blunted metabolic response to exercise in MetS individuals [42], while serum
did not in the present study. However, this does not cancel the utility of blood sampling. In fact, the
separation of the metabolic fingerprints of different exercise modes or different time points was notably
stronger in serum compared to urine, as will be discussed below.

3.3. Comparison of the Metabolic Fingerprints of Different Exercise Modes

With regards to comparing the three exercise modes used in this study, it is clear that RE had the
greatest effect on the serum metabolic fingerprint, at least, as shown using this particular method,
which mainly identifies polar compounds. HIIE had a lesser effect, and CME had the weakest impact.
These results are similar to published results from the same study, where RE was the most effective of
the three exercise modes in increasing the circulating levels of irisin, an exercise myokine, immediately
after exercise [49].

In serum, results were similar to urine [42], with an even stronger separation of exercise modes at all
time points. In addition (and in contrast to urine), it was possible to separate the metabolic fingerprints
of all exercise modes in a single model, both immediately and 1 h after exercising. The reason for that
could be that any changes in metabolite levels are naturally manifested in blood first and in urine later.
Therefore, in blood we can detect the immediate responses to exercise, while in urine the more delayed
ones, after metabolites have passed from blood to urine and homeostatic/anaplerotic mechanisms have
pushed blood metabolites to baseline levels. Perhaps urine sampling at any time between the first
post-exercise urine sample (1 h after exercise), and the second one (3 h after exercise) employed in our
previous study [42] could have given an equally strong separation to that observed in serum 1 h after
exercise. That may be of importance for when designing future exercise metabolomic studies.

The three exercise modes chosen for this study design utilize the full spectrum of energy systems:
From the aerobic system, which predominates during CME, to the lactate system, which has a
considerable contribution during HIIE, to the ATP-phosphocreatine system, which, along with the
lactate system, apparently predominate during the exercise bouts in RE [50]. The separation of the
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fingerprints of the three exercise modes in this study at both post-exercise time points reflects these
differences in energy system contribution. For example, HIIE caused a larger increase in acetylcarnitine
compared to the other exercises, while RE caused a larger increase in lactate, pyruvate, hypoxanthine,
and pantothenate. During short, intense, recurrent efforts, such as in the RE and HIIE trials, there
is a high degradation of AMP in skeletal muscle, producing inosine monophosphate, inosine and
hypoxanthine in sequence. The conversion of pyruvate to alanine through the activity of alanine
aminotransferase can explain the larger increase in alanine after RE and HIIE compared to CME.
These results are generally in accordance with our findings in urine [42] and with studies by other
investigators [51–53]. Another study that investigated the effects of RE on the serum metabolome
of 10 young healthy males reported significant increases in metabolites like 2-hydroxybutyrate,
2-oxoisocaproate, 3-hydroxyisobutyrate, alanine, hypoxanthine, lactate, pyruvate, and succinate,
as well as significant decreases in isoleucine, leucine, lysine, ornithine, and valine [54].

3.4. The Response of Biomarkers of Metabolic Risk

As previously mentioned, several metabolomic studies have associated certain metabolites (mostly
in blood) with obesity, insulin resistance and MetS-related disorders. In the present study, exercise
had a significant effect on some of the most prominent among those biomarkers. In serum, BCAA,
leucine-isoleucine and norvaline-valine, decreased after HIIE and RE but not after CME. At the same
time, there was an increase in valine’s catabolic product, 2-hydroxyisovalerate. Therefore, HIIE and
RE, but not CME of the particular duration and intensity, can be prescribed for the reduction of
increased BCAA levels, which are strongly associated with insulin resistance. On the other hand,
CME was the only exercise to cause a decrease in serum alanine, which is also positively associated
with MetS-related disorders. Acetylcarnitine, an index of energy substrate oxidation, increased
immediately after both HIIE and RE, but remained increased only after HIIE. Exercise also decreased
the gut microbiota-related biomarkers of cardiometabolic risks, choline and betaine. These examples
demonstrate how exercise metabolomics could be used to tailor exercise parameters, such as exercise
mode and intensity, to achieve personalized goals for cardiometabolic risk reduction.

We were not able to collect expiratory gases during exercise to measure energy expenditure
through indirect calorimetry and substrate oxidation rates through the respiratory exchange ratio.
This is the main limitation of the study, as measuring these parameters would have facilitated a more
precise matching of the two mostly aerobic exercise trials and a better correlation of metabolite changes
with carbohydrate and lipid utilization. Instead, we matched the three exercise trials based on exercise
duration and, in the case of CME and HIIE, total workload (defined as total distance covered), which
is more applicable to everyday life. Another limitation of our study was that exercise intensity was
matched in relative terms (that is, percentage of maximal heart rate) between groups, which resulted
in lower absolute intensities for MetS, since MetS had lower maximal aerobic capacity than Healthy.
This should be taken into account when interpreting some of the results.

4. Materials and Methods

Materials and methods for this study have been previously described [42]. Briefly, twenty-three
sedentary men were divided into two groups: MetS (n = 9) and Healthy (n = 14). Participants
were assigned to the MetS group if they met at least three out of the five criteria for the metabolic
syndrome [55]. All participants provided written informed consent before entering the study, which
was approved by the institutional ethics committee (protocol number of the approval 858/16.1.13) and
was conducted in accordance with the Helsinki declaration of 1975, as revised in 2008.

Using a crossover design, all volunteers participated in four trials: REST (which served as the
control trial), HIIE, CME, and RE, as previously described [42]. After providing baseline blood samples,
participants either performed exercise in the HIIE, CME, and RE trials or remained seated and relaxed
in the REST trial. The three exercise trials were timed to end one hour after the baseline sample
collection. Blood samples were collected in each exercise trial at baseline (set as 0 h), immediately after
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exercising (1 h), and 1 h post-exercise (2 h). Blood samples were also collected at the same time points
in the REST trial.

Blood samples (8 mL) were left to clot, and then kept refrigerated, pending transport to the
laboratory, where they were centrifuged at 3000× g at 4 ◦C for 10 min. Four aliquots (~1 mL each)
of the obtained serum were stored at −80 ◦C until analysis. In addition, in the exercise trials, 2 mL
of blood was collected in EDTA tubes at baseline and immediately after exercise for hemoglobin,
and hematocrit determination to calculate plasma volume changes due to exercise. Hemoglobin
was analyzed spectrophotometrically using a commercially available kit (Spinreact, Santa Coloma,
Spain). Hematocrit was determined by the microhematocrit method [56]. Plasma volume change was
calculated based on the equation of Dill and Costill [57]. In a subgroup of five MetS and eleven Healthy
participants, plasma volume change was compared among exercise trials with a 2 (group) × 3 (trial)
ANOVA with repeated measures on trial.

Serum samples at baseline and immediately after exercise were analyzed spectrophotometrically
for lactate as described [28]. Those data were analyzed with a 2 (group)× 3 (trial)× 2 (time) ANOVA with
repeated measures on trial and time using SPSS, v. 22 (IBM, Chicago, IL). Effect sizes (ES) were calculated
as partial eta-squared. Serum samples were also assayed for glucose spectrophotometrically using a
commercially available kit (Spinreact, Santa Coloma, Spain), and insulin by enzyme immunoassay,
using a kit from IBL International (Hamburg, Germany). Serum glucose and insulin concentrations
were analyzed with a 2 (group) × 4 (trial) × 3 (time) ANOVA with repeated measures on trial and time.

All serum samples were analyzed through a targeted hydrophilic-interaction ultraperformance
liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method, as previously
described [42,58]. Serum samples were thawed and mixed just prior to processing; 200 µL was
diluted with 600 µL of cold acetonitrile-methanol 1:1 (v/v), mixed for 20 min, and centrifuged
at 15,000× g for 36 min. As an external validation of the UPLC-MS/MS analysis, lactate levels
determined by UPLC-MS/MS were correlated with those determined spectrophotometrically using
Spearman’s correlation.

For each serum metabolite measured through UPLC-MS/MS, the mean of the values at 0 h in the
four trials was used to compare baseline levels between groups. For the metabolomic analysis, the peak
area of each metabolite in the serum samples of the exercise trials was normalized to the respective value
in the REST trial to correct for batch effect and to isolate the effects of exercise from other confounding
factors, such as feeding, diurnal variation, and possible glomerular hyperfiltration associated with
obesity or pre-diabetes [59]. For the univariate analysis, a 2 (group) × 3 (exercise mode) × 3 (time)
ANOVA with repeated measures on exercise mode and time was performed on the 46 monitored
metabolites in serum. Significant main effects of exercise mode and time were followed up with post-hoc
tests using Sidak’s adjustment for multiple comparisons, whereas significant interactions were followed
up with simple main effects analysis using Sidak’s adjustment too. Multivariate statistical analysis was
performed using SIMCA 13.0 (Umetrics, Umea, Sweden) as previously described [42]. Group, exercise
mode, and time were each set as the Y variable for PLS-DA of all possible pairwise comparisons.

5. Conclusions

We have monitored the changes of 46 serum metabolites after acute bouts of three exercise modes
in men with and without MetS, using a UPLC-MS/MS-based metabolomics approach. The differences
found between exercise modes reflect differences in the predominant energy systems. The strongest
response was seen after RE, followed by HIIE, while CME’s effect was weak. Unlike in urine, where we
have previously reported a diminished response to exercise in individuals with MetS, no valid model
could separate the two groups in serum. However, exercise exerted a beneficial effect on prominent
serum biomarkers of metabolic risks, such as BCAA, alanine, acetylcarnitine, choline, and betaine.
These results add to the ongoing research efforts to map the molecular responses to exercise and to
optimize exercise guidelines for individuals at cardiometabolic risk.
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