

Supplementary materials

Cerebral vitamin B5 (D-pantothenic acid) deficiency as a potential cause of metabolic perturbation and neurodegeneration in Huntington's disease

Stefano Patassini ^{1, 4, 6}, Paul Begley ¹, Jingshu Xu ^{1, 2}, Stephanie J. Church ¹, Nina Kureishy ¹, Suzanne J. Reid ^{3, 4}, Henry J. Waldvogel ³, Richard L. M. Faull ³, Russell G. Snell ^{3, 4}, Richard D. Unwin ¹ and Garth J. S. Cooper ^{1, 2, 4, 5*}.

¹ Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, United Kingdom

² Manchester Cancer Research Centre Building, The University of Manchester, Manchester, United Kingdom

³ Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

⁴School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand

⁵ Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand

⁶ Present address: Owlstone Medical, Cambridge Science Park, Cambridge, United Kingdom

*Correspondence: garth.cooper@manchester.ac.uk

N	Status	Age	Gender	Cause of death	Grade	CAG repeats	PMD (h)	Brain Weight (g)
1	Control	42	М	Chest trauma	-	N/D	14	1403
2	Control	61	Μ	Ischaemic heart disease	-	17/19	7	1258
3	Control	72	F	Myocardial infarction	-	17/19	19	1264
4	Control	63	F	Aortic aneurysm	-	14/16	16	1324
5	Control	73	М	Ischaemic heart disease	-	17/23	13	1315
6	Control	89	М	Coronary atherosclerosis	-	17/19	19	1430
7	Control	66	М	Ischaemic heart disease	-	15/20	15	1360
8	Control	77	F	Ischaemic heart disease	-	N/D	13	1184
9	Control	81	М	Coronary atherosclerosis	-	15/18	7	1343
10	Control	43	F	Nitrogen poisoning	-	17/17	26	1318
11	Control	59	М	Aortic aneurysm	-	17/18	24.5	1490
12	Control	60	М	Ischaemic heart disease	-	10/17	17	1370
13	Control	48	М	Ischaemic heart disease	-	17/20	23	1470
14	Control	53	М	Ischaemic heart disease	-	N/D	16.5	1215
15	Control	78	F	Aortic aneurysm	-	18/19	20	1292
16	Control	56	М	Asphyxia	-	N/D	23	1358
17	Control	57	F	Carcinomatosis	-	N/D	32	1243
18	Control	41	М	Heart disease	-	N/D	16	1171
19	Control	41	М	Asphyxia	-	18/22	16	1412
20	HD	54	Μ	Pneumonia	2	20/39	6.5	1272
21	HD	67	F	Myocardial infarction	1	15/42	9	1139
22	HD	59	F	Pneumonia	4	23/47	7	787
23	HD	62	F	Pneumonia	3	17/45	11	826
24	HD	62	М	N/D	2	18/43	9	992
25	HD	83	М	Pneumonia	1	17/42	13	1168
26	HD	58	М	Pneumonia	2	28/44	14	1497
27	HD	51	М	Pneumonia	2	10/46	15	1200
28	HD	65	М	Renal failure	2	17/43	14	1224
29	HD	63	М	Pulmonary embolism	3	22/43	16	1226
30	HD	45	F	Choking	2	24/43	15	1014
31	HD	64	М	Pulmonary embolism	3	27/42	20.5	1252
32	HD	53	F	Pneumonia	2	21/47	12	961
33	HD	45	М	Pneumonia	4	20/49	18	950
34	HD	72	М	Pneumonia	1	17/41	5	1190
35	HD	53	F	Pneumonia	4	17/53	9	1010
36	HD	56	М	Pneumonia	2	16/46	16	1053
37	HD	44	М	Pneumonia	4	20/51	29	1147
38	HD	48	М	Pneumonia	3	20/45	18	1010
39	HD	64	М	Pneumonia	3	18/44	19	1250
40	HD	63	F	N/D	3	23/44	5.5	955
41	HD	51	М	Dehydration	3	17/48	15.5	1007
42	HD	71	М	Pneumonia	2	19/42	16	1259
43	HD	50	F	Pneumonia	2	16/46	20	1120
44	HD	91	F	Dehydration	2	15/40	18	869
45	HD	65	М	Pneumonia	2	18/46	6	900
46	HD	57	F	Myocardial infarction	2	17/44	19	1085
47	HD	62	М	Pulmonary embolism	0	27/41	19	1180
48	HD	43	F	Renal failure	3	21/49	3.5	970
49	HD	47	М	Myocardial infarction	3	19/51	41	1230

Supplementary Table S1. Table illustrating clinical information and metadata for the cases used in this study. Abbreviation: *PMD*, post-mortem delay; *N/D*, not declared.

Metabolites **2019**, *9*, x FOR PEER REVIEW

Group of metabolite	C	СВ		SFG			
	Fold change	p-value	Fold change	p-value			
Glucose metabolites & pentoses							
Fructose	2.5	0.0015	2.8	0.0001			
Sorbitol	2.6	0.0023	2.2	0.0426			
Glucose	1.2	0.4754	1.3	0.1602			
Glucose-6-phosphate	2.1	0.0312	3.9	0.0002			
Ribose-5-phosphate	0.8	0.1371	0.8	0.0141			
Alternative fuel source	-		1 1				
β-Hydroxybutyric acid	1.4	0.1802	1.4	0.2703			
Glycerol	0.8	0.0045	0.8	0.0577			
I hreitol	1.4	0.0057	1.5	0.0001			
Giycerol-3-phosphate	1.8	0.0049	2.5	0.0001			
Soullo inopitol	1.3	0.0447	2.3	<0.0001			
Mvo-inositol	0.0	0.2286	0.9	0.3818			
N-acetulalucosamine	0.9	0.6699	1.0	0.8770			
Ribitol	0.6	0.0013	0.8	0.0075			
Arabitol	0.8	0.0224	0.9	0.1252			
Mannitol	1.6	0.0099	1.5	0.0493			
Lactic acid	1.0	0.9306	1.1	0.7432			
Disaccharide	2.7	0.0322	0.6	0.1356			
TCA & Urea cycle and related							
Fumaric acid	1.5	0.0061	1.2	0.0510			
Citric acid	1.6	0.0181	1.1	0.3966			
Malic acid	1.4	0.0733	0.9	0.4695			
Urea	2.7	0.0008	2.7	0.0014			
Ornithine	0.5	0.0377	0.9	0.5132			
N-acetylglutamic acid	0.7	0.0088	0.8	0.0273			
Creatinine	0.8	0.1590	1.0	0.9226			
Pyruvic acid	0.9	0.5431	1.5	0.0743			
Succinic acid	0.7	0.0290	1.0	0.8449			
Amino acids							
Glycine	0.8	0.3254	0.9	0.3828			
Leucine	0.7	0.1381	1.0	0.8292			
Isoleucine	0.6	0.0019	0.7	0.1506			
Threenine	0.5	0.0004	0.8	0.0450			
Aspartic acid	0.6	0.0000	0.8	0.1207			
Methionine	0.4	0.0013	0.8	0.2702			
Pvroglutamic acid	1.0	0.9832	1.0	0.8469			
Phenylalanine	0.7	0.0989	1.2	0.2461			
Proline	0.7	0.0545	0.9	0.5670			
N-acetylaspartic acid	0.9	0.0621	0.8	0.0012			
Lysine	0.5	0.0110	1.0	0.9754			
Tyrosine	0.6	0.0183	1.2	0.4759			
Tryptophan	0.9	0.2758	1.2	0.1897			
Glutamine	1.0	0.9610	1.1	0.5474			
Alanine	0.9	0.2079	0.9	0.2331			
Beta-alanine	1.0	0.9161	1.0	0.9270			
Cysteine	0.7	0.3225	1.3	0.1305			
Valine	0.6	0.0032	0.7	0.1250			
Nucleosides			T				
Uracil	0.7	0.0010	0.8	0.0852			
Hypoxanthine	0.6	0.0001	0.8	0.0874			
GuarioSine	0.8	0.5378	N/A	N/A			
	0.0	0.7267	1.2	0.3015			
Adapina	0.9	0.7307	1.2	0.3014			
Adenosine	1.1	0.3050	ι. I Ν/Δ	0.2100 N/A			
Miscellaneous	1.1	0.7200	11/1	14/71			
Ethanolamine	0.6	0.0020	0.6	0.0009			
Phosphoric acid	0.8	0.0006	0.7	0.0004			
GABA	0.8	0.0015	0.8	0.0814			
4-hydroxybutyric acid	0.5	0.0206	1.0	0.8531			
Vitamin B5	0.5	<0.0001	0.5	<0.0001			
Glutaric acid	0.8	0.0359	0.9	0.6399			
Ethylene glycol	0.7	0.3541	0.6	0.0215			
Sugar phosphate	0.9	0.8948	7.9	<0.0001			
Gluconic acid	0.7	0.1218	1.8	0.0643			
Methyl-phosphate	1.1	0.3796	0.8	0.1991			

Supplementary Table S2. Metabolites altered in abundance across the two brain regions analysed by GC-MS. Metabolites analysed in this study are listed and illustrated as separated metabolitegroups in the table. For each compound, fold-changes are reported as HD group/control group. After being tested by multiple comparison analysis (FDR-corrected), the metabolites significantly altered in abundance in HD were highlighted. In red are listed the compounds increased in HD and in blue those that are decreased. Metabolites 2019, 9, x FOR PEER REVIEW

4	of	9

Brain	CAG size		CAG size		Vonsattel grade		Age		PMD		Brain-weight	
region	(Control)		(HD)		(only HD)							
	Spearman	p-value	Spearman	p-value	Spearman	p-value	Spearman	p-value	Spearman	p-value	Spearman	p-value
СВ	0.12	0.7100	0.17	0.3700	0.33	0.0800	-0.02	0.9100	0.10	0.4900	0.41	< 0.0050
SFG	-0.20	0.5100	-0.01	0.9600	0.20	0.3100	0.05	0.7300	0.18	0.2200	0.45	< 0.0050
PUT	0.50	0.1800	0.14	0.7200	0.11	0.8000	0.29	0.2600	-0.30	0.2300	0.18	0.4700
мстх	0.52	0.1600	-0.11	0.7900	-0.26	0.5000	0.25	0.3200	-0.20	0.4200	0.16	0.5200
SCTX	0.19	0.6300	-0.02	0.9800	-0.11	0.8000	0.08	0.7500	-0.30	0.2400	0.09	0.7200
GP	-0.15	0.7000	-0.28	0.4700	-0.34	0.3700	0.44	0.0700	-0.12	0.6400	0.23	0.3600
CG	0.51	0.1700	-0.15	0.7000	-0.24	0.5400	0.26	0.3000	-0.34	0.1800	0.29	0.2500
SN	0.10	0.8000	-0.24	0.5500	-0.24	0.5400	0.35	0.1600	-0.22	0.3900	0.41	0.1000
MFG	0.35	0.3600	0.06	0.8900	0.14	0.7200	0.08	0.7600	-0.31	0.2200	0.14	0.5900
MTG	0.23	0.5500	-0.06	0.8900	0.06	0.8800	0.18	0.4800	-0.39	0.1200	0.17	0.5100
нр	0.34	0.3700	-0.17	0.6700	0.00	>0.9999	0.35	0.1600	-0.54	0.0300	0.10	0.7100
ENT	0.20	0.6100	0.08	0.8600	0.00	>0.9999	0.12	0.6600	-0.28	0.2900	-0.08	0.7600

Supplementary Table S3. Vitamin B5 shows no correlation with multiple study-group characteristics. Table showing the Spearman's coefficients (ρ) and p-values obtained correlating vitamin B5 concentrations with different study-group characteristics. A correlation was considered significant only if ρ values >0.8 (or <-0.8) and p-values <0.01. The *HTT* CAG size of the longest allele was considered to assess potential correlations between vitamin B5 concentrations and *HTT* CAG repeats in controls and HD cases. For Vonsattel grade only HD cases were considered for correlation analyses. For age, PMD and brain-weight all the subjects included in the study were considered. No significant correlations of vitamin B5 with *HTT* CAG size, Vonsattel grade, age, PMD and brain-weight were observed in any of the brain regions analysed by GC-MS.

Supplementary Figure S1. Electron ionization (EI) spectra and calibration curves for vitamin B5 (Dpantothenic acid) derived from aqueous or human-brain-derived matrices. (A) Spectra showing EI fragmentation of analytical-grade D-pantothenic acid by GC-TOF derived from a solution in an aqueous matrix (top panel) or after addition to human-brain-extract pool (bottom panel). A library hit-matching score of 954/1000 (i.e. extremely high) was obtained by comparing the two spectra. (B) 7-point calibration curve of pure D-pantothenic acid standards. For each point, ratios of Dpantothenic acid-peak areas to corresponding internal standard areas (of citric acid-d4) were plotted against the concentrations (µmol) of the analytical-grade D-pantothenic acid standards. For each concentration, synthetic standards were run in duplicate. The excellent linearity observed (R²=0.9991) demonstrates the stability of D-pantothenic acid in our GC-MS platform. (C) Calibration curve used to determine the concentration of D-pantothenic acid in HD and control subjects. A large number of tissue samples were extracted and pooled together to obtain a matrix representative of the subjects and brain regions examined in our study. To obtain a calibration curve, increasing concentrations of analytical-grade D-pantothenic acid standards were added to a pool comprising a mixture of brainextracts. For each point, ratios of D-pantothenic acid-peak areas to corresponding internal standard areas (citric acid-d4) were plotted against the concentrations of D-pantothenic acid and expressed as µmol/kg brain tissue. On the x-axis, the value 0 corresponds to the endogenous concentration of Dpantothenic acid in the pooled brain extracts. Each concentration in the calibration curve was run in duplicate. The excellent linearity (R2=0.9951) indicates that our GC-MS assay is well suited to measure D-pantothenic acid in human brain tissue. Abbreviation: IS, internal standard.

Supplementary Figure S2. S-plots of CB and SFG brain samples were analysed by GC-MS. (**A**, **B**) For CB and SFG samples, S-plots based on covariance (p[1]) and correlation (p(corr)[1]) of the compounds belonging to the OPLS-DA were used to identify those metabolites contributing the most to the class separation observed in the model. Included in the list of most contributing were several sugars, alternative fuel sources metabolites, urea and vitamin B5

Supplementary Figure S3. Regional distribution of vitamin B5 concentrations in brain tissue illustrating lowered concentrations in cases with HD grades 0-2 compared with controls. Boxplots show distributions of individual vitamin B5 concentrations (μ mol/kg tissue) in each of twelve named brain regions of controls (green triangles) and cases with low-grade pathology (red triangles). Vitamin B5 concentrations were significantly decreased in nine out of twelve brain regions examined from these cases with low-grade disease at the time of death, which typically exhibit mild to moderate neuronal loss from affected regions. Multiple *t*-tests were applied for regional case-control contrasts in the 12 functionally-distinct brain regions. Here, the study group comprised only low-grade HD cases (n=18, grades 0-2; red triangles), and all the controls (n = 24; green triangles); boxplots are means \pm 95% CI. Abbreviations: *, p<0.05; ** <0.005, ***, <0.001; ****, <0.001.

Supplementary Figure S4. Shown is the relationship between causes of death and vitamin B5 concentrations in human brain. (**A**, **B**) Stacked barplots indicate the contribution that each region has on the cumulative distribution of vitamin B5 in brain (in μ mol/kg tissue). The bars are based on individual COD and sub-divided by acute (yellow background) or chronic (grey background) modes of death. The number of subjects (n) available for each COD reported in the study are provided in the x-axis text. COD from all HD cases and controls were included. Abbreviation: COD, cause of death.

Supplementary Figure S5. Correlation between vitamin B5 and iron in human brain. Heatmap illustrating the correlation of vitamin B5 concentrations (µmol/kg wet tissue) with Fe (µmol/kg dryweight) in individual brain regions of HD mutation-carriers and matched controls. Colours indicate the degree of correlation of vitamin B5 with the levels of Fe in controls (upper) and cases (lower). Spearman's correlation coefficient (ϱ) values are visually represented by the colour gradient scale in the bottom panel. No significant differences in co-regulation of vitamin B5 and Fe were observed in any of the brain regions examined. The statistical significance of differences in co-regulation between correlations in controls and HD groups was determined by Fisher r-to-z transformation and resulting p-values < 0.05 (two-tailed) were considered significant. Abbreviation: Fe, iron.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).