Secondary metabolites of Aeromonas veronii strain A134 isolated from a Microcystis aeruginosa bloom

Supplementary Materials

Gad Weiss¹, Dimitry Kovalerchick^{2,3}, Omer Murik¹, Assaf Sukenik⁴, Aaron Kaplan¹ and Shmuel Carmeli^{2*}

¹Plants and Environmental Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel

²Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

³Metabomed Ltd, Yavne 81220, Israel

⁴The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel

*Corresponding author: Prof. Shmuel Carmeli, Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Email: carmeli@tauex.tau.ac.il, Phone: 972 3 6408450

Table of content

- S1. Figure S1. Phylogenetic tree of *Aeromonas veronii* strain A134
- S2. Figure S2. ¹H NMR spectrum of isolated 9-chlorolumichrome (1) in DMSO-d₆
- S3. Figure S3. Positive and negative ESIMS spectra of isolated 9-chlorolumichrome (1)
- S4. Figure S4. HRESIMS of isolated 9-chlorolumichrome (1)
- S5. Figure S5. ¹H NMR spectrum of synthetic 9-chlorolumichrome (1) in DMSO- d_6
- S6. Figure S6. ¹³C NMR spectrum of synthetic 9-chlorolumichrome (1) in DMSO- d_6
- S7. Figure S7. HSQC spectrum of synthetic 9-chlorolumichrome (1) in DMSO-d₆
- S8. Figure S8. HMBC spectrum of synthetic 9-chlorolumichrome (1) in DMSO- d_6
- S9. Figure S9. COSY spectrum of synthetic 9-chlorolumichrome (1) in DMSO- d_6
- S10. Figure S10. ESIMS of synthetic 9-chlorolumichrome (1)
- S11. Crystal Structure Report and Table S1: Data collection details for synthetic 9-Chlorolumichrome (1)
- S12. Table S2. Sample and crystal data for synthetic 9-Chlorolumichrome (1)
- S13. Table S3. Data collection and structure refinement for synthetic 9-Chlorolumichrome (1)
- S14. Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for synthetic 9-Chlorolumichrome (1)
- S15. Table S5. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for synthetic 9-Chlorolumichrome (1)
- S16. Table S6. Bond angles (°) and molecular structure for synthetic 9-Chlorolumichrome (1)
- S18. Table S7. Torsion angles (°) for synthetic 9-Chlorolumichrome (1)
- S19. Table S8. Anisotropic atomic displacement parameters (Å²) for synthetic 9-Chlorolumichrome (1)
- S20. Table S9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for synthetic 9-Chlorolumichrome (1)
- S21. Figure S11.¹H NMR spectrum of veronimide (2) in DMSO-d₆
- S22. Figure S12. ¹³C NMR spectrum of veronimide (2) in DMSO-*d*₆
- S23. Figure S13. HSQC spectrum of veronimide (2) in DMSO- d_6
- S24. Figure S14. HMBC spectrum of veronimide (2) in DMSO-d₆
- S25. Figure S15. COSY spectrum of veronimide (2) in DMSO- d_6
- S26. Figure S16. HRESIMS of veronimide (2)
- S27. Figure S17. ¹H NMR spectrum of veronipyrazine (3) in DMSO-*d*₆
- S28. Figure S18. ¹³C NMR spectrum of veronipyrazine (3) in DMSO-d₆
- S29. Figure S19. HSQC spectrum of veronipyrazine (3) in DMSO- d_6
- S30. Figure S20. HMBC spectrum of veronipyrazine (3) in DMSO- d_6
- S31. Figure S21. COSY spectrum of veronipyrazine (3) in DMSO-d₆
- S32. Figure S22. HRESIMS of veronipyrazine (3)

S33. Figure S23. ¹H NMR spectrum of indole-3-glyoxylamide in DMSO-*d*₆

S34. Figure S24. ¹³C NMR spectrum of indole-3-glyoxylamide in DMSO-*d*₆

S35. Figure S25. HSQC spectrum of indole-3-glyoxylamide in DMSO-d₆

S36. Figure S26. HMBC spectrum of indole-3-glyoxylamide) in DMSO-d₆

S37. Figure S27. COSY spectrum of indole-3-glyoxylamide in DMSO-d₆

S38. Figure S28. ESIMS of indole-3-glyoxylamide

S1. Figure S1. Phylogenetic tree of Aeromonas veronii strain A134

S2. Figure S2. ¹H NMR spectrum of isolated 9-Chlorolumichrome (1) in DMSO-*d*₆

S4. Figure S4. HR ESIMS of isolated 9-Chlorolumichrome (1)

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 545 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 10-15 H: 5-15 N: 0-10 O: 0-10 23Na: 0-1 CI: 0-2 DK276.11 carmeli1037b 2 (0.104) Cm (2)

Dima

Page 1

1: TOF MS ES-

. 19 ¹

100	27	5.0356								8.01e	+002
% 	274.7043 274.8906	275.1624	275.4905	275.94	276.0428	276.4315 27	277.034	1	278.0316	278.3519 278.4873	m/z
274	4.50 275	5.00	275.50		276.00	276.50	277.00	277.50	278.00	278.50	
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	i-FIT (Nor	m) Formula				
275.0356	275.0352 275.0336 275.0370 275.0354	0.4 2.0 -1.4 0.2	1.5 7.3 -5.1 0.7	11.5 10.5 6.5 5.5	54.4 55.1 60.8 61.3	0.4 1.1 6.9 7.4	C15 H9 N2 •C12 H8 N4 C14 H14 23 C11 H13 N2	23Na Cl O2 Cl 3Na Cl2 2 O2 Cl2			

S5. Figure S5. ¹H NMR spectrum of synthetic 9-Chlorolumichrome (1) in DMSO-*d*₆

S6. Figure S6. ¹³C NMR spectrum of synthetic 9-Chlorolumichrome (1) in DMSO- d_6

f1 (ppm)

S7. Figure S7. HSQC spectrum of synthetic 9-Chlorolumichrome (1) in DMSO- d_6

S8. Figure S8. HMBC spectrum of synthetic 9-Chlorolumichrome (1) in DMSO- d_6

f1 (ppm)

S9. Figure S9. COSY spectrum of synthetic 9-Chlorolumichrome (1) in DMSO- d_6

S10. Figure S10. ESIMS of synthetic 9-Chlorolumichrome (1)

S11. Crystal Structure Report and Table S1 for synthetic 9-Chlorolumichrome (1)

A specimen of $C_{14}H_{17}CIN_4O_4$, approximate dimensions 0.120 mm x 0.220 mm x 0.279 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Table S1: Data collection details for synthetic 9-Chlorolumichrome (1)

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	37.152	-24.00	-14.51	-10.29	-46.47	0.50	288	5.00	0.71073	50	0.6	n/a
Omega	37.152	-4.00	-51.50	-229.29	99.25	0.50	67	5.00	0.71073	50	0.6	n/a
Omega	37.152	16.00	11.29	-45.17	-44.68	0.50	103	5.00	0.71073	50	0.6	n/a
Phi	37.152	18.50	11.11	-124.64	36.31	0.50	300	5.00	0.71073	50	0.6	n/a

A total of 758 frames were collected. The total exposure time was 1.05 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 10244 reflections to a maximum θ angle of 26.43° (0.80 Å resolution), of which 3140 were independent (average redundancy 3.262, completeness = 99.6%, R_{int} = 2.90%, R_{sig} = 3.53%) and 2551 (81.24%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.7076(8) Å, <u>b</u> = 21.6114(19) Å, <u>c</u> = 7.4645(5) Å, $\beta = 102.089(4)^\circ$, volume = 1531.3(2) Å³, are based upon the refinement of the XYZ-centroids of 160 reflections above 20 $\sigma(I)$ with 9.395° < $2\theta < 45.88^\circ$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.905. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9270 and 0.9680.

The final anisotropic full-matrix least-squares refinement on F² with 219 variables converged at R1 = 3.82%, for the observed data and wR2 = 10.53% for all data. The goodness-of-fit was 1.038. The largest peak in the final difference electron density synthesis was 0.282 e⁻/Å³ and the largest hole was -0.234 e⁻/Å³ with an RMS deviation of 0.056 e⁻/Å³. On the basis of the final model, the calculated density was 1.478 g/cm³ and F(000), 712 e⁻.

1 9	•					
Identification code	car1					
Chemical formula	$C_{14}H_{17}ClN_4O_4$					
Formula weight	340.76 g/mol					
Temperature	110(2) K					
Wavelength	0.71073 Å					
Crystal size	0.120 x 0.220 x 0.279 mm					
Crystal system	monoclinic					
Space group	P 1 21/c 1					
Unit cell dimensions	a = 9.7076(8) Å	$\alpha = 90^{\circ}$				
	b = 21.6114(19) Å	$\beta = 102.089(4)^{\circ}$				
	c = 7.4645(5) Å	$\gamma = 90^{\circ}$				
Volume	1531.3(2) Å ³					
Z	4					
Density (calculated)	1.478 g/cm ³					
Absorption coefficient	0.276 mm ⁻¹					
F(000)	712					

S12. Table S2. Sample and crystal data for synthetic 9-Chlorolumichrome (1)

Theta range for data collection	1.89 to 26.43°					
Index ranges	-10<=h<=12, -25<=h	K<=27, -9<=1<=9				
Reflections collected	10244					
Independent reflections	3140 [R(int) = 0.029	0]				
Coverage of independent reflections	99.6%	99.6%				
Absorption correction	multi-scan	multi-scan				
Max. and min. transmission	0.9680 and 0.9270	0.9680 and 0.9270				
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²				
Refinement program	SHELXL-2014/7 (Sł	SHELXL-2014/7 (Sheldrick, 2014)				
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$				
Data / restraints / parameters	3140 / 0 / 219					
Goodness-of-fit on F ²	1.038					
Δ/σ_{max}	0.001					
Final R indices	2551 data; I>2σ(I)	R1 = 0.0382, wR2 = 0.0975				
	all data	R1 = 0.0504, wR2 = 0.1053				
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.049) where P=(F_o^2 +2 F_c^2)/2	0P) ² +0.7914P] 3				
Largest diff. peak and hole	0.282 and -0.234 eÅ ⁻	-3				
R.M.S. deviation from mean	0.056 eÅ ⁻³					

S13. Table S3. Data collection and structure refinement for synthetic 9-Chlorolumichrome (1)

	x/a	y/b	z/c	U(eq)
C11	0.99836(5)	0.38647(2)	0.95818(6)	0.02139(15)
01	0.27328(14)	0.20497(6)	0.17563(19)	0.0239(3)
O2	0.11560(13)	0.06025(6)	0.06577(17)	0.0195(3)
O3	0.68848(13)	0.07226(6)	0.67738(18)	0.0224(3)
O4	0.44238(15)	0.13875(7)	0.43793(19)	0.0254(3)
N1	0.03287(15)	0.15559(7)	0.9780(2)	0.0151(3)
N2	0.70255(15)	0.20098(7)	0.68015(19)	0.0154(3)
N3	0.94721(15)	0.25409(7)	0.90117(19)	0.0153(3)
N4	0.90119(15)	0.06744(7)	0.87362(19)	0.0157(3)
C1	0.2772(2)	0.26968(9)	0.2124(3)	0.0250(5)
C2	0.02245(18)	0.09305(8)	0.9775(2)	0.0148(4)
C3	0.92853(18)	0.19384(8)	0.8834(2)	0.0131(4)
C4	0.80595(18)	0.16716(8)	0.7733(2)	0.0147(4)
C5	0.71752(19)	0.26336(8)	0.6954(2)	0.0153(4)
C6	0.60866(19)	0.30222(9)	0.6025(2)	0.0178(4)
C7	0.6178(2)	0.36502(9)	0.6192(2)	0.0194(4)
C8	0.4977(2)	0.40526(10)	0.5238(3)	0.0253(5)
C9	0.84043(18)	0.28974(9)	0.8071(2)	0.0146(4)
C10	0.84782(19)	0.35509(9)	0.8203(2)	0.0172(4)
C11	0.7409(2)	0.39298(9)	0.7310(2)	0.0185(4)
C12	0.79037(18)	0.09888(9)	0.7665(2)	0.0160(4)
C13	0.7485(2)	0.46227(9)	0.7512(3)	0.0263(5)
C14	0.3742(2)	0.08436(10)	0.4811(3)	0.0259(5)

S14. Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$) for synthetic 9-Chlorolumichrome (1) U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

		v	
S15. Table S5.	Atomic coordinates	s and equivalent is	sotropic atomic displacement parameters (Å ²) for synthetic 9-Chlorolumichrome (1
Cl1-C10	1.7393(19)	01-C1	1.424(2)
O1-H1	0.80(2)	O2-C2	1.227(2)
O3-C12	1.215(2)	O4-C14	1.419(2)
O4-H14	0.79(3)	N1-C2	1.355(2)
N1-C3	1.381(2)	N1-H13	0.88
N2-C4	1.316(2)	N2-C5	1.358(2)
N3-C3	1.317(2)	N3-C9	1.363(2)
N4-C12	1.378(2)	N4-C2	1.382(2)
N4-H6	0.88	C1-H2	0.98
С1-Н3	0.98	C1-H4	0.98
C3-C4	1.419(2)	C4-C12	1.483(3)
C5-C6	1.413(2)	C5-C9	1.424(2)
C6-C7	1.364(3)	C6-H7	0.95
C7-C11	1.439(3)	C7-C8	1.508(3)
C8-H5	0.98	С8-Н9	0.98
C8-H8	0.98	C9-C10	1.417(3)
C10-C11	1.379(3)	C11-C13	1.505(3)
C13-H10	0.98	C13-H11	0.98
С13-Н12	0.98	C14-H17	0.98
C14-H16	0.98	C14-H15	0.98

1)

x/a

y/b

z/c

U(eq)

C1-O1-H1	108.9(18)	C14-O4-H14	112.2(19)
C2-N1-C3	123.30(15)	C2-N1-H13	118.4
C3-N1-H13	118.4	C4-N2-C5	116.78(16)
C3-N3-C9	115.67(15)	C12-N4-C2	126.70(16)
C12-N4-H6	116.7	C2-N4-H6	116.7
O1-C1-H2	109.5	01-С1-Н3	109.5
H2-C1-H3	109.5	O1-C1-H4	109.5
H2-C1-H4	109.5	H3-C1-H4	109.5
O2-C2-N1	121.91(16)	O2-C2-N4	121.01(17)
N1-C2-N4	117.08(15)	N3-C3-N1	117.98(16)
N3-C3-C4	122.74(16)	N1-C3-C4	119.28(16)
N2-C4-C3	122.31(17)	N2-C4-C12	118.25(16)
C3-C4-C12	119.42(16)	N2-C5-C6	119.55(16)
N2-C5-C9	120.55(16)	C6-C5-C9	119.88(17)
C7-C6-C5	121.26(18)	С7-С6-Н7	119.4
С5-С6-Н7	119.4	C6-C7-C11	120.08(17)
C6-C7-C8	120.08(18)	C11-C7-C8	119.83(17)
С7-С8-Н5	109.5	С7-С8-Н9	109.5
Н5-С8-Н9	109.5	С7-С8-Н8	109.5
Н5-С8-Н8	109.5	Н9-С8-Н8	109.5
N3-C9-C10	120.40(16)	N3-C9-C5	121.95(17)
C10-C9-C5	117.64(16)	C11-C10-C9	122.44(17)
C11-C10-Cl1	120.56(15)	C9-C10-C11	116.99(14)
C10-C11-C7	118.70(17)	C10-C11-C13	121.75(18)

S16. Table S6. Bond angles (°) and molecular structure for synthetic 9-Chlorolumichrome (1)

119.54(17)	O3-C12-N4	122.10(17)
123.74(16)	N4-C12-C4	114.15(15)
109.5	С11-С13-Н11	109.5
109.5	С11-С13-Н12	109.5
109.5	H11-C13-H12	109.5
109.5	O4-C14-H16	109.5
109.5	O4-C14-H15	109.5
109.5	H16-C14-H15	109.5
	119.54(17) 123.74(16) 109.5 109.5 109.5 109.5 109.5 109.5	119.54(17)O3-C12-N4123.74(16)N4-C12-C4109.5C11-C13-H11109.5C11-C13-H12109.5H11-C13-H12109.5O4-C14-H16109.5O4-C14-H15109.5H16-C14-H15

C3-N1-C2-O2	-178.48(16)	C3-N1-C2-N4	1.1(3)
C12-N4-C2-O2	-178.84(16)	C12-N4-C2-N1	1.6(3)
C9-N3-C3-N1	-179.15(15)	C9-N3-C3-C4	0.3(2)
C2-N1-C3-N3	176.70(16)	C2-N1-C3-C4	-2.7(3)
C5-N2-C4-C3	-0.6(2)	C5-N2-C4-C12	177.33(15)
N3-C3-C4-N2	0.4(3)	N1-C3-C4-N2	179.82(15)
N3-C3-C4-C12	-177.52(15)	N1-C3-C4-C12	1.9(2)
C4-N2-C5-C6	-178.42(15)	C4-N2-C5-C9	0.2(2)
N2-C5-C6-C7	177.83(16)	C9-C5-C6-C7	-0.8(3)
C5-C6-C7-C11	0.9(3)	C5-C6-C7-C8	-177.81(16)
C3-N3-C9-C10	178.33(16)	C3-N3-C9-C5	-0.7(2)
N2-C5-C9-N3	0.5(3)	C6-C5-C9-N3	179.10(16)
N2-C5-C9-C10	-178.57(16)	C6-C5-C9-C10	0.1(2)
N3-C9-C10-C11	-178.43(16)	C5-C9-C10-C11	0.6(3)
N3-C9-C10-C11	0.7(2)	C5-C9-C10-Cl1	179.71(12)
C9-C10-C11-C7	-0.6(3)	Cl1-C10-C11-C7	-179.62(13)
C9-C10-C11-C13	178.05(17)	Cl1-C10-C11-C13	-1.0(2)
C6-C7-C11-C10	-0.2(3)	C8-C7-C11-C10	178.50(17)
C6-C7-C11-C13	-178.85(17)	C8-C7-C11-C13	-0.1(3)
C2-N4-C12-O3	178.90(17)	C2-N4-C12-C4	-2.3(3)
N2-C4-C12-O3	1.2(3)	C3-C4-C12-O3	179.26(17)
N2-C4-C12-N4	-177.59(15)	C3-C4-C12-N4	0.4(2)

S18. Table S7. Torsion angles (°) for synthetic 9-Chlorolumichrome (1)

The a	nisotropic atomic	displacement fac	tor exponent takes	s the form: $-2\pi^2$ [h ² a	*2 U ₁₁ + + 2 h k a	* b* U ₁₂]
	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
C11	0.0230(3)	0.0137(3)	0.0268(3)	-0.00094(18)	0.00365(19)	-0.00206(18)
01	0.0226(7)	0.0158(7)	0.0279(8)	0.0028(6)	-0.0075(6)	-0.0016(6)
O2	0.0186(7)	0.0117(7)	0.0249(7)	0.0008(5)	-0.0025(5)	0.0024(5)
03	0.0187(7)	0.0167(7)	0.0285(7)	-0.0020(6)	-0.0029(6)	-0.0020(5)
O4	0.0208(7)	0.0255(8)	0.0261(8)	0.0056(6)	-0.0039(6)	-0.0032(6)
N1	0.0137(7)	0.0111(8)	0.0188(8)	-0.0001(6)	-0.0007(6)	-0.0012(6)
N2	0.0167(7)	0.0145(8)	0.0154(7)	0.0007(6)	0.0043(6)	0.0016(6)
N3	0.0173(8)	0.0126(8)	0.0168(8)	0.0012(6)	0.0054(6)	0.0015(6)
N4	0.0179(8)	0.0079(8)	0.0201(8)	-0.0002(6)	0.0014(6)	0.0002(6)
C1	0.0279(11)	0.0201(11)	0.0249(10)	-0.0022(8)	0.0007(8)	-0.0001(8)
C2	0.0156(9)	0.0138(10)	0.0150(8)	-0.0004(7)	0.0031(7)	0.0001(7)
C3	0.0138(8)	0.0127(9)	0.0142(8)	0.0010(7)	0.0059(7)	0.0021(7)
C4	0.0133(8)	0.0162(10)	0.0153(8)	0.0003(7)	0.0047(7)	0.0009(7)
C5	0.0180(9)	0.0160(10)	0.0141(8)	0.0018(7)	0.0082(7)	0.0024(7)
C6	0.0186(9)	0.0182(10)	0.0169(9)	0.0023(7)	0.0046(7)	0.0029(7)
C7	0.0224(10)	0.0207(11)	0.0173(9)	0.0044(8)	0.0088(8)	0.0063(8)
C8	0.0271(11)	0.0207(11)	0.0277(11)	0.0067(8)	0.0048(9)	0.0079(8)
C9	0.0175(9)	0.0137(9)	0.0144(8)	0.0018(7)	0.0074(7)	0.0018(7)
C10	0.0202(9)	0.0165(10)	0.0165(9)	-0.0002(7)	0.0073(7)	0.0008(8)
C11	0.0256(10)	0.0154(10)	0.0176(9)	0.0029(7)	0.0118(8)	0.0045(8)
C12	0.0145(9)	0.0154(10)	0.0185(9)	0.0004(7)	0.0043(7)	0.0003(7)
C13	0.0364(12)	0.0158(11)	0.0276(10)	0.0029(8)	0.0089(9)	0.0061(9)
C14	0.0227(10)	0.0229(11)	0.0291(11)	0.0028(9)	-0.0011(8)	-0.0012(8)

S19. Table S8. Anisotropic atomic displacement parameters $(Å^2)$ for synthetic 9-Chlorolumichrome (1)

S20. Table S9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for synthetic 9-Chlorolumichrome (1)

	x/a	y/b	z/c	U(eq)
H1	0.328(3)	0.1879(12)	0.255(3)	0.036
H14	0.516(3)	0.1440(12)	0.505(4)	0.038
H13	1.1100	0.1727	1.0417	0.018
H6	0.8940	0.0269	0.8762	0.019
H2	0.2663	0.2767	0.3384	0.037
H3	0.2003	0.2902	0.1271	0.037
H4	0.3676	0.2867	0.1970	0.037
H7	0.5275	0.2843	0.5269	0.021
H5	0.4204	0.3790	0.4601	0.038
H9	0.5301	0.4320	0.4349	0.038
H8	0.4645	0.4309	0.6145	0.038
H10	0.6861	0.4758	0.8313	0.039
H11	0.7187	0.4816	0.6305	0.039
H12	0.8455	0.4746	0.8049	0.039
H17	0.4392	0.0492	0.4901	0.039
H16	0.2909	0.0763	0.3845	0.039
H15	0.3455	0.0900	0.5983	0.039

S21. Figure S11. ¹H NMR spectrum of veronimide (2) in DMSO-*d*₆

S22. Figure S12. ¹³C NMR spectrum of veronimide (2) in DMSO- d_6

S23. Figure S13. HSQC spectrum of veronimide (2) in DMSO- d_6

S24. Figure S14. HMBC spectrum of veronimide (2) in DMSO- d_6

S25. Figure S15. COSY spectrum of veronimide (2) in DMSO- d_6

S26. Figure S16. HRESIMS of veronimide (2)

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 2.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 309 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-20 H: 0-30 N: 0-5 O: 0-10 Na: 0-1 1: TOF MS ES+ CARMELI1139 6 (0.280) Cm (5:6) Dima Kovalerchik 2.00e+004 249.1211 100-% 250,1280 248.9389 249.9393 256.3014 257.0212 257.3633 258.0157 252.8075253.0695 251.1306 245.0777 246.1597 247.1337 255.0495 254.0708 0-245.0 247.0 248.0 257.0 246.0 251.0 255.0 256.0 249.0 250.0 252.0 253.0 254.0 258.0 -1.5 50.0 Minimum: 2.0 8000.0 Maximum: Calc. Mass Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 249.1211 249.1215 -0.4-1.6 3.5 328.5 0.1 C11 H18 N2 O3 Na 249.1199 1.2 4.8 2.5 331.1 2.7 C8 H17 N4 O5

S27. Figure S17. ¹H NMR spectrum of veronipyrazine (**3**) in DMSO-*d*₆

S28. Figure S18. ¹³C NMR spectrum of veronipyrazine (**3**) in DMSO-*d*₆

S29. Figure S19. HSQC spectrum of veronipyrazine (3) in DMSO- d_6

S30. Figure S20. HMBC spectrum of veronipyrazine (3) in DMSO-*d*₆

S31. Figure S21. COSY spectrum of veronipyrazine (3) in DMSO- d_6

S32. Figure S22. HRESIMS of veronipyrazine (3)

_iemental	Composition F	Report									P	age 1
Single Ma: Tolerance = Element pre Number of is	ss Analysis 10.0 mDa / DB diction: Off sotope peaks use	E: min = -1	1.5, max = 50 = 3	0.0								
Monoisotopic 265 formula(e Elements Use	Mass, Even Electro e) evaluated with 13 ed:	on lons results with	in limits (up to	o 5 best is	otopic matches	for each mass)						
C: 1-20 H: 1: TOF MS ES CARMELI1135	1-40 N: 0-10 b 184 (7.000) Cm (18	O: 0-10 M 4:188)	Na: 0-1			Dima Kovalero	hik				2.5	i5e+004
100		185.0	718									
-			105 1553 10		18	6.0793					400.0000 400.00	
011	184.5639_184.7834_18 184.50	4.8686 185.00	185.1557 18	5.3663 185. 185.50	6772185.8770 186.0	186.2063 1	86.4980 186.50	186.863	6 187.0802 187.00	187.3801 187.7170 187. 187.50	8668 188.0222 188.27 188.00	m/z
Minimum: Maximum:		10.0	8000.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	i-FIT (Norr	n) Formula					
185.0718	185.0715 185.0691 185.0790 185.0803 185.0814	0.3 2.7 -7.2 -8.5 -9.6	1.6 14.6 -38.9 -45.9 -51.9	8.5 5.5 0.5 5.5 3.5	194.5 197.4 198.7 198.5 197.0	0.2 3.0 4.4 4.2 2.7	*C11 H9 C9 H10 C7 H14 C8 H10 C9 H13	N2 (N2 (04 1 N4 1 04	O Na Na Na			

S33. Figure S23. ¹H NMR spectrum of indole-3-glyoxylamide in DMSO-*d*₆

S34. Figure S24. ¹³C NMR spectrum of indole-3-glyoxylamide in DMSO-*d*₆

S36. Figure S26. HMBC spectrum of indole-3-glyoxylamide) in DMSO-d₆

S37. Figure S27. COSY spectrum of indole-3-glyoxylamide in DMSO-d₆

S38. Figure S28. ESIMS of indole-3-glyoxylamide

