### <sup>1</sup> S1: Simulating biologically relevant metabolic networks

An important factor in generating random biological networks is the distribution of the connectivity. Biological networks follow a power law distribution [1], therefore it is important to maintain this property in the simulated networks. The Barabási-Albert model [2] allows the construction of networks with the appropriate distribution (Fig S1). Note that it is important to inspect the network connectivity matrix for the following properties:

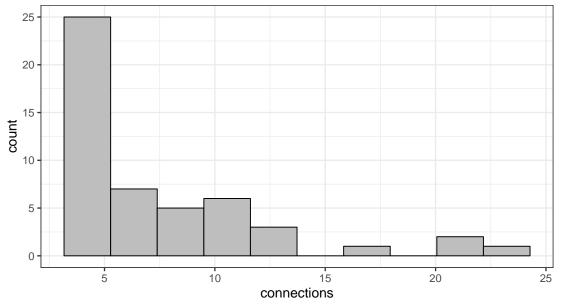
- 7 1. asymmetry: the network matrix cannot be symmetric with respect to the main diagonal, this
- <sup>8</sup> would imply that every two metabolites that are connected, are connected in both directions.
- This is not the case in a biological network.

2. non-triangularity: if the network matrix exhibits a triangular shape (lower or upper triangularity),

then certain nodes (metabolites) have a larger probability of having many connections. When simulating many networks this would result in, for example, metabolite A having the most connections in most of the simulations. This is non beneficial to the randomness of the

<sup>14</sup> generated metabolic networks. If a triangular matrix has the correct power-law distribution, the

triangularity problem can be solved by randomly shuffling columns or rows.



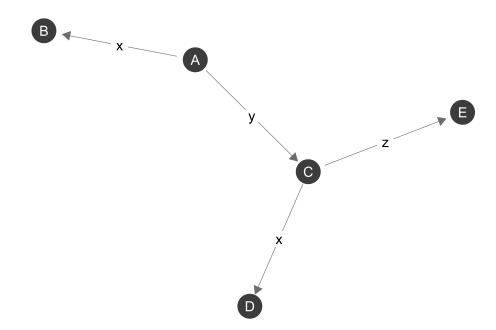
# Barabási–Albert network connectivity

**Figure S1. Generated biological network connectivity.** The network generated with the Barabási-Albert algorithm exhibits a connectivity distribution according to a power law.

| Parameter                      | Value | Description                                                                                                                         |
|--------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| Nreplicates                    | 3     | The number of replicates for each sample. For each replicate the starting concentrations are different but the network is the same. |
| Nmetabos                       | 50    | The number of metabolites/nodes in the network                                                                                      |
| dt                             | 0.001 | The time step (taken sufficiently small for the Euler approximation to hold).                                                       |
| tmax                           | 2.1   | The end time.                                                                                                                       |
| start_concentration            | 100   | The starting concentration of each metabolite without noise.                                                                        |
| max_abs_concentration_noise    | 10    | The maximal absolute value of the noise that is added to starting concentration. Set at 1/10th of start_concentration.              |
| influx_tmax                    | 0.5   | The time point at which the influx (if present) stops.                                                                              |
| N_influx                       | 10    | The number of metabolites that receive an influx.                                                                                   |
| Neg_ctrl_protein_factor_strong | 0.01  | The factor by which the rates are multiplied in the case of a "no influx, no enzymes" simulation (Fig <b>??</b> ).                  |
| Neg_ctrl_protein_factor_weak   | 0.5   | The factor by which the rates are multiplied in the case of a "no influx, little enzymes" simulation (Fig <b>??</b> ).              |
| Neg_ctrl_protein_fraction      | 0.5   | The fraction of enzymes that receive the strong negative control protein factor.                                                    |
| BApower                        | 0.5   | Parameter of the Barabási-Albert graph model generator from the igraph R package [3]: The power of the preferential attachment      |
| BA_mValue                      | 4     | Parameter of the Barabási-Albert graph model generator from the igraph R package: the number of edges to add in each time step      |

# Table S1. Simulation parameters.

- <sup>16</sup> S2: Dynamics of a metabolic network, the mathematics of change over time
- <sup>17</sup> For the example the following small network <sup>1</sup> is used:



**Figure S2. Metabolomic network example.** Nodes are metabolites and the edges represent flow between metabolites. These flows are rates based on concentrations of enzymes.

<sup>18</sup> The nodes represent metabolites, A, B, C, etc. that have certain concentrations denoted as A, B,

<sup>19</sup> *C* respectively. These concentrations evolve based on the enzymes x, y and z. These are effectively

the rates that govern the flow and are denoted as x, y and z respectively. Thus, the evolution of the

<sup>21</sup> concentration over time can be written according to the following ordinary differential equations:

$$\frac{dA}{dt} = -(x+y)A$$
$$\frac{dB}{dt} = xA$$
$$\frac{dC}{dt} = yA - (x+z)C$$
$$:$$

To numerically solve these equations the Euler approximation is used by substituting the following finite difference scheme into the equations for the metabolic network

$$\frac{\mathrm{d}f}{\mathrm{d}t} \approx \frac{f(t+\delta t) - f(t)}{\delta t}$$

by writing  $f(t + \delta t)$  in the following shorthand notation  $f_{t+\delta t}$  we obtain the following

<sup>&</sup>lt;sup>1</sup> Visualized with the ggnet R package.

$$\frac{A_{t+\delta t} - A_t}{\delta t} = -(x+y)A_t$$
$$\frac{B_{t+\delta t} - B_t}{\delta t} = xA_t$$
$$\frac{C_{t+\delta t} - C_t}{\delta t} = yA_t - (x+z)C_t$$
$$:$$

Reworking this gives the final result for the state of the network at time point  $t + \delta t$  in function of the state at time point t

$$A_{t+\delta t} = -\delta t(x+y)A_t + A_t$$
  

$$B_{t+\delta t} = \delta t x A_t + B_t$$
  

$$C_{t+\delta t} = \delta t(yA_t - (x+z)C_t) + C_t$$
  

$$\vdots$$

<sup>27</sup> When choosing  $\delta t$  sufficiently small the Euler approximation is valid. As mentioned in the <sup>28</sup> manuscript, the rates are influenced by the concentration of metabolites. Specifically, when the <sup>29</sup> concentration of a metabolite increases, the rates that deplete that metabolite will also increase, up to a <sup>30</sup> certain maximum. The sigmoid function is suited to this behavior, for example, the equation governing <sup>31</sup> the evolution of rate y is

$$y(A_t) = \frac{y^{max}}{1 + \exp[-k(A_t - A_0 - c)]}$$

with c a parameter that needs to be set according to the following equation

$$c = \frac{\ln(y^{max} - 1)}{k}$$

This parameter shifts the sigmoid function so that the value is 1 at the starting concentration  $y^{max}$ .

S4 of S13

# <sup>34</sup> S3: Multiple testing correction problem for EDGE and metabolomics

A critical note on p-values and multiple testing correction has to be made. EDGE performs a 35 test for an improvement in model performance. This is effectively a one-sided test i.e. the full model 36 with two curves performs better than the null model with 1 curve. Large numbers of these one-sided 37 tests can result in a bimodal p-value distribution. Such a bimodal p-value distribution can prevent 38 the adequate application of the often used FDR correction, as it uses the distribution of the p-values 39 to estimate the  $\pi_0$  value (proportion of true nulls), and this distribution is assumed to be roughly 40 uniform in the high p-value region [5]. With regard to bimodal p-values, such a distribution can 41 further be caused by a large number of features without any difference between sample classes, This 42 can often occur in biological experiments as large numbers of (uninformative) features are measured. 43 In this case, the bimodal distribution problem can be solved by either removing these features or by 44 applying surrogate variable analysis techniques, which can also be used to remove batch effects and 45 other unwanted variation. 46

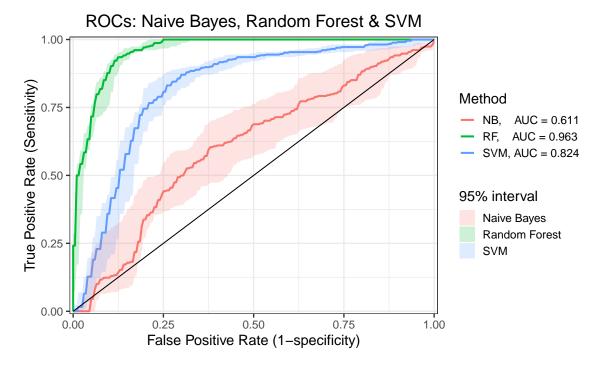
# 47 S4: Performance comparison of machine learning models.

To find the optimal machine learning model for the longitudinal metabolomics data the predictive
 performance was evaluated on the external tinderesting data as discussed in the main manuscript. The
 compared models are:

- 1. a random forest with 500 trees, 8 variables sampled at each split, minimum size of terminal node
- <sup>52</sup> 1, sampling with replacement (the default parameters from the randomForest R package [6]),
- a support vector machine with a radial basis kernel (rest of parameters are default from e1071 R
   package)
- 3. a naive Bayes classifier (default e1071 R package parameters, no priors set).

The performance of the three classifiers was compared in a 10 fold cross validation setup, each repeated 20 times with different folds (to get an estimate of the ROC curve variability). The results are visualized in Fig S3. The random forest model consistently outperforms the SVM and naive Bayes classifier<sup>2</sup>. The code to run these models and obtain similar plots is available in the MetaboMeeseeks R package [7]. For completeness, the Precison-Recall plot of the Random forest model is plotted in Fig S4. The random forest model trained with this simulated data is used to compare to the EDGE model.

<sup>62</sup> This is to avoid overfitting on the data and to allow a fair comparison between EDGE and tinderesting.



**Figure S3. ROC curves for random forest, SVM and naive Bayes classifiers.** Classifier performance is represented with the respective receiver-operator-characteristics. Comparing the area under the ROC curves (AUC values) justifies the choice for the random forest classifier.

<sup>&</sup>lt;sup>2</sup> The SVM and naive Bayes model are implemented with the e1071 R package.

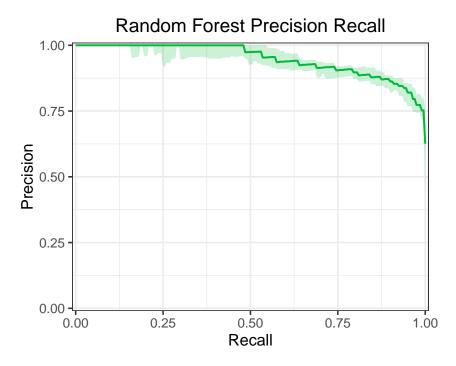


Figure S4. Precision-Recall curve for the random forest classifier.

# 63 S5: Shiny app and user interaction

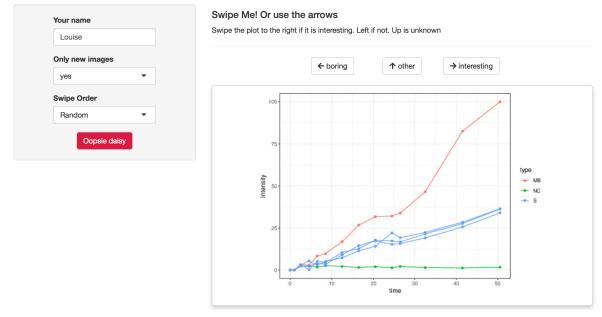
To review the quality of the significant features and to train the machine learning model, we

constructed a Shiny web app called tinderesting. Shiny is an R package to produce such interactive

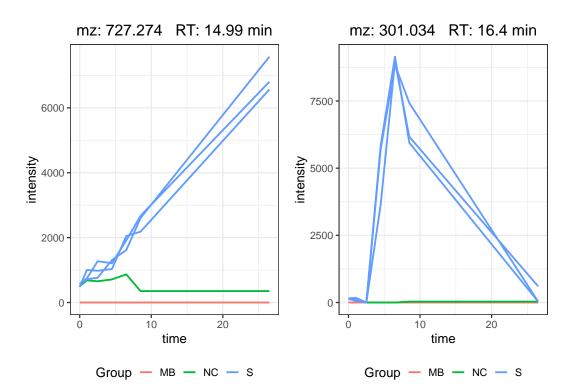
web apps that require little effort to construct and can easily be run on a server. The app queries the
user for the quality of features, and uses these results to build a model in the background (Fig S5). All

responses are stored in an SQLite database for straightforward storage and access.

# This is the tinderesting template.



**Figure S5. Visualization of the full tinderesting app.** The user selects the subset of the data on the left hand side, the selected subset is visualized. Next, features appear on the right hand side that need reviewing by the expert. The results are logged at the bottom of the app and simultaneously stored in an SQL database.

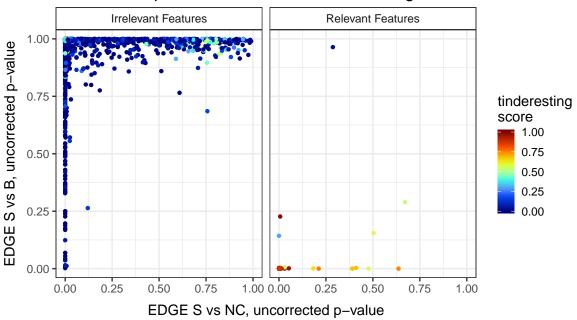


# 69 S6: Examples of actual dynamic metabolomics data

**Figure S6. Two examples from a dynamic metabolomics experiment.** Visualization of two features from the processed LC-MS dataset [4]. The sample class (S) shows different behavior over time compared to the other classes (MB = method blank, NC = negative control). Left, a biotransformation product is formed in the sample class and right, a biotransformation product is initially formed, followed by a further biotransformation.

# 70 S7: Extra visualization of tinderesting results

The vizualization in Fig S7 does not fully grasp the results as many features are plotted on top of 71 each other, for example in the bottom left corner of the right plot. A dot is depicted for each irrelevant 72 feature (left) or relevant feature (right). The colour of this dot represents the tinderesting score and the 73 uncorrected p-values from EDGE are plotted on the x and y positions: sample (S) vs negative control 74 (NC) and sample (S) vs blank (B) respectively. Overall, uninteresting features have low tinderesting 75 scores and interesting ones have high scores. Also note that the irrelevant features are spread out over 76 the y axis as the EDGE model for sample vs negative control model underperforms overall. Most of the 77 relevant features are plotted on top of each other making it difficult to observe the actual tinderesting 78 score 79



# Comparison of EDGE with tinderesting

**Figure S7. Feature scores of EDGE and tinderesting.** Overall, the irrelevant features have a low tinderesting score (blue colour), and the relevant ones generally have a high score (red). The EDGE comparison of sample vs blank exhibits mostly very low (uncorrected) p-values for the relevant features. The (uncorrected) p-values of the EDGE sample vs negative control comparison are more spread out, which is consistent with the results of the performance comparison.

#### 80 S8: Experimental validation dataset

A gastrointestinal model developed by Breynaert et al. [8] and adapted by Peeters et al. [4] was 81 used to study the biotransformation of quercetin, one of the most abundant flavonoids found in plants. 82 Details of the gastrointestinal model can be found in Peeters et al [4] including the experimental setup. 83 Three sample classes were biotransformed in the gastrointestinal model consisting of stomach, small 84 intestine and colon: sample, negative control and blank. The sample class contains quercetin and gut 85 bacteria for biotransformation of the compounds were added during the colon phase. The negative 86 control class contains the quercetin compounds but no bacteria. The blank sample contains bacteria 87 but no quercetin. The objective is to find the metabolites that form after biotransformation of quercetin. 88 Specifically, the time profile of the sample class should be different from both blank and negative 89 control. 90

91

<sup>92</sup> The experiments were performed on a Waters Xevo G2-XS QTOF instrument (accurate mass).

<sup>93</sup> Specific liquid chromatography and mass spectrometry settings and other experimental details can

<sup>94</sup> be found in Peeters et al. [4] as the exact same settings were used to for this quercetin experiment.

<sup>95</sup> Because the Waters Lockspray<sup>TM</sup> was used in the experiment, the files were converted to the open

source mzXML format with the msConvert tool from ProteoWizard [9]. Because the Waters lockspray

<sup>97</sup> technique was used, the method of Stanstrup et al. [10] was used to remove the lockspray runs. Next

<sup>98</sup> XCMS [11] was used for pre-processing the open source data files to obtain a matrix ready for further

<sup>99</sup> data analysis. Specifically the centWave function was used for peak-picking followed by grouping

with the density method and finally peak-filling, see Table S2 for the parameter settings. The final data

<sup>101</sup> matrix contained 70 samples and 17793 features.

| Table S2. | XCMS | pre-processing parameter settings |
|-----------|------|-----------------------------------|
|           |      |                                   |

| function | parameter | value      |
|----------|-----------|------------|
| xcmsSet  | method    | "centWave" |
|          | ppm       | 10         |
|          | peakwidth | c(5,25)    |
|          | mzdiff    | 0.01       |
|          | prefilter | c(3,5000)  |
|          | integrate | 1          |
|          | snthresh  | 10         |
|          | noise     | 1000       |
| group    | method    | "density"  |
|          | bw        | 5          |
|          | mzwid     | 0.015      |
|          | minfrac   | 0.20       |
|          | max       | 100        |
|          | minsamp   | 2          |

After the pre-processing steps an initial EDGE analysis was performed to find a subset of the 102 data for expert revision. This step is not strictly necessary but it aides in reducing the amount of 103 irrelevant features to be reviewed by the expert. Usually there will be a class imbalance towards the 104 uninteresting features. An initial EDGE filtering can reduce this imbalance. The p-value thresholds for 105 both EDGE analysis (sample vs blank and sample vs negative control) was set at 0.25. This resulted in 106 507 out of 17793 features to be reviewed by the expert. This resulted in 423 uninteresting features, 79 107 interesting features and 5 for which the reviewer was uncertain. Although an initial EDGE analysis was 108 performed there is still a majority of uninteresting features. We can now use these expert-rated data as 109 a validation dataset for the overall tinderesting approach. In Fig S8 the performance of tinderesting is 110 illustrated by performing 10-fold cross validation on the expert-rated dataset. In each cross validated 111 loop a random forest model is trained with the informed default parameters of the randomForest R 112

package [12]. The performance indicates that the model is capable to reproduce the expert labelling in
 most cases. Although the performance is lower than for the simulated dynamic data case but this is
 not uproductic because experimental data is more diverse than simulated data

not unrealistic because experimental data is more diverse than simulated data.

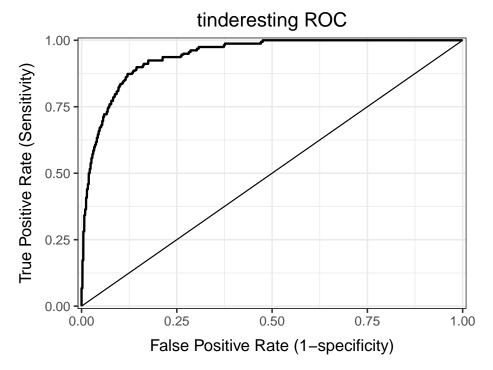


Figure S8. ROC curve for tinderesting on expert-reviewed experimental data.

### **116** Supporting references

- Jeong H.; Tombor B.; Albert R.; Oltvai Z.N.; Barabási A.L.; The large-scale organization of metabolic networks.
   *Nature* 2000, 407(6804), 651–654
- 2. Barabási A.L.; Albert A.; Emergence of scaling in random networks. Science 1999, 286(5439), 509–512
- Csardi G.; Nepusz T.; The igraph software package for complex network research. *InterJournal, Complex Systems* 2006, 1695(5), 1–9.
- Peeters L.; Beirnaert C.; Van der Auwera A.; Bijttebier S.; Laukens K.; Pieters L.; Hermans N.; Foubert
   K.; Revelation of the metabolic pathway of Hederacoside C using an innovative data analysis strategy for
   dynamic multiclass biotransformation experiments. *Journal of Chromatography A* 2019, *in Press.*
- Storey J.D.; Tibshirani R.; Statistical significance for genomewide studies. *Proceedings of the National Academy* of Sciences 2003, 100(16), 9440–9445.
- 127 6. Liaw A.; Wiener M.; Classification and Regression by randomForest. R News 2002, 2(3), 18–22
- 7. Beirnaert C.; Cuyckx M.; Bijttebier S.; MetaboMeeseeks: Helper functions for metabolomics analysis. *R package version 0.1.2* https://github.com/Beirnaert/MetaboMeeseeks
- Breynaert A; Bosscher D.; Kahnt A.; Claeys M.; Cos P.; Pieters L.; Hermans N.; Development and validation of an in vitro experimental gastrointestinal dialysis model with colon phase to study the availability and colonic metabolisation of polyphenolic compounds. *Planta medica* 2015, *81*(12/13), 1075–1083.
- 9. Kessner D.; Chambers M.; Burke R.; Agus D.; Mallick P.; ProteoWizard: open source software for rapid
   proteomics tools development. *Bioinformatics* 2008, 24(21), 2534–2536.
- 135 10. Stanstrup J.; Gerlich M.; Dragsted L.O.; Neumann S.; Metabolite profiling and beyond: approaches for the
- rapid processing and annotation of human blood serum mass spectrometry data. *Analytical and bioanalytical chemistry* 2013, 405(15), 5037–5048.
- 138 11. Smith C.A.; Want E.J.; O'Maille G.; Abagyan R.; Siuzdak G.; XCMS: processing mass spectrometry data for
- metabolite profiling using nonlinear peak alignment, matching, and identification. *Analytical chemistry* 2006, 78(3), 779–787.
- 141 12. Liaw A.; Wiener M.; Classification and regression by randomForest. *R news* **2002**, *2*(3), 18–22.