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Abstract: We hypothesized metabolomic profiling could be utilized to identify children who scored
poorly on the communication component of the Ages and Stages Questionnaire (ASQ); which assesses
development in childhood, and to provide candidate biomarkers for autism spectrum disorders
(ASD). In a population of three-year-old children, 15 plasma metabolites, were significantly (p < 0.05)
different between children who were categorized as having communication skills that were “on
schedule” (n = 365 (90.6%)) as compared to those “requiring further monitoring/evaluation” (n = 38
(9.4%)) according to multivariable regression models. Five of these metabolites, including three
endocannabinoids, were also dysregulated at age one (n = 204 “on schedule”, n = 24 “further
monitoring/evaluation”) in the same children. Stool metabolomic profiling identified 11 significant
metabolites. Both the plasma and stool results implicated a role for tryptophan and tyrosine
metabolism; in particular, higher levels of N-formylanthranilic acid were associated with an improved
communication score in both biosample types. A model based on the significant plasma metabolites
demonstrated high sensitivity (88.9%) and specificity (84.5%) for the prediction of autism by age 8.
These results provide evidence that ASQ communication score and metabolomic profiling of plasma
and/or stool may provide alternative approaches for early diagnosis of ASD, as well as insights into
the pathobiology of these conditions.

Keywords: metabolomics; ages and stages questionnaire (ASQ); autism; endocannabinoid; serotonin;
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1. Introduction

Autism spectrum disorders (ASD) are a collection of heterogeneous neurodevelopmental disorders
characterized by persistent deficits in social communication and interaction across multiple contexts,
including social reciprocity, nonverbal communicative behaviors, and skills in developing, maintaining,
and understanding relationships [1]. The Centers for Disease Control and Prevention recently released
their bi-annual update of the prevalence of autism in the United States of America. With an estimated
15% increase in cases since 2016, they predicted the prevalence would be 1 in every 59 children in
2018 [2]. Current diagnostics involve behavioral observation and assessments of speech, language, and
intellectual abilities. The average age of diagnosis in the United States is four years [2], although parents
often report signs of developmental delay as early as 18 months [3]. Earlier detection could allow for
more effective treatment in improving social, communicative, adaptive and cognitive outcomes [4].

A common assessment used to measure a child’s development between birth and the age of six
is the Ages and Stages Questionnaire (ASQ). This tool assesses five developmental skills domains:
communication, gross motor, fine motor, problem solving, and personal-social [5]. Evidence suggests
that the ASQ can provide an effective screening tool to identify children at high risk of ASD. Specifically,
it has been reported that utilizing a binary cut-off based on ASQ Communication score can identify
95% of at-risk children, as defined by the Modified Checklist for Autism in Toddlers (M-CHAT) [6].
Furthermore, it has been shown that the ASQ is less sensitive to demographic factors than other
commonly used development assessment approaches [7].

Nevertheless, in addition to standardized screening, there is a need for a more sensitive means
of ASD detection [8]. A growing body of research demonstrates differing metabolic patterns in ASD
patients as compared to controls, in particular dysregulated levels of fatty acids, sterols, intermediary
metabolites, phospholipids, and molecules associated with oxidative stress [9]. Similarly, an increased
level of blood serotonin has been consistently linked with autism [10]. The development of metabolomics
now offers the opportunity to characterize efficiently levels of a broad range of metabolites in a large
number of subjects. Taken together, this suggests the potential for the development of metabolomic based
biomarkers of ASD that could help close the gap in the identification and/or prediction of these disorders.

In this study, we investigate blood and stool metabolomic profiles associated with the ASQ
derived communication score, as a proxy for ASD risk, in children from the Vitamin D Antenatal
Asthma Reduction Trial (VDAART, clinicaltrials.gov Identifier: NCT00920621), a clinical trial of
prenatal vitamin D supplementation and outcomes in pregnant women and their offspring [11].
We hypothesize that the metabolome of children with poor communication scores differs from that
of children exhibiting “normal” communication scores, and that these differences involve biological
pathways that are implicated in ASD.

2. Results

2.1. Study Population

In total, 403 children from VDAART had metabolomic profiling of plasma and an ASQ
communication score at age three. The ASQ-3 communication score is based on six questions
administered to parents regarding their child’s ability. Standardized scores are then compared to the
expected mean score obtained from a reference distribution of scores, and the children are categorized as:
(i) “On Schedule for developing normally” (above the mean); (ii) “Requires Monitoring” (1–2 standard
deviations below the mean); (iii) “Needs further evaluation” (>2 standard deviations below the mean).
For these analyses we focused on communication skill using a binary cut off comparing those “On
schedule for developing normally” versus those either requiring “further evaluation” or “monitoring”,
based on the recommendations of Hardy et al. [6]. The majority (n = 365, 90.6%) of VDAART children
were categorized as “on schedule for developing normally” based on their ASQ communication score
(Table 1). Of the 403 children, 215 also had plasma metabolomic profiling at age 1 (53.3%), and 228
(56.6%) had metabolomic profiling on a stool sample collected at age three (Supplementary Table S1).
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Children in the lowest communication score category (“Requires further evaluation”) were
significantly less likely to be from the San Diego VDAART site than from the Boston or St. Louis sites
(p = 0.002), and there were borderline significant associations between score category with gender
(p = 0.076) and with maternal educational level (p = 0.057). There was no significant association with
either prenatal vitamin D supplementation or asthma/wheeze which were the primary exposure
and endpoint of interest in the original VDAART study. Communication score was also assessed
at the age one and age two visits, and while there appeared to be a strong relationship between
communication category when considering the age three and the age two visit (p = 8.0 × 10−9),
this was not apparent with the age one visit (Table 1; Supplementary Figure S1). In addition to
communication skills, the ASQ also assess four other domains using the same six question approach;
gross motor skills, fine motor skills, personal social skills and problem solving skills. Communication
score at age three was significantly correlated with the scores in the other four ASQ assessed categories,
with the strongest relationships for personal-social skill score (r = 0.45, p < 2.2 × 10−16) and problem
solving score (r = 0.46, p ≤ 2.2 × 10−16) (Supplementary Table S2).

Table 1. Baseline characteristics of 403 children from the Vitamin D Antenatal Asthma Reduction Trial
(VDAART) with plasma metabolomic profiling and an Ages and Stages Questionnaire (ASQ) score at
age 3.

Baseline Characteristic

Age 3ASQ Communication Score

p-Value
On Schedule

(n = 365)

Needs
Monitoring

(n = 23)

Requires Further
Evaluation (n = 15)

n % n % n %

Sex Female 176 48.2% 9 39.1% 3 20.0% 0.076
Males 189 51.8% 14 60.9% 12 80.0%

Site San Diego 131 35.9% 6 26.1% 0 0.0% 0.002
Boston 72 19.7% 5 21.7% 9 60.0%
St Louis 162 44.4% 12 52.2% 6 40.0%

Race Black 173 47.4% 13 56.5% 9 60.0% 0.725
White 122 33.4% 6 26.1% 5 33.3%
Other 70 19.2% 4 17.4% 1 6.7%

Treatment Vitamin D 186 51.0% 12 52.2% 7 46.7% 0.940
Placebo 179 49.0% 11 47.8% 8 53.3%

Asthma/Wheeze Yes 93 25.5% 5 21.7% 6 40.0% 0.414
No 272 74.5% 18 78.3% 9 60.0%

Maternal
Marital Status

Married 179 49.0% 9 39.1% 4 26.7% 0.449
Not married/not living together 88 24.1% 8 34.8% 6 40.0%
Not married - living together 86 23.6% 6 26.1% 5 33.3%
Separated/Divorced 12 3.3% 0 0.0% 0 0.0%

Maternal
Educational
Level

Less than high school 45 12.3% 3 13.0% 3 20.0% 0.057
High school, Technical school 96 26.3% 10 43.5% 5 33.3%
Some college 84 23.0% 5 21.7% 6 40.0%
College graduate/Graduate school 140 38.4% 5 21.7% 1 6.7%

Body Mass
Index (BMI) at
age 3

Mean (standard deviation, SD) 16.7 (1.9) 16.4 (1.3) 17.2 (2.3) 0.528

Age 1
Communication
Score

On Schedule 308 84.4% 18 78.3% 14 93.3% 0.200
Needs monitoring 5 1.4% 1 4.3% 1 6.7%
Requires further evaluation 2 0.5% 0 0.0% 0 0.0%
Missing 50 13.7% 4 174% 0 0.0%

Age 2
Communication
Score

On Schedule 315 86.3% 11 47.8% 5 33.3% 8.0 × 10−9

Needs monitoring 24 6.6% 5 21.7% 5 33.3%
Requires further evaluation 7 1.9% 3 13.0% 4 26.7%
Missing 19 5.2% 4 17.4% 1 6.7%

Stool samples
available Yes 204 55.9% 14 60.9% 10 66.7% -



Metabolites 2019, 9, 42 4 of 17

2.2. Plasma Metabolome

After QC and data processing, 481 metabolites were retained for analysis in the age three-year
plasma samples (Supplementary Table S3). Partial Least Squares Discriminant analysis (PLS-DA)
revealed no evidence of a global difference in the metabolomes of children who were “on schedule
for developing normally” versus those in the “Monitoring” and “further evaluation groups”; and
therefore no discriminatory ability. The PLS-DA scores plot of the first two components shows no
obvious separation between the two groups (Supplementary Figure S2), and this is confirmed by
the PLS-DA metrics; R2 = 0.13; Q2 = −0.21; permutation p-value = 0.994. However, multivariable
logistic regression models, adjusting for a child’s race, child’s sex, maternal education, maternal marital
status, treatment group and clinical site, identified 15 significant metabolites. Five metabolites were
significantly lower in children in the combined lowest two categories of communication score (requiring
further monitoring/evaluation), as compared to children on schedule for normal development. While
10 metabolites presented at significantly higher levels in the children in the lowest categories of
communication score (Table 2). Interestingly, although there was no overall discriminatory ability when
considering the whole metabolome; seven of the metabolites with the highest Variable Importance in
the Projection (VIP) Scores from the PLS-DA (>2) were also among those identified as significant in the
regression analyses including two metabolites of tryptophan metabolism and an endocannabinoid
(Supplementary Figure S2). Sample size was limited for the three communication score categories
model, nevertheless we also ran these analyses using three score categories as a continuous variable in
a linear model and found that the majority (n = 9) of these metabolites retained significance. We used
a “number of effective tests” approach [12,13] to account for multiple testing. Based on the 481
metabolites, a total of 12 principal components were needed to explain 50% of the variance in the
data. Using a multiple testing corrected p-value threshold of 0.004 accounting for 12 effective tests,
only N-formylphenylalanine, a metabolite of tyrosine metabolism, retained significance.

Given the differences in the prevalence of communication score category across the three study sites
(Table 1), we also ran stratified analyses to determine the consistency of the metabolite-score associations
by site. Analyses were unadjusted due to sample size constraints and resulting convergence issues and
few reached significance, however the majority of associations were in the same direction of effect across
the three cohorts, providing further support for the role of these metabolites (Supplemental Table S3).
Only cinnamoylglycine and N-formylanthranilic acid were in a discordant direction of effect in San
Diego as compared to Boston and St Louis, while prolylhydroxyproline was discordant in terms of
direction of effect in the Boston children.

Of the 15 nominally significant metabolites, three were involved in tryptophan metabolism,
three in endocannabinoid metabolism, and three were xenobiotics. The remaining metabolites
were involved in tyrosine, fatty acid, phospholipid, sphingolipid, methionine, cysteine, SAM and
taurine metabolism, and the urea cycle. Five of the 15 metabolites, oleoyl ethanolamide, palmitoyl
ethanolamide, linoleoyl ethanolamide, sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)
and docosahexaenoylcarnitine (C22:6), were also significantly associated with age 3 binary communication
score when measured in the age one samples from the 215 children with both age one and age three
samples. All were lipids involved in endocannabinoid, sphingolipid and fatty acid metabolism. There
were weak correlations between the measures of these metabolites at age 1 and age 3 (rho = 0.13 to 0.37,
p = 2.4 × 10−8 to 0.064, Supplemental Table S4).
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Table 2. Plasma metabolites associated (p < 0.05) with binary ASQ communication score category.

Metabolite Super Pathway Sub Pathway HMDB ID a OR (95% Confidence
Interval, CI) p-Value

N-formylphenylalanine * Amino Acid Tyrosine Metabolism - 4.1 × 10−3 (4.1 × 10−2,0.11) 0.002
trimethylamine N-oxide * Lipid Phospholipid Metabolism HMDB00925 30.13 (2.74,337.23) 0.005
cinnamoylglycine * Xenobiotics Food Component/Plant HMDB11621 4.41 (1.52,12.80) 0.006
linoleoyl ethanolamide * Lipid Endocannabinoid HMDB12252 12.38 (1.67,92.73) 0.013
palmitoyl ethanolamide Lipid Endocannabinoid HMDB02100 141.67 (2.25,9324.32) 0.019
5-hydroxyindoleacetate * Amino Acid Tryptophan Metabolism HMDB00763 0.08 (0.01,0.64) 0.023
erythritol Xenobiotics Food Component/Plant HMDB02994 21.39 (1.31,300.33) 0.024
pyrraline * Xenobiotics Food Component/Plant HMDB33143 0.11 (0.01,0.68) 0.024
sphingomyelin (d18:1/25:0,
d19:0/24:1, d20:1/23:0, d19:1/24:0) * Lipid Sphingolipid Metabolism - 0.02 (3.3 × 10−4,0.62) 0.034

docosahexaenoylcarnitine (C22:6) Lipid Fatty Acid Metabolism (Acyl Carnitine) - 6.28 (1.07,34.75) 0.037
prolylhydroxyproline Amino Acid Urea cycle; Arginine and Proline Metabolism HMDB06695 95.30 (1.29,7378.98) 0.038

alpha-ketobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine
Metabolism HMDB00005 3.98 (1.04,14.72) 0.040

N-formylanthranilic acid * Amino Acid Tryptophan Metabolism HMDB04089 0.05 (3.3 × 10−4,0.75) 0.043
Serotonin * Amino Acid Tryptophan Metabolism HMDB00259 5.75 (1.03,32.63) 0.046
oleoyl ethanolamide Lipid Endocannabinoid HMDB02088 12.75 (0.99,161.42) 0.048

* Significant in the 3 category communication score analysis. Human Metabolome Database Identifier.
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2.3. Stool Metabolome

In the 228 children who also had stool metabolomic profiling at age three, a total of 737 metabolites
were quantified and passed QC (Supplementary Table S5), including 321 (66.7%) of the 481 metabolites
that were measurable and passed QC in plasma. The distribution of communication scores in the
subset of children with stool was comparable to the full plasma population; 89.5% (n = 204) of children
were “on schedule for developing normally”. There were no significant differences in any of the
explored baseline variables in the stool subset (Supplementary Table S1), although, as with the full
population, there was a significant association between age two communication score category and
age three communication score category (p = 2.3 × 10−4). Again, PLS-DA models failed to identify
global metabolomic signatures with the ability to distinguish between children on schedule to develop
normally from those requiring further monitoring or evaluation (R2 = 0.10, Q2 = −1.13, permuted
p-value = 0.985) (Supplementary Figure S3).

In this subset of children, 13 metabolites were significantly associated with binary communication
score; all were at lower levels in the children in the lowest two categories (Table 3). Again, these
significant metabolites represented a number of tryptophan and tyrosine metabolites, including
N-formylanthranilic acid, which was also identified as significant in the plasma, and two other
metabolites of the Tryptophan metabolism pathway; N-acetylserotonin and 2-aminophenol. Of the
13 metabolites, seven had a VIP score greater than 2 in the PLS-DA analysis (Supplementary Figure
S3) and all 13 had a score >1, indicating that both methods identified these metabolites as differing
between children on schedule versus those requiring further monitoring and evaluation.

A total of 16 principal components were required to explain 50% of the variance in the 737
stool metabolites. Using a corrected p-value threshold of 0.003, only salicylate, which is synthetically
produced for use in drugs such as aspirin, but which can also naturally occur in certain foods,
particularly berry fruits and dried fruits, retained significance in the logistic regression model.
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Table 3. Stool metabolites associated with binary ASQ communication score category.

Metabolite Super Pathway Sub Pathway HMDB ID OR (95% CI) p-Value

salicylate * Xenobiotics Drug HMDB01895 0.3 (0.13,0.64) 0.003
R-mevalonate 5-diphosphate * Lipid Mevalonate Metabolism HMDB01981 0.38 (0.18,0.69) 0.004
N-acetylglutamine * Amino Acid Glutamate Metabolism HMDB06029 0.25 (0.09,0.65) 0.005
2-hydroxyphenylacetate Amino Acid Tyrosine Metabolism HMDB00669 0.44 (0.22,0.83) 0.014
suberate (octanedioate) * Lipid Fatty Acid, Dicarboxylate HMDB00893 0.31 (0.12,0.78) 0.015
2-aminophenol Amino Acid Tryptophan Metabolism - 0.43 (0.21,0.85) 0.016
cadaverine * Amino Acid Lysine Metabolism HMDB02322 0.55 (0.33,0.89) 0.017
N-acetyl-3-methylhistidine Amino Acid Histidine Metabolism - 0.57 (0.34,0.96) 0.034
N-formylanthranilic acid Amino Acid Tryptophan Metabolism HMDB04089 0.38 (0.15,0.93) 0.039
cis-4-hydroxycyclohexylacetic acid Amino Acid Tyrosine Metabolism HMDB00451 0.54 (0.29,1.00) 0.043
2,3-dimethylsuccinate Amino Acid Leucine, Isoleucine and Valine Metabolism - 0.55 (0.31,1.00) 0.044
S-1-pyrroline-5-carboxylate Amino Acid Glutamate Metabolism HMDB01301 0.55 (0.30,1.00) 0.048
N-acetylserotonin Amino Acid Tryptophan Metabolism HMDB01238 0.50 (0.24,0.97) 0.050

* Significant in the 3 category communication score analysis.
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2.4. Correlation between the Plasma and Stool Metabolomic Results

Both analyses identified metabolites of tryptophan metabolism and tyrosine metabolism as
significantly dysregulated between children with an ASQ communication score indicating “on schedule”
and those requiring “further monitoring/evaluation” (Figure 1).
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Figure 1. Study schematic and cross-over in communication score associated metabolites.

Higher levels of N-formylanthranilic acid, a metabolite of tryptophan metabolism, were associated
with a higher ASQ communication score in both plasma (odds ratio (OR): 0.05, 95% confidence interval
(CI) 2.6 × 10−3, 0.75, p = 0.043) and stool (OR: 0.38, 95%CI 0.15, 0.93, p = 0.039). In order to explore this
further, we looked at the correlation between plasma stool levels of N-formylanthranilic acid and stool
levels of N-formylanthranilic acid among the children with measures of both at age three, to determine
whether there was a relationship between levels of this metabolite in different biosamples. However
we found that levels were not strongly correlated; Spearman r = 0.07, p = 0.3. We further sought to
determine of there was any correlation between any of the 15 significant plasma metabolites with the
13 stool metabolites; but again we found little evidence of correlation (Figure 2). The strongest negative
correlations were between plasma sphingomyelin and stool suberate (r = −0.26, p = 6.7 × 10−5) and
between plasma 5-hydroxyindolacetate and stool 2-hydroxyphenylacetate (r = −0.24, p = 3.3 × 10−4).
The strongest positive correlations were between plasma sphingomyelin and stool N-acetylserotonin
(r = 0.24, p = 2.8 × 10−4) and between plasma cinnamoylglycine and stool suberate (r = 0.22, p = 6.9 ×
10−4). However, it should be noted that although significant the correlation coefficients were not high
for any of these plasma–stool metabolite pairs.
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with binary ASQ score at age three, and 13 stool metabolites identified as significantly associated with
binary ASQ score at age three. Relationships are quantified by Spearman’s Correlation Coefficients;
color indicates direction of correlation (red is a positive correlation, blue is a negative correlation),
darker shades indicate the significance of the association. White indicates no significant correlation.
* Sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0).

2.5. Autism

The VDAART children are now between 6 and 8.5 years old. Beginning at the year six VDAART
follow up visit, we asked parents if their child “had ever received a physician diagnosis of autism”.
To date, 18 children in VDAART have been diagnosed with autism according to parental report,
including 9 (2.2%) of the 403 children with age three ASQ assessment and plasma metabolomic
profiling. The rate of diagnosis among the children in the “requiring monitoring or further evaluation”
category was 5/38 (13.2%) which was significantly higher (p = 5.5 × 10−4) than in the “on schedule”
category; 4/365 (1.1%). This was also evident when considering the age two ASQ communication
scores; with rates of 10.4% versus 0.9% (p = 0.001) in the “requiring monitoring or further evaluation”
and the “on schedule” categories, respectively (Supplementary Table S3).
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Accordingly, the binary ASQ score (Model 1) had moderate predictive ability for age 8 asthma in a
receiver operator characteristic (ROC) curve analysis (area under the curve (AUC): 0.736 (95% CI: 0.563,
0.909)) (Supplementary Figure S2). Although this classifier had high sensitivity, (91.6%), its specificity
was only 55.6% (Table 4). A summary score based on the 15 plasma significant metabolites (Model 2)
demonstrated marginal, and non-significant, improvement in the AUC (0.759 (95% CI: 0.603, 0.915)) over
the ASQ score model. Although specificity was higher (66.7%), sensitivity was lower (78.7%). However,
when levels of all 15 metabolites (Model 3) were included the resulting model had a significantly
higher AUC: 0.924 (95% CI: 0.867, 0.980), p = 0.034, than Model 1, and Model 3 demonstrated both high
sensitivity (88.9%) and specificity (84.5%) for the prediction of autism by age 8.

Table 4. Comparison of three different models for the prediction of autism by age 8.

Classifier.
Area under the
Curve (AUC)

(95% CI)

Performance
Compared to

Model 1
Sensitivity Specificity

Model 1: Binary ASQ Communication Score 0.736 (0.563, 0.909) - 55.6% 91.6%
Model 2: Metabolite Summary Score 0.759 (0.603, 0.915) p = 0.635 66.7% 78.7%
Model 3: Metabolite Levels 0.924 (0.867, 0.980) p = 0.034 88.9% 84.5%

3. Discussion

Impaired communication is a defining characteristic of autism spectrum disorders, which
are now recognized as one of the most serious health problems in the world next to Acquired
Immuno-Deficiency Syndrome (AIDS), cancer, and diabetes [14]. Despite their high prevalence and
the public health burden they impart, there are still no tests that offer a reliable confirmation of a
clinical diagnosis of ASD; that provide efficient screening of individuals presenting with behavioral
features suggestive of ASD; or that aid in early detection of ASD [15]. Consequently, novel screening
approaches are critical, particularly those that could be applied to young children. Metabolomics offers
a particularly compelling avenue, given the demonstrated metabolic changes that accompany ASD,
and the ability of metabolites and metabolomic profiles to act as biomarkers whilst also informing on
underlying biological mechanisms.

In this study, we explored the hypothesis that metabolomic biomarkers could help to identify
children with poor communication skills, as assessed by the ASQ. We hypothesized that children
with a low ASQ communication score at age three were more likely to be diagnosed with autism
in the following years. Indeed, more than 10% of the children in the lowest two categories of ASQ
communication score at age two years, and more than thirteen percent at age three, went on to be
diagnosed with autism, compared to ~ 1% of children who were categorized as “on schedule” at these
ages. Furthermore, although we did not identify a global difference in the metabolomes of children “on
schedule” versus those requiring “further monitoring/evaluation”, we did identify dysregulation of
metabolism in both the plasma and stool of children with low ASQ communication scores in a number
of metabolomic pathways that have previously been associated with autism and ASD. In particular
tryptophan biosynthesis, tyrosine metabolism and endocannabinoid metabolism.

Tryptophan serves as a precursor for a wide range of bioactive compounds, including major
neurotransmitters and neuromodulators, and it is involved in both protein synthesis and bacterial
degradation [15]. These crucial functionalities of tryptophan and its associated pathways underlie
much of the evidence linking dysregulated tryptophan biosynthesis and metabolism to ASD [15].
The two main pathways of tryptophan metabolism lead to the synthesis of kynurenine and of
serotonin [16]. The majority of bioavailable tryptophan, which comes mainly from the diet, enters
the kynurenine pathway leading to the production of kynurenic acid, kynuramines, picolinic acid,
quinolinic acid, Nicotinamide adenine dinucleotide (NAD), and Adenosine triphosphate (ATP).
These downstream products are involved in the regulation of the central nervous system and of
the immune system [17], both of which have been shown to be dysregulated among individuals with
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autism. Less than 2% of the bioavailable tryptophan is metabolized into serotonin [16]. Serotonin
is a neurotransmitter involved in multiple aspects of brain function that may influence ASD both
dynamically and across development, ranging from the regulation of mood, appetite and social
interactions to a critical role in neuronal morphology and circuitry [16]. This is important, as disordered
organization of the fronto-temporal lobes is one of the most consistent neuroanatomical findings in
ASD patients [18]. Furthermore, serotonin is implicated in regulation of the circadian rhythm, which is
often shown to be disrupted in individuals with ASD [19], through its downstream product, melatonin.

It has been shown that in individuals with ASD, the tryptophan biosynthesis pathway in the
brain is preferentially biased toward the production of xanthurenic acid and quinolinic acid along the
kynurenine pathway, at the expense of the serotonin pathway [20], and consequently serotonin levels
have been demonstrated to be lower in the brains of individuals with ASD [21]. However, the opposite
is true outside the blood–brain barrier. In fact, elevated whole blood serotonin, or hyperserotonemia,
was identified as the first biomarker of ASD more than fifty years ago, and is apparent in roughly
30% of affected individuals [10]. This is in agreement with our findings of higher levels of plasma
serotonin, and lower levels of N-formylanthranilic acid, a downstream product of the kynurenine
pathway, in the plasma of children with poor ASQ communication skills, relative to those with “normal”
communication development. The remaining ~4% of tryptophan that is not metabolized down either
the kynurenine or serotonin pathway undergoes bacterial degradation prior to gut absorption [20],
which likely explains why we also saw altered levels of tryptophan metabolites in the stool. What is
particularly compelling in the literature to date is that dysregulated tryptophan metabolism appears to
be specific to ASD, as it has not been observed in other cognitively impaired individuals [22].

In this population both the plasma and the stool metabolome also indicated disruption of tyrosine
metabolism across communication score categories. Tyrosine metabolism has previously been implicated
in autism in a study of urinary metabolomics of Italian children [20]. Interestingly, one of the replicated
risk genes for ASD, MET, encodes a receptor tyrosine kinase, MET, which modifies a large number
of neurodevelopmental events [23]. Three endocannabinoids, which are arachidonic acid-derived
compounds, were identified among the significant plasma metabolites, and all three endocannabinoids
were also associated with age three ASQ communication score when measured in the age one plasma
samples. The endocannabinoid system plays a crucial neuromodulatory role in the regulation of
emotional responses, behavioral reactivity and social interaction, and is also implicated in a number of
common phenotypic characteristics of ASD including seizures, anxiety and poor memory processing [24].
The endocannabinoid system has, therefore, been suggested as a therapeutic target for these disorders.
Our current findings in which endocannabinoids were shown to already be disturbed in affected children
at age one year, suggest such therapeutics may be of particular use for early intervention or possible
prevention. Despite a large body of evidence from animal models linking endocannabinoids to ASD,
this represents the first evidence for such an association in a human population.

This study, therefore, provides compelling evidence to link ASQ communication to dysregulated
metabolic processes, which may indicate risk of ASD. Nevertheless, there were a number of limitations.
One of the biggest was sample size, the prevalence of ASDs is approximately 1% in the US population
aged <8 years [16]. Within this subset of the VDAART population, the prevalence of parent-reported
autism diagnosis was 2%, which may reflect the higher percentage of males in the population,
nevertheless, we were underpowered to explore ASD as an outcome in VDAART. For this reason,
we chose to study the ASQ communication score as a proxy for autism risk based on the findings
of Hardy et al. [6], and we demonstrated good power for this endpoint in our population. We noted
differences in the prevalence of children in the different ASQ score categories between the three sites;
specifically in San Diego, no children were in the lowest communication score category. The San Diego
site also had the highest socioeconomic status of the three cohorts, and this discrepancy in score may
reflect unmeasured biased relating to the parents of the children that we cannot control for. However,
we did adjust for maternal education level and maternal marital status, and stratification of the plasma
logistic regression models by site indicated that overall the site differences in ASQ scores were not
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influencing our results and conclusions. We additionally adjusted for important factors such as sex and
race, as well as asthma status and vitamin D supplementation to account for the nature of the VDAART
study. Finally, we were limited in our ability to study all the relevant metabolites in the pathways
of interest, there are currently no profiling methods that provide coverage of the entire metabolome
and consequently there may be important ASD related pathways that we were not able to analyze at
all. Many of our associations were not robust to correction for multiple testing, however given the
biological relevance of our significant metabolites this may purely be a reflection of the limitations
discussed above.

We observed a significant association between ASQ communication score and autism diagnosis
in this population, however this should be interpreted with caution due to the limited number of
cases. Furthermore, although this classifier demonstrates impressive specificity, sensitivity was poor.
This finding supports the argument that more objective and quantifiable markers are crucial. A summary
score based on the significant plasma metabolites, moderately improved the AUC and the sensitivity of
classification, but at the expense of specificity. In contrast, a classifier based on the relative measures of
all 15 metabolites, significantly improved the AUC and maintained impressive sensitivity and specificity.
Again, this should be interpreted with caution due to sample size, the likelihood of overfitting and
the fact the metabolites were identified using the ASQ proxy. Furthermore, as our biomarker panel
was comprised of 15 metabolites, further study will be necessary to identify a potential subset of these,
or related metabolites that may be more parsimonious and practical in clinical settings. Nevertheless,
these findings provide early evidence to suggest that the development of metabolite based biomarkers
that can outperform existing measures of autism prediction and diagnosis may be feasible.

We do not have detailed information on the physician diagnosed cases, as autism was assessed
by parental report of a physician diagnosis. It is also possible that there is observation bias in that all
low ASQ communication score subjects were not specifically evaluated for autism. ASD, by definition,
represents a heterogeneous spectrum of neurodevelopmental conditions rather than a single disease,
and it is feasible they do not all share the same metabolomic profile. It has been noted that even among
subjects with ASD, the level of tryptophan can vary considerably in patients with autistic disorder as
compared to Asperger’s syndrome [15].

In the comparison of the plasma and stool metabolomes, it was of interest to note that while
similar pathways were highlighted, in particular tryptophan and tyrosine metabolism, the constituent
metabolites differed. The only exception was N-formylanthranilic acid, and here we could identify no
direct correlation between the levels of this metabolite in the stool and the plasma samples. This may
reflect the timing of sample collection; the stool samples were collected up to 48 h before the plasma.
However, it is likely also a reflection of the different stages of metabolism represented by the stool
versus the plasma metabolome. It is the ability of different bio samples to capture differing aspects
of dysregulated metabolism that has led to the argument that integrating multiple bio samples may
provide “better clues to biological and pathological pathways” underlying disease [25]. However,
the statistical methods for doing so remain underdeveloped, and in particular there is little literature
directly comparing stool versus plasma metabolites. Further work is required to better understand
these relationships.

4. Materials and Methods

4.1. Study Population

This study was nested within the Vitamin D Antenatal Asthma Reduction Trial (VDAART); which
aimed to assess the potential of vitamin D supplementation in pregnant women to prevent asthma in
their offspring. The study has been described in detail previously [11]. Briefly, pregnant non-smoking
women between 10 to 18 weeks of gestation who had a history of asthma, eczema, or allergic rhinitis,
or who conceived the child with a man with a history of such diseases were recruited from three sites
across the USA; Boston, San Diego and St Louis, between 2009 and 2011. Women were randomized 1:1
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to a daily dose of 4000 International Units (IU) vitamin D3 or a placebo tablet until delivery. All women
additionally received a daily multivitamin containing 400 IU vitamin D3. VDAART was approved by
the Institutional Review Boards (IRB) of the participating Clinical Centers and the Data Coordinating
Center, with pregnant women signing informed consent at the enrollment visit covering both primary
and secondary analyses of data.

4.2. Metabolomic Profiling

All VDAART participants followed after birth (n = 806) were asked to provide blood and stool
samples at age 3 years. Parents collected stool samples from either a dirty diaper or a “potty hat”
within the 48 h before their year three visit using provided collection kits. They then stored them in
a home freezer before delivery to the clinical center in a freezer pack. Stool was not collected if the
infant had used antibiotics in the past 7 days. Fecal samples were stored at the clinical centers at −80 ◦C
and then delivered to Metabolon (Durham, NC, USA) where sample preparation and analysis was
performed. Samples (~50 mg) were homogenized in methanol at 50 mg/mL for metabolite extraction.
The supernatant was separated from debris and precipitates by centrifugation, divided into five aliquots
for four different analysis conditions plus one backup sample, and placed into a TurboVap (Zymark,
Hopkinton, MA, USA) for solvent removal. Dried samples were stored under nitrogen gas overnight
until analysis.

Blood was collected at the year one and year three in-person visit then shipped to the Data
Coordinating Center in Boston, where processing and aliquoting was done. Plasma was separated and
immediately stored at −80 ◦C until global metabolomic profiling at Metabolon.

Sample profiling for both stool and plasma was performed using ultrahigh performance liquid
chromatography-tandem mass spectroscopy (UPLC-MS/MS) and four platforms covering a broad range
of the metabolome: (1) the first aliquot was analyzed using positive ion mode, chromatographically
optimized for more hydrophilic compounds. The extract was gradient eluted from a C18 column (Waters
UPLC BEH C18 2.1 × 100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic
acid (PFPA) and 0.1% formic acid (FA); (2) the second aliquot was also analyzed using positive ion mode,
however it was chromatographically optimized for more hydrophobic compounds. The extract was
gradient eluted from the same C18 column as above using methanol, acetonitrile, water, 0.05% PFPA and
0.01% FA operated at an overall higher organic content; (3) The third aliquot was analyzed using negative
ion mode with a separate dedicated C18 column. The basic extracts were gradient eluted from the
column using methanol and water with 6.5mM ammonium bicarbonate at pH 8; (4) The fourth aliquot
was analyzed via negative ionization following elution from a Hydrophilic Interaction Chromatography
(HILIC) column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) using a gradient consisting of water
and acetonitrile with 10mM ammonium formate, pH 10.8.

Metabolites were analyzed as measured LC-MS peak areas and identified by their mass-to-charge
ratio (m/z), retention time (rt), and through a comparison to library entries of purified known standards.
The blood samples were processed in two batches sent six months apart including both age one and
age three (batch one n = 245; batch two n = 688) then merged and scaled together based on equivalence
of the control groups. If a metabolite was missing in 50% or more of the samples from either dataset,
it was excluded from further analysis. In the stool samples, which were all processed in the same batch,
intestinal metabolite relative abundances were normalized to sample mass (mg) [26]. Metabolites with
a signal-to-noise ratio <10 were considered unquantifiable and excluded, as were metabolites with
undetectable/missing levels for >10% of the samples. All remaining missing values were imputed
with half the minimum peak intensity for that metabolite across the whole population, then data were
pareto scaled to account for the differences in the scales of measurements across the metabolome.
In both datasets metabolites were log-transformed to create approximately Gaussian distributions
and to stabilize variance. Principal components analysis (PCA) of metabolite relative abundances was
performed to look for outliers and age trends. One stool sample was over 10 standard deviations from
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the mean on principal component (PC) 1 and over 6 standard deviations from the mean on PC2 and
was therefore excluded from analysis.

4.3. Ages and Stages Questionnaire (ASQ) Assessment

The Ages and Stages Questionnaire, 3rd Edition (ASQ-3) (https://agesandstages.com/; Paul H.
Brookes Publishing Co., Inc.) [5] was administered to primary caregivers of the VDAART offspring
at ages one, two and three years in person at the annual visit. The ASQ-3 is a validated and widely
used tool that assesses five developmental domains: gross motor skills, fine motor skills, problem
solving ability, personal/social skills and communication, with six questions in each category resulting
in a domain specific score. Standardized domain specific scores are then compared to the expected
mean score obtained from a reference distribution of scores within age-groups, and categorized as:
(i) “On Schedule for developing normally” (above the mean); (ii) “Requires Monitoring” (1–2 standard
deviations from the mean); (iii) “Needs further evaluation” (>2 standard deviations from the mean).
For these analyses we focused on communication skill using a binary cut off comparing those “On
schedule for developing normally” versus those either requiring “further evaluation” or “monitoring”,
based on the recommendations of Hardy et al. [6].

4.4. Statistical Analysis

4.4.1. Plasma and Stool Metabolome

In order to determine the ability of the overall metabolome to discriminate children who, according
to ASQ communication score, require further monitoring or evaluation from those on schedule for
developing normally, we conducted partial least squares discriminant analysis (PLS-DA) using both the
(i) plasma metabolome and (ii) the stool metabolome. We computed the R2 and Q2 values for the first
component, and ran a permutation test to assess the robustness of the model. We also identified those
metabolites with the greatest Variable Importance in the Projection (VIP) score for the first component.
The VIP score provides an estimate of the importance of each variable in the projection of the data onto
the plane of greatest separation. We used a conservative cut off of VIP score > 2 to identify important
discriminatory metabolites. We then sought to identify individual plasma and stool metabolites that
may be associated with communication score using multivariable logistic regression models adjusting
for child’s race, child’s sex, maternal education, maternal marital status, vitamin D treatment group
and clinical site. For those metabolites that were significant at age three in plasma, we also determined
the association of these metabolites as measured in the year one samples with age three ASQ score.
Finally, we assessed the overlap and correlation between the metabolites that were significant in the
stool, and those that were significant in the year three plasma. Using the powerLogisticCon function
from the R package ‘powerMediation’, we determined our power to detect a significant association
between binary ASQ score and a metabolite assuming an alpha of 0.05, an event rate of 0.09 for plasma
(38/403) and of 0.11 for stool (24/228) across a range of odds ratios (Supplementary Table S8). For the
plasma analysis we had a power of 85% to detect an OR < 0.6 and 93% power to detect an OR > 1.8.
Similarly, for stool we had a power of 99% for an OR < 0.4, and 89% for an OR > 2.

4.4.2. Correction for Multiple Testing

There are currently no consensus standards for multiple testing correction in metabolomics;
methods applied to other ‘omic’ datatypes such as the Bonferroni correction, and even more liberal
corrections are considered too stringent for metabolomics data due to the high correlation of metabolites
that are closely linked together through biological pathways. Therefore, we report a nominal p-value
significance of p < 0.05 throughout. However, we also explore an additional multiple-testing correction
which partially takes into account the presence of highly correlated metabolites mapping to the same
biological pathway, using a principal components analysis (PCA) approach to identify the number
of effective tests [12,13]. We applied PCA to the metabolites that passed quality control (QC) and
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processing and determined the number of components required to explain 50% of the variance in the
data (i.e., the number of effective tests). The adjusted p-value threshold was then calculated as α/m
where α denotes the nominal p-value threshold of 0.05, and m denotes the number of effective (i.e.,
independent) tests. This was applied to both the plasma and the stool metabolites separately.

4.4.3. Diagnosing and Predicting Autism

We compared the rates of autism diagnosis between the communication score categories to
determine whether children “requiring further monitoring/evaluation” at ages 2 and 3 were more
likely to go on to develop autism by age eight than those “on schedule for developing normally”.
We used the Fishers exact test to account for small cell counts. Next, we aimed to determine whether
the plasma metabolites identified as being associated with ASQ at age three had any predictive ability
for autism by age eight. We compared three different predictive models using ROC cures and the
corresponding AUC; Model 1: binary ASQ score at age three; Model 2: a summary score, generated by
taking the first five principal components of the 15 plasma metabolites that were significantly associated
with communication score at age three. Five PCs were chosen, as this was the number required to explain
50% of the variance in the data; and Model 3: Levels of all 15 significant metabolites. For the Models 2
and 3, the sensitivity and specificity were computed based on the optimal cut-off to maximize sensitivity
and specificity weighting both equally, as determined using the ‘ROCR’ package in R [27].

All analyses were conducted in R version 3.5.0 and all statistical tests were two-sided.

5. Conclusions

Despite the relatively limited sample size, this study still represents one of the largest to consider
metabolomics and neurodevelopment. It is unique in the inclusion of both blood and stool metabolites
and is, to our knowledge, the first to explore ASQ scores and metabolomics. We identified a number
of metabolomic pathways and metabolites with biologically plausible relationships with impaired
development of communication skills and with autism risk. Finally, we demonstrated the predictive
ability of these metabolites, providing evidence that ASQ communication score and metabolomic
profiling may provide alternative approaches for early diagnosis of ASDs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/3/42/s1:
Supplementary Figure S1: Trajectory of Communication Score Category at ages 1,2 and 3 in 403 children
with plasma metabolomics profiling; Supplementary Figure S2: (A) Scores plot for the PLS-DA Model Based
on all 481 Plasma Metabolites Comparing Children with ASQ Assessed Communication Skills on Schedule
for Developing Normally (n = 365) versus those Requiring Further Monitoring/Follow up (n-38); R2 = 0.13;
Q2 = −0.21; permutation p-value = 0.994; (B) Plasma Metabolites with a VIP score >2, Indicating the Greatest
Ability to Discriminate Between the Two Groups; Supplementary Figure S3: (A) Scores plot for the PLS-DA Model
Based on all 737 Stool Metabolites Comparing Children with ASQ Assessed Communication Skills on Schedule
for Developing Normally (n = 204) versus those Requiring Further Monitoring/Follow up (n = 24); R2 = 0.10;
Q2 = −1.13; permutation p-value = 0.985; (B) Plasma Metabolites with a VIP score >2, Indicating the Greatest
Ability to Discriminate Between the Two Groups; Supplementary Figure S4: Receiver Operator Characteristic
Curves and Corresponding AUCS for the prediction of autism by age 8 according to three models; Table S1:
Baseline characteristics of 228 children from VDAART with plasma and stool metabolomic profiling and an
ASQ score at age 3; Table S2: Correlation between Communication Score and Scores in the three other ASQ
domains; Table S3: 481 Plasma Metabolites that Passed QC with information on Profiling Platform, Superpathway,
Subpathway and HMDB ID; Table S4: Association Between 15 Significant Plasma Metabolites and Binary ASQ
score, Stratified by Study Site; Table S5: 737 Stool Metabolites that Passed QC with information on Profiling
Platform, Superpathway, Subpathway and HMDB ID; Table S6: Metabolites Associated with Binary ASQ
Communication Score at age three in blood plasma samples from ages 1 and 3; Table S7: Subsequent Diagnoses of
Autism by age eight stratified by ASQ communication score category at age 2 and at age 3 among 403 children
with ASQ communication score and metabolomics profiling; Table S8: Power Analysis for the Plasma and Stool
Logistic Regression Models; assuming an alpha of 0.05 and an event rate of 0.09 and a sample size of 403 for
plasma and an event rate of 0.11 and a sample size of 228 for stool
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