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Abstract: Glycogen-enriched biomass of Arthrospira platensis has increasingly gained attention as
a source for bioethanol production. To study the metabolic capabilities of glycogen production in
A. platensis C1, a genome-scale metabolic model (GEM) could be a useful tool for predicting cellular
behavior and suggesting strategies for glycogen overproduction. New experimentally validated
GEM of A. platensis C1 namely iAK888, which has improved metabolic coverage and functionality
was employed in this research. The iAK888 is a fully functional compartmentalized GEM consisting
of 888 genes, 1,096 reactions, and 994 metabolites. This model was demonstrated to reasonably
predict growth and glycogen fluxes under different growth conditions. In addition, iAK888 was
further employed to predict the effect of deficiencies of NO3

−, PO4
3−, or SO4

2− on the growth and
glycogen production in A. platensis C1. The simulation results showed that these nutrient limitations
led to a decrease in growth flux and an increase in glycogen flux. The experiment of A. platensis C1
confirmed the enhancement of glycogen fluxes after the cells being transferred from normal Zarrouk’s
medium to either NO3

−, PO4
3−, or SO4

2−-free Zarrouk’s media. Therefore, iAK888 could be served
as a predictive model for glycogen overproduction and a valuable multidisciplinary tool for further
studies of this important academic and industrial organism.

Keywords: Arthrospira platensis C1; bioethanol; cyanobacteria; genome-scale metabolic
model; glycogen

1. Introduction

Due to the environmental concerns of production and utilization of fossil fuels, researches towards
renewable energy are currently of great interest. Conversion of carbohydrate-enriched biomass of
microalgae has become one of the promising approaches for sustainable clean energy generation [1].
Since their carbohydrates are in the form of lignin-free cellulose, starch, or glycogen, microalgae are
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much easier to convert to monosaccharides compared to lignocellulosic feedstocks [2]. In particular,
prokaryotic microalgae, cyanobacteria, have certain advantages over eukaryotic microalgae for many
reasons. They possess peptidoglycan cell wall which is easily degraded by fermentation processes [3,4].
Moreover, cyanobacteria accumulate glycogen as storage carbohydrate which is an excellent feedstock
for fermentation over starch [4]. Furthermore, transformation systems in cyanobacteria have been
much better developed [5–7].

Arthrospira (Spirulina) platensis, a filamentous non-nitrogen-fixing cyanobacterium, is an attractive
candidate which has certain properties to be used as promising feedstocks for bioethanol production.
For example, it has the capacity to accumulate large amounts of glycogen during cultivation under
nutrient or environmental stresses [1]. The highest glycogen productivity of 0.29 g L−1 d−1 was
reported under NO3

− depletion and high light intensity of 700 µmol photons/m2/s [8]. It also
has the unique impressive characteristics for industrial applications, including a contaminant-free
culture under the outdoor cultivation [9] and a fast bio-flocculation capability under nutrient starvation
condition [10]. Moreover, Aikawa et al. proposed a low cost technology that generates the highest yield
of bioethanol from carbohydrate-rich Arthrospira biomass by yeast fermentation [3]. Although research
works have showed the potential use of Arthrospira to generate bioethanol, however, the glycogen
productivity is still not high enough to profitably produce bioethanol at the commercial scale.
To overcome this challenge, strategies for enhancement of glycogen content in A. platensis is needed.
Among Arthrospira, A. platensis strain C1 is a good candidate for bioethanol production because it
has distinct advantages over the others in term of strain improvement, non-gliding property [9],
genome sequence [11], transformation systems [12], and the most comprehensive data at the molecular
level, transcriptomics [13,14] proteomics [15–17] and protein–protein interactions [18]. However, the
glycogen production in A. platensis C1 has not been investigated.

Driven by advancements in high-throughput biological and computational technologies,
genome-scale metabolic model (GEM), a mathematical form of the cellular metabolic network,
is currently being the indispensable tool for understanding cell phenotypes and providing rational
strategies to maximize production of a desired metabolic product [19]. GEMs of various organisms
across three domains of life, i.e., archaea, bacteria, and eukarya have been constructed and applied
in various research areas, ranging from industrial to medical biotechnology [20,21]. Flux balance
analysis (FBA) [22] is the most commonly used approach to simulate the GEMs. To investigate the
metabolic activity and integrate omics data for allowing comprehensive studies at the systematic level
of A. platensis C1, the first GEM of A. platensis C1, iAK692, was developed in 2012 [23]. This model
was applied to predict optimal growth behavior, metabolic phenotypes, and essential genes under
autotrophic, heterotrophic, and mixotrophic growth conditions.

Since bioinformatics tools, pathway/genome databases, and literatures have now been updated,
newly curated genes and biochemical knowledge have become available. In this research, an updated
GEM of A. platensis C1 named iAK888 was employed. iAK888 was built based on information of
iAK692 as well as new annotated and curated genomic and biochemical knowledge. The iAK888, a fully
compartmentalized GEM, is the most up-to-date comprehensive model for A. platensis. The model
was demonstrated herein to be a helpful tool for proposing the rational strategies for improvement of
glycogen production in A. platensis C1.

2. Materials and Methods

2.1. Genome-Scale Metabolic Network Reconstruction

The iAK888 was reconstructed by refining and updating the previously reconstructed
genome-scale model for A. platensis C1, iAK692 [23]. The first step in the metabolic network
reconstruction process was genome reannotation, which provided the initial set of gene–protein
reaction (GPR) associations. The draft genome sequence of A. platensis C1 (6.089 Mb; GenBank
NZ_CM001632) [11] was retrieved. A functional annotation was then performed using two independent
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systems: (i) The rapid annotation of microbial genomes using Subsystems Technology (RAST)
annotation servers [24] supported by the SEED [25] and (ii) Kyoto Encyclopedia of Genes and
Genomes (KEGG) Automatic Annotation Server (KAAS) [26]. To increase confidence in the annotation,
the predicted ORFs obtained from iAK692, RAST [18], and KAAS [26] were compared. Only the
shared ORFs were considered and any conflicting annotations were discarded. All transport genes and
reactions were identified using a BLAST search [27] against the Transporter Classification Database
(TCDB) [28].

Subsequently, a list of GPR associations was assembled and manually curated to reflect
actual physiology of A. platensis C1 based on various information sources including biochemical
databases [25,29,30], literatures [31–34], and curated genome-scale models, Synechocystis sp.
PCC6803 [35] and Escherichia coli [36]. Manual curation was performed according to the standard
reconstruction protocol [37]. A confidence scoring system [37] was employed to assign a confidence score
to every network reaction. The score reflects the amount of available evidence type, biochemical data,
genetic data, physiological data, sequence data, and modeling data, associated with individual reaction,
ranging from 1 to 4, where 1 is the lowest and 4 is the highest evidence score. The gene expression data
of A. platensis C1 (accession E-MTAB-2714) [14] were acquired from ArrayExpress in order to verify
existence of predicted ORFs involved in the reconstructed network. Briefly, gene expression data of
the control sample, in which A. platensis C1 was cultured in Zarrouk’s medium at 35 ◦C under a light
intensity of 100 µmol photons/m2/s, were preprocessed and normalized. Then, the average of the
log intensities between a housekeeping gene, 16S rRNA, and all genes were compared. Genes whose
expression were equal to or greater than the housekeeping gene indicated the evidence for the existence
of these genes and the associated reactions. Furthermore, all reactions were charge and mass balanced.
The reaction directions were also assigned based on the standard Gibbs free energy of reaction (∆rGo)
provided by the SEED [25]. Formulas and charges for all metabolites were checked against KEGG [29]
and PubChem [38]. Subsequently, the cofactor specificity of the enzyme in A. platensis C1 was verified
using organism-related species literature. Cellular compartments of candidate genes and reactions
were determined based on the literature and the GEM of Synechocystis sp. PCC6803 [35]. Moreover,
BLAST search [27] and functional domain analysis using Pfam [39] were conducted to refine missing
and low confidence gene annotations. The ambiguous genes existing in the iAK692, but absent in the
annotation results of RAST [24] and KAAS [26] were removed.

Additionally, energy-generating cycles (type-II pathways) or internal cycles (type-III pathways)
were checked during the reconstruction process to ensure that ATP and NAD(P) could not be produced
without nutrient consumption. For ATP, the ATP maintenance flux was optimized when CO2 and
photon uptake fluxes were set to zero. For NAD(P), an artificial reaction NAD(P)H→ NAD(P) + H
was added in the reconstructed network and optimized when CO2 and photon uptakes were not
available. If either ATP or NAD(P) could be produced without nutrient uptake, the reactions related to
the production of these energy metabolite were checked manually.

An organism-specific biomass equation, representing cell growth in silico, was formulated
and used as an objective function for simulating growth phenotypes through FBA [22]. The major
macromolecular constituents of biomass synthesis consisted of protein, carbohydrate, lipid, DNA,
RNA, pigments, vitamins, and minerals. The content of each constituent of iAK888, compared to
the previously published model, iAK692, is shown in Table 1. The protein, carbohydrate, and lipid
were estimated in the exponential growth phase of A. platensis C1 [40]. The stoichiometric coefficients
of DNA, RNA, and protein synthesis reactions were estimated from the nucleotide and amino acid
contents of the published genome of A. platensis C1 [11]. Moreover, the biomass equation for iAK888
also included pigments, vitamins and minerals, of which the coefficients were calculated based on the
published information of the closest species [41–45]. In this study, all stoichiometric coefficients in the
biomass equation were assumed to be constant under different environmental conditions. The detailed
calculation of the biomass equation is provided in Supplementary File S1.
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Table 1. Comparison of biomass constituents between iAK888 and iAK692.

Component Content (%w/w)

iAK888 iAK692 [23]

Proteins 51.44 68
Carbohydrates 31.62 16

Lipids 4.98 11
DNA 0.88 0.88
RNA 3.12 3.12

Colorants 2.84 1
Vitamins 0.11 -
Minerals 2.79 -

Ash 2.27 -
Sum 100 100

2.2. Flux Balance Analysis

Flux balance analysis (FBA) is a widely used constraint-based optimization approach for
predicting specific reaction rates (fluxes) of a large-scale network based on stoichiometry and
steady-state assumption [22]. Briefly, all reactions within a reconstructed genome-scale metabolic
network were converted into a stoichiometric matrix, S, in which each column and row represented
one unique reaction and metabolite, respectively. The entries of S are the stoichiometric coefficients
of metabolites participating in a reaction. By applying the mass balance constraints and steady state
assumption, the particular metabolite’s concentration change per unit time is equal to zero (Sv = 0),
where v represents the vector of reaction fluxes. Then, other constraints such as thermodynamic and
enzyme capacity were accounted, thereby, determining reaction directions (reaction directionality
and reaction reversibility) [46]. Reaction directionality is typically assigned based on a negative ∆rGo

while, reaction reversibility is a kinetic property of enzymes which are able to catalyze the reactions in
the forward and backward directions. Hence, thermodynamic constraints help to decide the reaction
directions in FBA. Finally, a linear programming was applied to maximize or minimize an objective
function, usually the biomass reaction flux. This optimization results in optimal objective flux and
optimal flux distribution of the metabolic network. In this work, the COBRA toolbox version 2 [47]
with MATLAB (The MathWorks, version R2015b) was employed to model and predict cell behaviors
i.e., specific growth rate and glycogen production flux.

2.3. Estimation of Glycogen Production Flux

To represent the glycogen metabolism in A. platensis, iAK888 incorporates 4 glycogen associated
reactions, i.e., (i) glycogen synthesis reaction, (ii) glycogen utilization reaction for biomass growth,
(iii) glycogen transport reaction for carbon storage and (iv) glycogen degradation reaction. In this work,
glycogen was treated as a monomer (C6H10O5, MW = 162.141) in the glycogen synthesis reaction where
one mole of glycogen was synthesized from one mole of glucose-1-phosphate by glycogen synthase
(glgA, EC 2.4.1.21). In addition, glycogen phosphorylase (glgP, EC 2.4.1.1) that is responsible for the
glycogen degradation was assumed to be inactive under autotrophic growth. Thus, the glycogen
production flux was simply determined from the flux of the glycogen synthesis reaction.

2.4. Model Validation

To evaluate the accuracy of the reconstructed metabolic model, comparisons between predicted
phenotypes and experimental data, including a maximal growth rate under different growth conditions
and maximal carbohydrate production flux under nitrogen depletion condition were performed.

For prediction of the maximum specific growth rate, the experimental data sets in which
A. platensis C1 was grown under autotroph, heterotroph, and mixotroph were calculated and used
as the input parameters. Cells grown under autotrophic conditions were simulated and compared,
including two independent sets of A. platensis C1 experiments, (i) setting the photon uptake rate
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to 100 µmol photons/m2/s and HCO3
− uptake rate to 0.2 mmol/gDCW/h [23] and (ii) setting the

photon uptake rate to 200 µmol photons/m2/s and HCO3
− uptake rate to 0.25 mmol/gDCW/h [48].

Cells grown under a heterotrophic condition were simulated by setting the photon uptake rate to zero
and glucose uptake rate to 0.017 mmol/gDCW/h [23]. For mixotrophic condition, cell growth was
simulated by setting the photon uptake rate to 100 µmol photons/m2/s, HCO3

− uptake rate to 0.2
mmol/gDCW/h, and glucose uptake rate to 0.017 mmol/gDCW/h [23].

To further assess the reliability of the model, the maximum total carbohydrate production flux
under nitrogen depletion condition was predicted. The photon and HCO3

− uptake rate were set at
100 µmol photons/m2/s and 0.2 mmol/gDCW/h, respectively. NO3

− uptake rate and specific growth
rate were set to zero as observed in the experiment [49]. The objective function was accounted for
maximizing the carbohydrate production flux.

For all the simulations, the uptake rates of all nutrients present in the Zarrouk’s medium [50] were
constrained as 0 to −1000, while the transport fluxes of CO2, O2, and H2O were left unconstrained.
In addition, all photons were assumed to be absorbed and used for driving photosynthesis without
the influence of photoinhibition.

2.5. Simulation of Glycogen Production Under Nutrient-Limited Conditions

The effect of NO3
−, PO4

3−, and SO4
2− on growth and glycogen production were simulated

by FBA [22] under the autotrophic condition. The specific uptake rate of HCO3
− was fixed at

1.6 mmol/gDCW/h for all simulations to guarantee an excess carbon condition. The maximum photon
uptake flux was set to 100 µmol photons/m2/s. The effect of each nutrient on specific growth rate and
total glycogen production flux was analyzed by varying the uptake flux values of each nutrient, NO3

−,
PO4

3−, and SO4
2−. The objective function was set to maximize the flux of the glycogen synthesis

reaction. Additionally, flux variability analysis (FVA) [51] was performed to determine the minimum
and maximum possible fluxes under the simulation conditions. Geometric FBA [52] was also used to
determine a unique optimal solution which is central to the range of possible flux distributions.

2.6. Experimental Validation

To evaluate the validity of iAK888, A. platensis C1 (PCC9438) was cultured in 1 L Erlenmeyer
flasks containing 500 mL of Zarrouk’s medium [50] at 35 ◦C under white fluorescent illumination
at 100 µmol photons/m2/s until mid-logarithmic phase. Then, the cells were transferred to three
different Zarrouk’s media, lacking either nitrate (NaNO3 and Co(NO3)·6H2O), or phosphate (K2HPO4),
or sulfur (K2SO4, FeSO4·7H2O, MgSO4·7H2O, ZnSO4·7H2O, CuSO4·5H2O, NiSO4·7H2O, Ti(SO4),
and K2Cr2(SO4)4·24H2O), and then re-incubated under the same incubation conditions as mentioned
above. The control experiments were carried out in normal Zarrouk’s medium formulation [50].
Samples were collected at each time point 0, 3, 6, 12, 18, 24, 48, 72 and 96 hours after the cells were
transferred to different media, and were kept frozen at −80 ◦C for further analysis. All experiments
were repeated in triplicate.

To analyze growth of A. platensis C1, the cell concentration was quantified by turbidity based
on the optical density at 560 nm (OD560) using a Genesys 20 spectrophotometer (Thermo scientific,
Waltham, MA) and measured for dry cell weight (DCW). The correlation between OD560 and DCW
(DCW in g/L = 1.0888xOD560) was calculated based on triplicated experiments. Glycogen content
was measured using iodine-glycogen assay [53]. Briefly, 100 µL of wet cell was mixed with 50 mg
of glass beads and 500 µL of phosphate-buffered saline. The samples were vortexed at maximum
speed for 5 min and incubated at 65 ◦C for 10 min. The samples were then centrifuged at 12,000 rpm
for 10 min at 4 ◦C. Subsequently, 100 µL of supernatants were mixed with 5 µL of iodine solution in
Greiner 96-well plate and incubated at 25 ◦C for 1 min. Absorbance was determined using Microplate
reader (Tecan Infinite M200, Mannedorf, Switzerland) at a wavelength of 492 nm. The glycogen
concentration of the samples was calculated using the equation obtained from the linear regression of
the standard curve.
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3. Results and Discussion

3.1. Reconstruction of the Updated Genome-Scale Metabolic Network of A. platensis C1

Genome annotation showed that the rapid annotation of microbial genomes using Subsystems
Technology (RAST) annotation servers [24] predicted a total of 2626 (1759 unique genes), whereas the
KEGG Annotation Server (KAAS) [26] predicted a total of 1729 genes (1011 unique genes). Using the
previously published genome-scale reconstruction for A. platensis C1 (iAK692) [23] as a reference,
the annotation results overlapping among these three sources were analyzed. There were 513 conserved
genes while 70 genes were shared between iAK692 [23] and KAAS [26]; 45 genes were shared between
iAK692 [23] and RAST [24]; 275 genes were shared between RAST [24] and KAAS [26] (Figure S1).
These large overlaps found between sources indicated good annotation quality. Genes found in all
sources or two of the sources were considered to have the high reliability. Regarding to the transport
gene annotation, approximately 116 new transport genes in the genome encoding for transporters
or transport-related proteins were obtained from KAAS [26] and TCDB [28]. This is because the
transportation mechanisms in iAK692 [23] were only diffusion reactions. Thus, in this reconstruction,
ABC transport reaction and symport or antiport reactions were addressed based on annotation-based
inference of transporter function to represent the transport machinery of A. platensis C1. Subsequently,
the GPR of all candidate genes were then manually curated based upon various information such as
physiological evidence in literature, gene expression [14], and biochemical databases. Importantly, the
reactions involved in glycogen biosynthesis and degradation pathways were elaborated.

The reactions were balanced for charge and mass to prevent infeasible cycles. However, there
were still mass- and charge-unbalanced reactions because either the associated metabolites contained
an unspecified metabolite, R groups, or the correct reaction mechanism was unknown. During the
curation, a metabolic gap was identified and filled through repeated cell growth simulations using
FBA [22] until a positive flux on the biomass reaction was observed. These processes led to the
modification of genes, reactions, and metabolites in iAK692 [23] and addition of new metabolic genes
and their associated reactions in the updated model. For genes, 60 (6%) genes were removed, 268 (28%)
genes were added, and 620 (66%) were refined. For reactions, 202 (15%) reactions were removed,
423 (33%) were added, and 673 (52%) were refined. For metabolites, 140 (12%) metabolites were
removed, 297 (26%) were added, and 697 (62%) were refined (see Supplementary File S2 for details).
Obviously, significant improvements in annotation resulted from not only re-annotation information
collected from RAST [24] and KAAS [26] but also a manual effort to assess the reliability of such
annotation. This is a crucial prior step to address the careful revision of the first genome-scale network
reconstruction and derived constraint-based model of A. platensis C1 published in 2012 [23].

3.2. Characteristics of iAK888 and Comparison

iAK888 contains 1096 metabolic reactions, 994 metabolites, and 888 genes-representing 15% of total
protein coding genes in the genome [11]. Of all reactions, 751 (68.5%) were gene associated enzymatic
reactions whereas non-gene associated enzymatic reactions, transport reactions and exchange reactions
were 66 (6%), 182 (16.6%) and 97 (8.9%), respectively (Table 2). The reactions revealed 9 major
subsystems (Figure 1A) including 56 metabolic pathways, as defined by KEGG [29]. Vitamins and
cofactors metabolism and transport represented the largest portions of the network. These likely
represented A. platensis physiology, an excellent source of vitamins [9] and reflected the fact that
approx. 6% of A. platensis C1 genome encoded for transporters [11]. The reactions distributed over six
cellular compartments including carboxysome, thylakoid lumen, thylakoid membrane, cytoplasmic
membrane, cytoplasm and periplasm, with the majority of reactions localized to the cytosol (Figure 1B).
This observation agreed well with the known life cycle of A. platensis [9]. Figure 1C showed the
non-gene associated and gene associated reaction involved in each pathway. Notably, these non-gene
associated reactions were required to complete the metabolic network of A. platensis C1 and were also
observed in other GEMs [54,55]. Besides, the metabolites localized in different compartments of the
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fully compartmentalized model are considered as distinct metabolites. Therefore, without considering
subcellular sites, the model accounted for 796 unique metabolites. Additionally, the quality of model
reconstruction was assessed using the confidence scores associated to each reaction (Figure S2).
The overall confidence score was 3.38. Almost 89% of the internal reactions (936) have been either very
well or well-studied where extensive physiological and sequence evidences are available, while 11%
were primarily based on the genome annotation and modeling hypotheses. The new metabolic network
reconstruction for iAK888 is provided in a spreadsheet format (Supplementary File S3) that includes
curation notes and references.

Table 2. Comparison of network model characteristics of A. platensis species.

Arthrospira Species A. platensis C1 A. platensis NIE-39

Genome Statistics - -

Genome size (bp) 6,089,210 6,788,435
Protein coding genes 6108 6630
Gene with enzymes 952 905
Transporter genes 345 NA

Model Name/Characteristics iAK888 iAK692 -

Total genes in model 888 (15%) 692 (11%) 620 (9%)
- Metabolic genes 767 692 579

- Transporter genes 121 0 41
Total biochemical reactions 1096 875 746

- Metabolic reactions 817 699 652
- Transport reactions 182 88 60
- Exchange reactions 97 88 34

Metabolites 994 837 673
Compartments 6 2 2

Reference This study [23] [55]

The properties of iAK888 were compared with the properties of two published GEM of
A. platensis NIE-39 [55] and the first GEM of A. platensis C1 [23]. The iAK888 appeared to contain
the largest number of genes, reactions, metabolites, and sub-cellular compartments (Table 2).
It was evidently clear that the model reported in this research was the largest in terms of gene
coverage. A comparison between iAK888 and iAK692 [23] specifically showed that iAK888
represented an increase in number of genes, reactions, and metabolites over iAK692 [23], by 196,
221, and 157, respectively (Figure 2A). Of the increased genes, 75 (38%) genes were the updated
metabolic genes whereas 121 (62%) genes were the additional transport genes. The reactions
associated to these genes covered a wide array of key metabolic functions mainly relevant to
carbohydrate metabolism, lipid metabolism, vitamins and cofactors metabolism, and transports
(Figure 2B). Furthermore, this effort was made to reconstruct some of the pathways which were
either incomplete or not considered in the previous reconstruction such as tricarboxylic acid cycle
(TCA) cycle, photosynthesis and oxidative phosphorylation, carbon concentrating mechanism
(CCM), fatty acid biosynthesis, glycogen metabolism, polyhydroxyalkanoates biosynthesis, and
hydrogen biosynthesis (Figure 2C). The incomplete TCA cycle in iAK692 [23] was improved
based on the latest evidence reported in cyanobacteria [31,56]. Subsequently, the description of
photosynthesis and oxidative phosphorylation was significantly improved according to a model
organism, photosynthetic Synechocystis sp. PCC 6803 [35]. These included the photosynthetic linear
electron flow (LEF) pathway [57], including photosystem I and II, alternate electron flow (AEF)
pathways [58], and photorespiration [59]. In addition, the molecular components involved in CCM
of A. platensis C1 were annotated and incorporated for a more precise understanding of the primary
carbon metabolic route. There are 18 genes/proteins associated to the CCM in iAK888. Finally,
reactions associated with polyhydroxyalkanoates and hydrogen biosynthesis were formulated to
complement the physiological ability of A. platensis C1. In summary, iAK888 was considered to be the
most comprehensive A. platensis model to date.
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Figure 2. Comparison between iAK888 and iAK692. Overview features of iAK888 compared
to iAK692 (A). Number of reactions in each metabolism of iAK888 compared to iAK692 (B).
Schematic representation of iAK888 and the example of the filled pathways compared to iAK692
(C). Zoomed out sections are pathways that were completed in iAK888. Red texts and arrows indicate
missing pathways in iAK692.
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3.3. Validation of iAK888

For the growth verification, results showed that the model accurately predicted the growth rates
with the error less than 5% in all culture conditions (Table 3). Moreover, the model generated oxygen
under autotrophic and mixotrophic growth conditions. The released oxygen content under autotroph
was higher than mixotroph. On the other hand, the model consumed oxygen and produced CO2

under heterotrophic simulations. These results suggested that iAK888 was able to represent the basic
behavior of A. platensis C1. The models in SBML format for all four growth conditions are provided in
Supplementary File S4–7. Besides, flux distributions of these three growth conditions are presented in
Supplementary File S8.

Table 3. Comparison of in silico and experimental growth.

Growth
Condition

Constraints of Consumed Metabolites Maximal Specific Growth Rate (1/h)

% ErrorPhoton Flux
(µmol photons

m−2 s−1)

HCO3
− Uptake

Flux (mmol/g
DCW/h)

Glucose Uptake
Flux (mmol/g

DCW/h)
Experiment In Silico

Autotroph 100 0.2 0 0.0255 [23] 0.0252 1.2
Autotroph 200 0.25 0 0.0331 [48] 0.0334 0.9

Heterotroph 0 0 0–0.017 0 [23] 0 0
Mixotroph 100 0.2 0–0.017 0.0262 [23] 0.0260 0.8

Furthermore, an effort was made to investigate the total carbohydrate production flux under
NO3

− depletion. The simulation was performed to imitate the experimental conditions [49] with
the following parameters: HCO3

− uptake rate, 0.2 mmol/gDCW/h; photon uptake rate, 100 µmol
photons/m2/s; no growth and NO3

− uptake rate. The objective function was set to maximize the
total carbohydrate production flux. Result showed that the in silico total carbohydrate production flux
(0.0868 mmol/gDCW/h) was consistent with the experimental production (0.081 mmol/gDCW/h) [49].
The models in SBML format and flux distributions can be found in Supplementary File S9 and S10,
respectively. These results suggested that iAK888 could predict the growth rates and carbohydrate
production of A. platensis C1 reasonably well.

3.4. Prediction of Glycogen Overproduction Using iAK888

Herein, the impacts of nutrient starvation on growth and glycogen production were simulated to
predict cultivation strategies for enhancing glycogen content in A. platensis C1. iAK888 was simulated
by varying the uptake flux of NO3

−, PO4
3−, and SO4

2− under autotrophic conditions with the
following parameters: HCO3

− uptake flux, 1.6 mmol/gDCW/h; photon uptake flux, 100 µmol
photons/m2/s. In overall, limitation of NO3

−, PO4
3−, and SO4

2− uptakes and the excess HCO3
−

resulted in the negative effect on growth, while revealed positive effect on glycogen production
(Figure 3A–C). Obviously, the specific growth rate rapidly decreased when limited levels of NO3

−,
PO4

3−, and SO4
2− were introduced. Apparently, iAK888 expressed ability to rapidly accumulate

glycogen when the uptake flux of each nutrient was lower than the optimal uptake flux for biomass
production. On the other hand, when the uptake flux of each nutrient was higher than the optimal
uptake flux for biomass production, the glycogen production flux exhibited no flux values.
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The internal metabolic fluxes throughout the central metabolism were determined using geometric
FBA [52]. HCO3

− uptake rate was constrained to 1.6 mmol/gDCW/h whereas, NO3
−, PO4

3−,
and SO4

2− were constrained to half of the optimum uptake rate for growth. Flux map (Figure 4)
showed that all reactions in the central metabolism were activated to provide maximum biomass.
The excess carbon was secreted as glycogen under NO3

−, PO4
3−, and SO4

2−-insufficient growth.
Fluxes comparison under different perturbations provided information on how central metabolic
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reactions respond to the altered growth condition, although each perturbation resulted in the similar
overall phenotype. They exhibited different flux patterns. All fluxes in the central metabolisms
were higher under NO3

−-limited growth than the normal growth considered as NO3
−-sufficient

condition. All fluxes in the TCA cycle and some reactions of the glycolysis and non-oxidative pentose
phosphate pathway were lower under PO4

3−, and SO4
2−-limited growth than the normal growth.

A consequence of increased fluxes and metabolites in the central carbon pathway under NO3
−

starvation led to the enhanced synthesis of glycogen in iAK888. This showed some agreements
with recent metabolomic observations during the glycogen production phase in A. platensis NIE-39
cultured under nitrate-free (Society of Toxicology) SOT medium [60]. The time-course analysis of the
primary metabolites content revealed a transient increase of glucose-1-phosphate, glucose-6-phosphate,
fructose-6-phosphate, 2-ketoglutarate, succinate, and malate. Besides, simulation of each nutrient
limitation with excess carbon showed secretion of pyruvate, acetate, and lactate (see Supplementary
File S11–13). In agreement with the experimental results, it was found that A. platensis NIES-39 cultured
under nitrate-limited condition produced pyruvate, acetate, and lactate in the culture medium [55].
Regarding to PO4

3−, and SO4
2− starvation, the simulation results showed that the changes in flux

patterns of both nutrients were very similar. Obviously, limitation of these nutrients greatly affected
the fluxes through phosphoglycerate mutase, enolase, pyruvate kinase, and malate dehydrogenase
reactions in comparison to the normal growth and NO3

−-limited conditions. These much lower fluxes
occurred at the branch points where the precursor metabolites were drained for the synthesis of amino
acid. However, future inclusion of such experimental data could be expected to verify the prediction
of flux distribution under each nutrient limitation.
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Figure 4. Illustrative fluxes in central metabolic predicted by geometric FBA for each growth condition:
Control (black), NO3

−-limited (NO3
−, blue), PO4

3−-limited (PO4
3−, green) and SO4

2−-limited
(SO4

2−, orange). The diagram included key reactions including the glycolysis, the carbon fixation
through CO2-concentrating mechanism, the nonoxidative pentose phosphate pathway, the TCA cycle,
and biosynthetic pathways of glycogen. Single and double-headed arrows indicate reactions assumed
to be irreversible and reversible, respectively. Numbers labeled at the corresponding arrows show flux
values in mmol/gDCW/h.
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3.5. Experimental Validation of iAK888 Prediction for Glycogen Overproduction

Since iAK888 suggested that NO3
−, PO4

3−, and SO4
2− starvation enhance glycogen content in

A. platensis C1, -growth rate and glycogen production under NO3
−, PO4

3−, and SO4
2− depletion was

experimentally determined. A. platensis C1 was cultured with standard Zarrouk’s medium [50] and
cells were transferred to nitrogen, phosphorus, or sulfur depleted Zarrouk’s medium [50]. Changes in
cell growth and glycogen content of A. platensis C1 were investigated for 96 h. Regarding to growth
in term of dry weight (Figure 5A) and growth rate (Figure 6A), the results showed no significant
differences between control and experiments in the first 18 h. However, further incubation for 96 h,
the dry weight and the growth rate under NO3

− and SO4
2− starvation decreased significantly (p < 0.05)

whereas the dry weight under PO4
3− starvation gradually increased, even though the growth rate was

lower than that of the control. An increase in growth observed during the first 18 h might be due to
the results from availability of endogenous nitrogen, phosphorus, and sulfur. In terms of glycogen
content (Figure 5B) and glycogen production flux (Figure 6B), cells subjected to PO4

3− and SO4
2−

depletion showed a significant increase in glycogen content and production flux (p < 0.01) in the first
18 h. In contrast, the significant increase in glycogen content and production flux were observed in the
NO3

−-free medium after 24 h (p < 0.01).
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Figure 6. The specific growth rate growth (A) and the glycogen production flux (B) under the
control, NO3

−-depleted, PO4
3−-depleted and SO4

2−-depleted conditions. * and ** represent significant
difference at the p-value < 0.05 and the p-value < 0.01, respectively.

Compared to the results predicted by FBA simulations, glycogen flux was considered to be
consistent with those obtained by experiments, suggesting that NO3

−, PO4
3−, and SO4

2− depletion
induced an increase of glycogen production in A. platensis C1. Notably, only the growth rate under
PO4

3− starvation between the experimental and iAK888-simulated fluxes had no significant difference.
It should be noted that despite FBA [22] being widely used approach for simulating a large-scale
cellular metabolism under a certain condition, this method could only be used to predict the steady
state snapshot of flux distribution. Thus, using the FBA approach [22] was unable to directly analyze
the transient states of cell metabolism such as a concentration of metabolite and dynamic change
in the flux with time. These reasons might cause the discrepancy between the FBA simulation and
the experiment.

4. Conclusions

In this study, an improved genome-scale model for A. platensis C1, iAK888, was performed.
The iAK888 model displayed a highly detailed reconstruction capturing the fundamental knowledge
and the significantly biotechnological capabilities as compared to the previous model, iAK692.



Metabolites 2018, 8, 84 14 of 17

The iAK888 model was demonstrated to be a suitable model for prediction of growth and carbohydrate
production flux of A. platensis C1 under various conditions. Moreover, it was demonstrated that
the iAK888 model could suggest rational cultivation strategies for overproduction of glycogen in
A. platensis C1. In the future, this new model shall be a versatile platform for further studies towards
glycogen-enriched A. platensis C1 as an alternative feedstock for bioethanol production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/4/84/s1.
Figure S1: The Venn diagrams illustrate the overlapped genes among RAST [24], KAAS [26], and iAK692 [23].
Figure S2: Heat map of the confidence score of each pathway in iAK888. The columns represent the level
of confidence score (ranging from 1 to 4) and the rows represent the metabolic pathway. The various colors
correspond to the percentage of pathway reactions that have the corresponding confidence score (orange = 100%,
blue = 0%). Based on the confidence score system [37], 4 represents physiological and genetic evidence, 3 represents
direct and indirect evidence for gene function, 2 represents indirect evidence from physiological data or only
sequence-based evidence, and 1 represents modeling evidence. Supplementary File S1: Biomass composition of
A. platensis C1. Supplementary File S2: Genome annotation. Supplementary File S3: Detailed GPR information of
model iAK888. Supplementary File S4: SBML of autotrophic growth photon uptake 100 µmol photons/m2/s.
Supplementary File S5: SBML of autotrophic growth photon uptake 200 µmol photons/m2/s. Supplementary
File S6: SBML of heterotrophic growth. Supplementary File S7: SBML of mixotrophic growth. Supplementary
File S8: Flux distribution of autotrophic, heterotrophic, and mixotrophic growth. Supplementary File S9: SBML
of carbohydrate production under NO3

− depletion. Supplementary File S10: Flux distribution of effect NO3
−

depletion on carbohydrate production. Supplementary File S11: Flux distribution of effect NO3
− depletion

on growth and glycogen. Supplementary File S12: Flux distribution of effect PO4
3− depletion on growth and

glycogen. Supplementary File S13: Flux distribution of effect SO4
2− depletion on growth and glycogen.
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