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Abstract: Machine learning uses experimental data to optimize clustering or classification of samples
or features, or to develop, augment or verify models that can be used to predict behavior or properties
of systems. It is expected that machine learning will help provide actionable knowledge from
a variety of big data including metabolomics data, as well as results of metabolism models. A variety
of machine learning methods has been applied in bioinformatics and metabolism analyses including
self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy
logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing
availability of genomics and metabolomics data for the optimization of metabolic network models
and their analysis. In this context, machine learning has aided the development of metabolic
networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis
of major features in the model for the optimal application of bioreactors. Examples of this very
interesting, albeit highly complex, application of machine learning for metabolism modeling will
be the primary focus of this review presenting several different types of applications for model
optimization, parameter determination or system analysis using models, as well as the utilization of
several different types of machine learning technologies.

Keywords: system biology; metabolomics; metabolism modeling; machine learning; genomics

1. Introduction

Metabolism is the basic process in every biological system providing energy, building blocks
for cell’s development and adaptation, as well as regulators of a variety of biological processes. It is
becoming generally understood and accepted that metabolomics delivers the closest insight into
physiological processes, providing valuable data for disease diagnostics, toxicological studies and
treatment follow-up or optimization in a variety of applications from clinical to environmental or
agricultural sciences. Recent analysis has shown that in the domain of precision medicine metabolomics
provides highly complementary information to next generation sequencing, allowing a very good
method for distinguishing between genes that are actually causing disease or are benign mutations,
therefore helping in disease risk assessment and customization of drug therapy [1]. In addition,
accurate modeling of metabolism, made possible with improved computer technology and the
availability of a large amount of biological data, is becoming increasingly important for a number of
highly diverse areas from bioreactor growth, drug target determination and optimization and testing
to environmental bioremediation, for example. Many of these applications produce large amounts of
data requiring different aspects of analysis and allowing derivation of different knowledge including
sample or biomolecule clustering or classification, the selection of major features and components,
as well as the optimization of model parameters. Machine learning has been used for all of these tasks
(Box 1).
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Box 1. Definition of several basic terms used in machine learning and throughput this text.

Unsupervised learning algorithms identify patterns from data without any user input providing for example
data-driven sample separation or feature grouping based only on the data;

Supervised learning algorithms use previously labeled data (training set) to learn how to classify new,
testing data. This approach determines major features or combinations of features that can provide the highest
sample label accuracy in the training set and uses this information for future input labelling.

Classification is a process of mapping input data to a discrete output, e.g., sample label. The quality of
classification results is determined using accuracy, i.e., sensitivity and specificity;

Regression is a process of mapping input data to a continuous output variable, e.g., quantity or the size.
The quality of regression prediction is determined using root mean squared error.

Machine learning has been defined in many ways, from “a field of study that gives computers
the ability to learn without being explicitly programmed” [2] to the more specific and descriptive
definition given by Mechell [3]: “a computer programs is said to learn from experience (E) with
respect to some class of tasks (T) and performance measure (P) if its performance at tasks in T as
measured by P improves with experience E”. Although machine learning is an old area of computer
sciences, the availability of sufficiently large datasets providing learning material, as well as computer
power providing learning ability resulted in machine learning applications flourishing in biological
applications only recently. Machine learning methods can be grouped by algorithm similarities as
shown in Table 1. Many of these methods have been used in metabolomics analysis, and some related
references are provided in the table. Several methods have been used for cell metabolic network
modeling, and those will be discussed in greater detail below.

Table 1. Groups of machine learning algorithms based on algorithm similarities. Groups are
based on [4,5]. Sample examples of the metabolomics application of methods are provided in the
references included.

Algorithm Group Short Description Methods and Some Metabolomics Uses

Regression algorithms [6,7] Iteratively improve the model of the relationship
between features and labels using the error measure

Ordinary Least Squares Regression (OLSR); linear
regression; stepwise regression; Local Estimate Scatterplot
Smoothing (LOESS)

Instance-based algorithms [8,9] Compare new problem instances (e.g., samples) with
examples seen in training.

k-Nearest Neighbors (kNN); Self-Organized Map (SOM)
and Locally Weighted Learning (LWL); SVM

Regularization algorithms [10,11] An extension to other models that penalize models based
on their complexity generally favouring simpler models.

Least Absolute Shrinkage and Selection Operator (LASSO)
and elastic net

Decision tree algorithms [6,12]

Trained on the data for classification and regression
problems providing a flowchart-like structure model
where nodes denote tests on an attribute with each
branch representing the outcome of a test and each leaf
node holding a class label.

Classification and regression tree (CART); C4.5 and C5.0;
decision stump; regression tree

Bayesian algorithms [13] Application of Bayes’ theorem for the probability of
classification and regression.

Naive Bayes, Gaussian naive Bayes, Bayesian Belief
Network (BBN); Bayesian Network (BN)

Association rule learning
algorithms [14]

Methods aiming to extract rules that best explain the
relationships between variables. A priori algorithm; Eclat algorithm

Artificial neural network
algorithms including deep
learning [15,16]

Building of a neural network.

Perceptron
back-propagation
Hopfield network
Radial Basis Function Network (RBFN)
Deep Boltzmann Machine (DBM)
Deep Belief Networks (DBN)
Convolutional Neural Network (CNN)
stacked auto-encoders

Dimensionality reduction
algorithms [17,18]

Unsupervised and supervised methods seeking and
exploiting inherent structures in the data in order to
simplify data for easier visualization or selection of
major characteristics.

Principal Component Analysis (PCA)
Principal Component Regression (PCR)
Partial Least Squares Regression (PLSR)
Sammon mapping
Multidimensional Scaling (MDS)
projection pursuit
Linear Discriminant Analysis (LDA)
Mixture Discriminant Analysis (MDA)
Quadratic Discriminant Analysis (QDA)
Flexible Discriminant Analysis (FDA)

Ensemble algorithms [19]

Models composed of multiple weaker models that are
independently trained leading to predictions that are
combined in some way to provide greatly improved
overall prediction.

boosting
bootstrapped aggregation (bagging)
AdaBoost
stacked generalization (blending)
Gradient Boosting Machines (GBM)
Gradient Boosted Regression Trees (GBRT)
random forest
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Machine learning methods have been used for analyses in all steps of the metabolomics process
(Figure 1) including:

• Analyses of points or bins from the metabolomics measurements such as NMR spectra or MS
spectrograms (examples of use of PCA and PLS methods are too many to reference). A recent
example of an application of deep learning, as well as SVM, RF and several other machine learning
algorithms was presented by Alakwaa et al. [20];

• Assignment of peaks in spectrograms or spectra for metabolite identification [12,21];
• Quantification of metabolite concentrations from high throughput data [22,23];
• Selection of a sets of the most informative attributes (“feature selection”) for given sample

groups [19,24];
• The combination of features or points using certain rules (e.g., principal components) aimed

at reducing the number of features for analysis or selection of major variances (reviewed in,
for example, [25,26]).
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Figure 1. Overview of different data analysis steps in metabolomics and metabolism modeling where
machine learning methodologies have found uses.

Examples include unsupervised and supervised [5] type analysis either trying to group samples
or features without any user input or bias or trying to get the best classification models based on
user-labelled training data, respectively. Several reviews provide a general overview of the application
of machine learning in omics [27,28] and metabolomics [29–32], as well as clinical application of
metabolomics through machine learning [33,34]. Analyses have utilized several commercial tools,
as well as many freely available applications with some highly useful, freely available software
providing straight forward application of machine learning listed in Table 2. Other metabolomics
software, some including machine learning methods, are listed in [35,36], in earlier publications [37,38]
and also within the R package. In addition, the number of freely available tools provides ways for
an all-inclusive workflow in metabolomics analysis from data preprocessing all the way to metabolic
network analysis. Examples of such tools are mummychog [39], Cytoscape [40] and Galaxy [41].
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Table 2. Freely available software tools providing machine learning methods applicable to the
metabolism analysis.

Tool Name Focus Availability

FingerID [21,42] Molecular fingerprinting http://www.sourceforge.net/p/fingerid
SIRIUS [43] Molecular fingerprinting https://bio.informatik.uni-jena.de/software/sirius/

Metaboanalyst [44] General tool for metabolomics analysis http://www.metaboanalyst.ca/
MeltDB 2.0 [45] General tool for metabolomics analysis -

KNIME * General machine learning tool https://www.knime.com/
Weka [46] General machine learning tool https://www.cs.waikato.ac.nz/ml/weka/
Orange * General machine learning tool https://orange.biolab.si/

TensorFlow General machine learning tool https://www.tensorflow.org/

* Visual programming languages made for easy software development without extensive programming knowledge.

Several different applications of machine learning in modeling of cell metabolism will be presented
in an attempt to show the variety of possibilities that can result from combining metabolism modelling,
omics data and machine learning rather than trying to show all examples of machine learning
utilization in metabolism modelling and metabolomics.

2. Metabolism Modeling

Integrated analysis of the heterogeneous, high-throughput omics data is necessary in order to
determine true factors leading to observed or possible physiological states, to obtain the most sensitive
and specific markers or fully understand the effects of treatments, pathogens or toxins. Mathematical
and computational models provide platforms for the integration of disperse knowledge and for testing
and prediction of behaviours under different environments or following different manipulations.
In other words, in silico models provide an avenue for a controlled analysis of targets, biomarkers or
cell growth under different conditions. In this way, modeling can help unravel complex diseases while
at the same time allowing the determination of possible treatment targets or in silico testing of drug or
toxin effects.

Any biological process, including metabolic processes, can be represented as a pathway with
interconnected nodes, and thus, mathematical models such as graph theory, ordinary differential
equations, Petri nets, etc., have an obvious role in the simulation of biological systems. For a structural
view, a metabolic network can be perceived as a bipartite graph that consists of two sets of
nodes representing metabolites and biochemical processes. Graph visualization of the metabolic
network provides a way to gather and combine information from the literature, expert knowledge,
public databases, as well as omics results, but does not allow simulation of the processes in the network.
In a simulation, the dynamics of chemical processes in the metabolic network can be described at
various levels of detail. Models can, on one side, include comprehensive kinetic representation of
each included pathway thus allowing accurate prediction of the dynamic behavior of a subset of
pathways or, at the other extreme, the genome scale models of the whole network can be subjected
to stoichiometric analysis with constrained parameter ranges and the assumption of the steady state
while allowing modeling of a complete cell network showing the steady state behavior of cells or
even organisms (Figure 2). Between these two extremes are for example structural kinetic models [47],
the analysis of “superpathways” [48] or models using Petri nets initially proposed by Reddy et al. [49]
and extensively reviewed by [50,51], providing some level of dynamic analysis of larger, albeit not
complete, networks. In all cases, models are based on prior knowledge. A very interesting and detailed
classification of metabolism modeling methods has been presented by [52], and a greater level of detail
is shown in the associated mind map [52].

http://www.sourceforge.net/p/fingerid
https://bio.informatik.uni-jena.de/software/sirius/
http://www.metaboanalyst.ca/
https://www.knime.com/
https://www.cs.waikato.ac.nz/ml/weka/
https://orange.biolab.si/
https://www.tensorflow.org/
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Figure 2. Schematic comparison of representative methods for the metabolic pathway and network
models including different constraints and approaches to defining metabolic reactions.

Detailed kinetic models have been built from ex vivo enzymatic measurements and
Michaelis–Menten or related kinetic laws with the possibility for optimization of a few factors using
experimental data and optimization methods. An increasing availability of genomics data and a variety
of highly innovative bioinformatics techniques led to an ever-increasing number of biological networks
constructed and presented [53]. Genome-scale metabolic networks allow constraint-based flux analysis
in stoichiometrically-defined networks, ultimately encompassing all known processes in organisms
with the possibility for adaptation to the metabolism of specific cells, as well as modeling of groups
of cells present in an organ [54]. However, the inference of biological network parameters from
experimental data remains a major challenge due to the dynamic nature of the system, the non-linearity
of the systems and the fact that only a fraction of components and environments in the system
can be measured. Incomplete knowledge of many feedback and feed-forward controls [55] and
the incompleteness of detailed knowledge concerning the effects of inhibitors, gene mutations and
environments, on one side, with the increasing availability of different types of omics data describing
a variety of cellular systems (e.g., genomics, metabolomics measured in different tissues, longitudinal
studies or following different treatments) makes machine learning application to this problem highly
desirable [56]. This is further compounded by the importance of biological questions that can be
resolved using accurate, targeted metabolic network models and the relational spatial and temporal
structure of interactions between the involved molecules [56].

3. Machine Learning in Metabolism Modeling

Machine learning algorithms have been used to build or optimize kinetic and genome-scale
models from example data in order to make data-driven predictions or conclusions [53,57,58].
For existing models, machine learning algorithms have been used to determine the essentiality of
features in a network (reviewed in [57]). Furthermore, machine learning, for example clustering or
SVM, can be used to map genomics, proteomics or metabolomics data onto a metabolic model where
different omics and model data can be integrated in multi-view machine learning algorithms with
possibly different machine learning algorithms analyzing each omics layer followed by the aggregation
of layers as shown with the methods developed in multi-layer network theory [52].

Regardless of the application, the development of predictive models using a machine learning
approach is accomplished in several steps: (a) selection of learning attributes; (b) construction of
training and test sets; (c) selection of learning algorithms; (d) design of the machine learning approach;
(e) evaluation of the predictive performance of models. All of these steps have to be considered and
optimized in machine learning development or the application of metabolism models, either kinetic,
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genome scale or mixed. In the following, we will present examples of machine learning application in
kinetic, genome-scale and mixed model development and their applications.

Machine learning methods can enhance the development and application of metabolism models
with applications broadly divided into model parameter determination, metabolic network analysis
and model application. A schematic, highly simplified example of the model parameter determination
is outlined in Figure 3.
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Figure 3. An outline of the utilization of machine learning methods in metabolism modeling application
for optimization of parameters in the model, as well as testing different input conditions. In this
example, parameters in the model are selected at random (e.g., using Monte Carlo sampling) or,
alternatively, reactions are taken out or put in (in the constraint-based models) and the models are run.
The success of each model is determined using the parameter of interest (e.g., cell growth or cell death,
production of the molecule of interest, etc.). Model parameters (1–N) are used as feature vectors with
the success label used as the class label in the machine learning classifier. The classifier determines
patterns in the parameter space with the highest discriminatory power that ensures success according
to the model.

Parameters used in metabolic models, kinetics or flux ranges can be determined using either the
in vitro enzymatic assay in the bottom-up approach or can be indirectly inferred from metabolomics
time series data in the top-down method. The bottom-up approach for the development of
kinetic models requires experimental measurements of the kinetics of each enzyme providing
information that is then integrated in the model. This approach is highly experimentally demanding,
and although information has been made available for many enzymes leading to a number of kinetic
models of some major pathways, the bottom-up approach is unlikely to provide information for
all enzymes, particularly when considering possible kinetic changes under different conditions
present in vivo (e.g., inhibition, protein interactions). Optimization of kinetic parameters can be
done from metabolomics time series data. The majority of methods use optimization algorithms that
try to find the best model parameters from available experimental data. Examples of the utilized
optimization methods are: genetic algorithms, evolutionary programming, simulated annealing,
Newton–Raphson and Levenberg–Marquardt methods (reviewed in [59]). However, detailed,
thermodynamically-minded kinetic models of metabolism include complex, often non-linear relations
between metabolites, as well as heterogeneous parameters (e.g., kinetic parameters, concentrations),
making the utilization of fitting strategies difficult.

Saa and Nielsen [58,60] have proposed the application of Approximate Bayesian Computation
(ABC) in order to determine the joint parameter, posterior, distribution that can explain the
experimental data. The ABC approach determines whether the distance between the experimental
and simulated dataset is below a predetermined threshold in order to decide whether to accept the
parameter vector used to generate the simulated dataset. The kinetic parameter calculation using this
method relies on the Monod–Wyman–Changeux model and assumes independence between the rate
of reaction catalyzed by the enzyme and the reactions regulating the enzyme’s activation, leading to
a rate of reaction that can be calculated as a product of the catalytic rate, and the enzyme activation
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rate General Reaction Assembly and Sampling Platform (GRASP) has been developed to determine
the distribution of allowed kinetic parameters from available data. The detailed kinetic model for each
enzyme in the network is built by fitting experimental data to simulations using the ABC-sampling
method. ABC greatly increases the range of kinetics covered when compared to the heuristic Ensemble
Modeling (EM) approach for kinetic model construction and parameter fitting. Using this approach,
the authors have developed and presented a detailed kinetic model for the methionine cycle.

Decision trees have been used to search for discriminating patterns in the model parameter space
in structural kinetic modeling [47,61,62], but other machine learning methods could be explored as
well. Structural kinetic models do not require explicit knowledge of the rate equation, but instead try
to develop parametric representation of the Jacobian of the system [47,63]. In an example, the optimal
parameter pattern is determined from the large number of structural kinetic models based on randomly
sampled parameter sets. Supervised machine learning, in the published, case decision trees, was used
to determine the patterns of parameters that lead to the highest discrimination between classes of
simulation results based on user predefined criteria (Figure 3). Using this approach, the authors have
developed a detailed structural kinetic model of the Calvin–Benson cycle and connected pathways that
could then be used for the analysis of the effect of regulators [61,62]. Structural kinetic modeling can
be performed using the MATLAB platform presented by Girbig et al. [61] where this tool can provide
simulations of models with different patterns (using Monte Carlo sampling) that can then be examined
using machine learning methods.

Both kinetic and structural kinetic models provide very detailed simulation avenues for the
subset of pathways. Metabolic network models, on the other hand, try to describe all reactions
that are available to an organism with every node in the network representing an intermediate in
a chain of chemical, metabolic reactions. These large networks can be modeled in the constraint-based
approach where models have an associated solutions space in which all feasible phenotypic states
exist under imposed constraints. Typically in these models, metabolite flow is constrained by network
topology, the steady state assumption and by upper and lower bounds for each individual reaction
flux. The challenge then in this type of modelling is to determine and impose major constraints in
order to define and investigate the solution space in a way that determines physiologically-relevant
fluxes or phenotypes [64–68]. Constrained network-scale model development and application can
be done using the very popular COBRA platform (COnstraint-Based Reconstruction and Analysis
Toolbox) [69], as well as related tools such as MONGOOS (MetabOlic Network GrOwth Optimization
Solved Exactly) [70]. In one approach, flux limits can be obtained from gene expression data as shown
by [71,72] (Figure 4). Machine learning can be used for model optimization or the determination of
major fluxes once again using the general approach shown in Figure 3. An interesting example of the
use of machine learning for the improvement of models by comparing the empirical interaction data
and model predictions was presented by Szappanos et al. [73]. In this example, machine learning,
in this case, the random forest method, was used to determine whether modifying the constraint-based
model can increase its predictive power. Similarly, the effect of removing reactions, modifying reaction
reversibility and altering the biomass function in the model was assessed against empirical data for the
effect of several inhibitors on gene expression in Mycobacterium tuberculosis, and this type of analysis
was used to determine targets for inhibitors, as well as suggesting several possible modulators of the
production of mycolic acid by this bacterium [71] (Figure 5).
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can provide information about the system robustness and lead to more detailed information about
gene correlation under different conditions.

Genome-scale stoichiometric models lack information about enzyme kinetics and cannot
accurately account for the response of metabolism to changes in enzyme expression or enzyme
inhibition. Development of large, genome-scale kinetic models is therefore of great interest; however,
it is still hampered by uncertainty in metabolite concentration levels and thermodynamic displacement,
as well as uncertainty in the kinetic properties of enzymes [63,74]. Towards the determination of
accurate ranges of kinetic parameters for genome-scale level models with kinetic consideration,
Andreozzi et al. [74] have utilized machine learning methods in combination with kinetic modeling
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principles in the approach named iSCHRUNK. In this approach, machine learning uses values of
observed data samples to infer parameter ranges that predict whether data can satisfy a given
property. The goal of the method is to determine ranges for a set of parameters: p1, p2, . . . , pn so that
function f (p1, p2, . . . , pn) satisfies the given property. In the presented case, the requirement was that
f (p1, p2, . . . , pn) <0 without knowing the exact functional form of f (p1, p2, . . . , pn). With an adequate
training dataset, machine learning, in this case, the decision tree learning algorithm, was able to
determine allowed ranges for kinetic parameters of metabolic reactions that were consistent with
observed physiology. The ORACLE approach combined with machine learning iSCHRUNK analysis
of allowed ranges for kinetic parameter provides a very interesting approach for the creation of
genome-scale kinetic models that will be increasingly feasible and increasingly accurate as more data
become available.

Metabolic pathways have to be sufficiently robust to be able to tolerate fluctuations in protein
expression levels, as well as changes in environmental conditions. Analysis of metabolic models
can thus help in identifying genes that might be essential for cell growth, survival or production.
Machine learning models can be trained to predict and classify genes of an organism as essential or
non-essential based on a training set of known, labelled essential or non-essential genes. A number
of different machine learning methods has been used to try and determine gene essentiality from
metabolic network information, including: SVM, ensemble-based learning, probabilistic Bayesian
methods, logistic regression and decision tree-based methods (reviewed in [75]). Plaimas et al. [76]
have presented a machine learning strategy for the determination of essential enzymes in a metabolic
network aiming towards the determination of interesting drug targets. Ensemble modeling has been
investigated as an approach for robustness analysis [77]. Ensemble learning is the approach of creating
a high-quality ensemble predictor by mixing results from many weak learners. Ensemble learning
methods have been particularly useful for the prediction of essential genes and proteins from network
data. An example of the ensemble learning method is random forests, which combine two machine
learning techniques: bagging and random feature subset selection for predictions. Nandi et al. [75]
present a very interesting approach for the selection of essential features using the SVM-RFE machine
learning approach. In their example, the authors used a genome-scale metabolic network of Escherichia
coli to create reaction-gene combinations and label the essentiality of each combination based on
experimental data. The authors also combined the data from Flux Coupling Analysis (FCA) in order to
account for the inherent limitations of metabolic network flux distribution analysis on environmental
dependences. FCA was included as one of 64 features describing each reaction-gene combination.
SVM-RFE was trained using experimentally-determined gene essentiality information and 64 features
determined for each reaction-gene combination providing information about major features and
essential genes.

A method, SELDOM (enSemble of Dynamic lOgic-based Models), was recently presented by
Henriques et al. [78], attempting to help determine dynamic network models from experimental data.
Ensemble learning methods try to improve predictive performance by utilizing multiple learning
algorithms to create a set of classifiers that are all used to determine the best classification. In the
case of SELDOM, ensample learning is used to build a set of dynamic models from experimental
training data. Individual predictions of these models are combined, and spurious interactions in the
combined model are removed in order to reduce the danger of overfitting. This is a fully data-driven
approach that does not require any prior knowledge about either the network or the dynamics of
reactions. This method has been developed and tested for modelling signaling pathways, but a similar
methodology can be applied for modeling of the metabolic network from data. Uniquely, SELDOM
develops models of the network dynamics using ordinary differential equations, and once the model
is created, it can be used to interpret or predict networks’ behavior in new experimental conditions.
This approach of course depends on the availability of appropriate, time course measurements.

Metabolomics or genomics data can be used to discover unknown metabolic pathways and
their regulation, as well as to determine preferred metabolic routes in a particular system with
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a known metabolic network. In this application, the goal is the construction of correlation and
causation networks between metabolites. The correlation network determines the probable relation
between metabolites and enzymes using usually statistical analysis of measurements from different
biological conditions. The correlation network provides static information about the most likely
network. The causation network is usually obtained from time series metabolomics data and provides
cause-effect information about the metabolites in the network. Some examples of methods used for
causation network determination are dynamic Bayesian models, Granger causality approaches, as well
as the BST-loglem approach, which combines mathematical and statistical methods [63].

Machine learning has been used to predict inhibitory effects of substances on the metabolic
network. In the examples presented by Tamaddoni-Nezhad et al. [79,80], background knowledge
including network topology and functional classes of inhibitors and enzymes, although incomplete,
was used to interpret NMR metabolomics measurements of urine samples following injection of toxins.
In that work, logic-based representation and a combination of abduction and induction methods was
used to model inhibition in the metabolic network aimed towards prediction of inhibitory side effects
of drugs. Abductive learning encompasses methods for finding the best explanation of observations.
In the work of Tamaddoni-Nezhad et al., the abduction approach was utilized to form hypotheses
related to enzyme inhibition by drugs from the NMR metabolomics data. In inductive learning,
the method tries to determine a general rule from observations resulting in assignment of a class label
to the input. In the example presented in [79,80], inductive learning was used to generate knowledge
that can come either directly or indirectly through the current theory, but can extend and add new
interrelationships and new links between relations in the model. The abduction and induction learning
can be subsequently performed in a cycle continually adding explanations of the observations to the
theory, i.e., model. This approach has been deployed in Inductive Logic Programming (ILP) with
specific application for metabolic network analysis presented in Progol 5.0 with a detailed example
of its use presented in [56,79]. Lodhi and Muggleton [1] have also presented the application of
stochastic logic learning (SPL) in ensemble learning for the estimation of rates of enzymatic reactions
in metabolic pathways.

In order to try and take advantage of the large amount of sequencing data and detailed
genome scale models for more accurate phenotype prediction, Guo et al. [81] have developed
and made available a biology-guided deep learning system: DeepMetabolism. DeepMetabolism
integrates unsupervised pre-training and supervised training and, based on the test presented by
the authors, provides a method for high accuracy, high speed and high robustness determination
of phenotypes from genotypes. In this approach, the authors use biological knowledge to guide
the design of the neural network structure. The authors build an autoencoder model with five
layers from transcriptomics data where the first three layers belonged to the encoder part, modelling
connections from gene expression to phenotype, and the last three layers belonged to the decoder
part, which models the connection from phenotype to gene expression. The first layer represents the
expression level of essential genes for E. coli metabolism; the second layer represents the abundance of
resulting essential proteins; third layer represents the phenotypes of E. coli; the fourth and fifth layers
were reconstructed protein and gene layers, respectively. Layers in the presented work were not fully
connected. Instead, the authors used biological knowledge to define rational connections, thereby
reducing the risk of over-parametrization. Connections between the first, second, as well as fourth
and fifth layers were built from gene-protein associations from the genome-scale metabolic model of
E. coli; connections between the second and third and the third and fourth layers was determined from
COBRA analysis of the genome-scale model of E. coli used to identify proteins that were essential for
given phenotypes. A schematic presentation of the deep network created is shown in Figure 6.

Machine learning methods have also been utilized for pathway prediction, showing good
performance when compared with standard methods presented in the hard-coded pathway prediction
tool PathoLogic, while at the same time allowing easier extensibility, tenability and explanation of
the results [82]. Machine learning algorithms tested in the pathway prediction analysis included
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naive Bayes, decision trees and logistic regression. The goal of this study was to test methods for the
determination of the presence of metabolic pathways based on the pathway information for many
organisms presented in the pathway collection MetaCyc and to develop predictors for the presence
of metabolic pathways in newly-sequenced organisms. In the course of this work, the authors have
developed the gold standard pathway prediction dataset that was used for method validation and is
made available for further pathway prediction work. Analysis of the performance of machine learning
methods for pathway prediction have also shown that a small number of features contains the most
information about the occurrence of pathways in an organism, with the most informative numeric
value being the fraction of reactions along the path from an input to an output compound.
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4. Conclusions

Experimental analyses measure values, i.e., concentrations, of variables in a model, e.g., metabolite
concentrations or gene or protein expressions. In order to define the model, it is necessary to
obtain information about the parameters that control the changes in these variables. Solving the
system identification problem, i.e., determining parameters from variables, is often very strongly
underdetermined with many parameters that need to be resolved from few variables in addition
to many possible combinations of parameters, leading to the obtained values for variables.
Mechanistic models use expert knowledge to derive information and develop models from targeted
experiments. However, the large amount of data makes the application of data-driven, machine
learning methods a highly attractive option. In addition, metabolic models can provide a large
amount of data, and deriving actionable information from these model results can also greatly benefit
from machine learning approaches. Thus, recent developments in machine learning and metabolism
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modeling compounded by the huge increase in computer power accessible for this task have made it
possible to link data-driven and mechanistic models.

Machine learning algorithms are able to learn optimal solutions for the analysis of new data
from previously determined information. Without a doubt, with the availability of more advanced
algorithms and the mounting availability of data, machine learning will be increasingly relevant for the
analysis of metabolism. One of the major applications of metabolism models is in metabolic engineering
where models can test genetic and regulatory changes towards increased productivity and reduced
cost of production. Metabolic network models have an important role in helping determine targets,
the side effect and toxicities of either drugs or toxins, through their direct effects or side-effects, as well
as test possible toxic effects of chemicals in the environment. Machine learning can be implemented
to integrate metabolic networks with available data. A recent example presented by [83] shows
an application of machine learning and genome-scale models for the determination of drug side
effects using the data available for human diseases, drugs and their associated phenotypes in order to
determine metabolically-associated side effect predictors. Relational and logic-based machine learning
was successfully utilized as part of the MetaLog project to provide causal explanations of rat liver cell
responses to toxins using high throughput NMR metabolomics data collected as part of the Consortium
for Metabonomics Toxicology (COMET) [79,84,85]. Passive machine learning methods compare offline,
previously obtained information or data with models. With a highly dynamic system, with changing
gene expression levels and different inhibitory or activating processes, it will be necessary to perform
active learning that can generate new perturbations in a continual process. One of the first examples
of an automatic generation of symbolic equations for a nonlinear coupled dynamical system directly
from time series data was presented by Bongard and Lipson [86], where, for the first time, the authors
have presented a method that models each variable separately. Symbolic modeling was shown to have
explanatory value, suggesting that this automated reverse engineering approach leading to model-free
symbolic nonlinear system identification may provide important help in understanding increasingly
complex systems. In this example, model learning and optimization was combined with continual
input of sensor data. This type of approach will be increasingly of interest with a growing availability
of sensor information.

Metabolism modeling can also be utilized for integrated analysis of different types of omics data,
and some examples of the use have been shown in several recent reviews [87–89], outlining tools,
problems, as well as applications in different fields, including medicine and biotechnology.

In 2006, Kell [30] said: “By making mathematical models of the biological systems one is
investigating (and seeing how they perform in silico) what is generally considered a minority sport,
and one not to be indulged in by those who prefer (or who prefer their postdocs and students) to
spend more time with their pipettes.” Over the last decade, there has been a major growth in the
understanding of the value that computational biology models can bring to life sciences. Combining
metabolomics with data-driven machine learning has a great potential in assessing the current or near
future state of biological systems, but also, when combined with modelling methods, to predict future
risks and events. There is no better time than the present to pick up this “minority sport”.
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