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Abstract: About one in 15 of the world’s population is chronically infected with either hepatitis virus 
B (HBV) or C (HCV), with enormous public health consequences. The metabolic alterations caused by 
these infections have never been directly compared and contrasted. We investigated groups of 
HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass 
spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data 
was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared 
for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the 
controls. Metabolic perturbation networks were constructed, which permitted a differential view of 
the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, 
glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing 
threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with 
impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the 
tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the 
hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that 
robust regression analyses can uncover metabolic rewiring in disease states. 

Keywords: metabolomics, robust regression analysis, metabolic perturbation networks, hepatitis B 
virus, hepatitis C virus, glycolysis, gluconeogenesis, pentose phosphate pathway, glucose 
transporters, TCA cycle 

 

1. Introduction 

Hepatitis B virus (HBV) has been reported to infect some two billion persons, with greater than 350 
million chronically infected [1]. In contrast, hepatitis C virus (HCV), which exists as seven variant 
genotypes [2], is believed to have infected 185 million persons [3]. The development of hepatocellular 
carcinoma (HCC) has a lifetime risk of 20% to 30% for untreated persons chronically infected with HBV, 
HCV, or both [4]. In an attempt to understand the mechanisms of infection and the progression of viral 
hepatitis to end-stage liver disease, both HBV [5,6] and HCV [5,7] attracted genomic and proteomic 
investigations around the new millennium. The investigation of the small molecule fingerprints of HBV 
and HCV infection using metabolomics lagged behind the genomic and proteomic efforts by almost a 
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decade [8–10]. Metabolomics reveals information that is closer to the phenotype of the infected liver 
than do genomics, transcriptomics, or proteomics. While these other omics might predict, to certain 
degrees, the metabolic perturbations occurring post-infection with HBV or HCV, metabolomics can 
give a direct measurement of these, which can then be further augmented using transcriptomic data [3]. 
More detailed insights can be obtained in laboratory animals [11,12] or in cell culture [13,14] by 
analyzing isotopomers after the administration of [13C]glucose and/or [13C]glutamine, for example. 

In human investigations, it is not possible to conduct some of these procedures. Ex vivo 
metabolomics on urine and plasma obtained from HBV- and HCV- infected persons must rely on a 
more static metabolite picture rather than the dynamic metabolism of isotopomers. Although several 
investigators have reported metabolomic data on HBV and HCV patients, investigations were in 
general conducted to discover biomarkers for HBV [10,15,16] and HCV [15,17–19] cirrhosis or fibrosis, 
together with HCC metabolism with HBV [1,15,20] and HCV [3,15,21] infection or for progression to 
HCC [22–26]. Studies have also simply investigated the impact of HBV [27–30] or HCV [8,27,31–33] 
infection on the metabolome or the metabolic consequences of drug treatment [2,34,35]. 

Many metabolomics reports, particularly the earlier ones, merely generate a list of up- and 
down-regulated metabolites in one condition versus another. It is important that metabolomic findings 
lead to mechanistic insights. For example, we described a metabolomic investigation of HCV infection 
using matched uninfected controls. The finding of downregulated urinary fructose and galactose 
combined with upregulated urinary sorbitol, galactitol, and xylitol led to the finding that the aldose 
reductase gene AKR1B10 displayed a six-fold increased expression in HCV+ compared to HCV- liver 
biopsies [36]. This increased flux through the polyol pathway consumes NADPH, the obligatory 
cofactor in the generation of antioxidant GSH by glutathione reductase [37], and therefore is likely to 
contribute to elevated ROS and therefore to HCV hepatitis [36]. Gas chromatography-mass 
spectrometry (GCMS) is particularly adept at the detection and quantitation of small intermediary 
metabolites such as those comprising glycolysis [36], the TCA cycle [38], and the pentose phosphate 
pathway [39]. Robust bioinformatic procedures are required to identify the maximum number of 
metabolic networks that might be up- or down- regulated in particular biological circumstances, based 
upon urinary and plasma/serum GCMS metabolic profiles. In this report, we used regression analysis 
and revealed many changes in the correlations of metabolite pairs, indicating subtle differences 
between the metabolomes of HBV and HCV infected patients. 

2. Results 

2.1. Direct Comparison of Metabolite Intensities Shows Very Little Difference between HBV and HCV Patients 

We expanded the previously reported GCMS dataset of 30 HCV patients with an additional 30 
HBV patients. For each patient, we analyzed both a blood plasma and a urine sample. The same control 
plasma and urine donors were used for both datasets. Both datasets were merged and corrected for 
batch effects (see Materials and Methods). After excluding patients that had resolved the infection and 
outlier samples, our dataset contained data from 27 HBV patients, 19 HCV patients, and 26 healthy 
control subjects. 

To account for the batch effect, we only included metabolites that were positively detected in both 
datasets, either in the control or patient samples, separately for each biofluid, namely, plasma or urine. 
In other words, metabolites detected only in one dataset were excluded from further analysis. It should 
be noted that, whenever a metabolite was observed in a given dataset, it was always detected in both 
the patient and control subjects. Thus, our analysis did not detect any metabolites that are unique to 
HBV or HCV infected patients. Table 1 lists the retained metabolites for both body fluids. 

Table 1. List of metabolites included in the merged dataset. 

Metabolite RT (min) Plasma Urine
lactic acid 13.32 X X 
glycolic acid 13.80 - X 
p-cresol 16.36 - X 
valine 19.28 X - 
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urea 20.20 X - 
ethanolamine 21.05 X - 
leucine 21.24 X - 
isoleucine 21.98 X - 
proline 22.08 X - 
glycine 22.42 X X 
serine 24.30 X X 
threonine 25.21 X X 
threitol 28.38 - X 
erythronic acid 29.73 - X 
threonic acid 30.79 - X 

ribose* 
30.97 
33.29 
33.71 

- X 

4-hydroxyphenylacetic acid 32.10 - X 
xylitol 34.56 - X 
arabitol 34.90 - X 
fucose 35.06 - X 
citric acid 37.95 - X 
HPHPA** 37.96 - X 
myristic acid 38.11 X - 
gluconolactone 39.15 - X 
fructose 39.55 - X 

glucose*** 
39.92 
40.25 

X X 

mannose 40.69 X - 
tyrosine 40.79 X - 
mannitol 41.02 - X 
gluconic acid 42.20 - X 
palmitoleic acid 42.46 X - 
mucic acid 42.54 - X 
scyllo-inositol 42.76 - X 
myo-inositol 44.78 X X 
oleic acid 46.80 X - 
stearic acid 47.33 X - 
oleamide 50.53 X - 
sucrose 53.72 - X 
cholesterol 61.47 X - 

*Ribose runs as three peaks due to an unmethoxymated silyl derivative, together with the (E)- and (Z)- 
isomers of the O-methyloxime silyl derivative of the ribose aldehyde. 
**3-(3-Hydroxyphenyl)-3-hydroxypropionic acid, a gut microbiota metabolite produced by Clostridia 
spp. from phenylalanine and related to autism and schizophrenia, as are 4-hydroxyphenylacetic acid 
and p-cresol, also observed in hepatitis B virus (HBV) and hepatitis C virus (HCV) patient urine (see 
above) [40,41]. ***Glucose runs as two peaks due to the (E)- and (Z)- isomers of the O-methyloxime silyl 
derivative produced by derivatization of the glucose aldehyde. RT means retention time (min). 

As can be seen from the principal component analysis (PCA) plots in Figure 1, the metabolomic 
profiles of the urine samples (left panel) of the three sub-cohorts (control, HBV, and HCV) all cluster 
together. The control plasma samples (right panel) are somewhat separated from both the HBV and 
HCV samples, mainly along the second component (PC2). However, although the HBV samples seem 
to have a larger spread along PC1, the HBV and HCV plasma samples also separate quite poorly. Thus, 
the PCA suggests that there seems to be very little difference between the metabolomic profiles of HBV 
and HCV patients. 
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Figure 1. Principal component analysis (PCA) for the urine and plasma datasets. 

This observation is also confirmed when we look at the difference in intensities of individual 
metabolites. Figure 2 shows dot and boxplots for all metabolites that had statistically significantly 
different intensities between any of the three sub-cohorts. In total, we found 20 significant metabolites 
with an adjusted ݌ value of 0.05 or less. Of those, 10 were different between HBV patients and the 
control samples and 17 were different between HCV patients and controls. Only one compound, 
urinary glycolic acid, was found to be statistically significantly different between HBV and HCV 
patients, with an adjusted ݌ value of 0.022. It was also greater in HBV (+7%) and lesser in HCV (−2%) 
than in the controls. Two metabolites, urine citric acid (+8%) and urine mucic acid (+6%), only had 
higher intensities in HBV compared to the controls, whereas three metabolites, plasma glucose (+10%), 
plasma mannose (+13%), and plasma palmitoleic acid (+44%), only had higher intensities in HCV 
compared to the controls. Four metabolites were found to be elevated in both HBV and HCV: plasma 
oleamide (+300%, +260%, respectively), urine fucose (+8%, +8%, respectively), plasma oleic acid (+6%, 
+5%, respectively), and urine xylitol (+11%, +14%, respectively). No metabolite was found to have lower 
intensities in HBV only, but seven metabolites were diminished in HCV compared to the controls: 
plasma lactic acid (−23%), plasma valine (−3%), plasma leucine (−4%), plasma proline (−6%), urine 
scyllo-inositol (−5%), urine myo-inositol (−7%), and urine mannitol (−13%). Finally, three metabolites had 
lower levels in both HBV and HCV compared to the controls: plasma myo-inositol (−9%, −10%, 
respectively), plasma isoleucine (−7%, −4%, respectively), and urine fructose (−15%, −10%, respectively). 
The respective p values are given in Figure 2. We had previously reported some of these differences 
between HCV and the controls in a separate study [36]. In summary, HBV plasma differed statistically 
significantly from the control plasma, mainly due to an increase in the lipids oleamide and oleic acid. 
HCV plasma, similarly, differed from the control plasma with increased lipids (oleamide, palmitoleic 
acid, and oleic acid); increased sugars, namely, glucose and mannose; decreased lactic acid; and 
decreased amino acids, namely, proline and the essential branched-chain amino acids (BCAAs), valine, 
leucine, and isoleucine. HBV and HCV urinary metabolite patterns were more similar to those for 
plasma (Figure 2). 
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Figure 2. Dot and boxplots for the metabolites with statistically significantly different intensities 
between the three sub-cohorts. The p values are adjusted for multiple comparisons 
(Benjamini-Hochberg). 

2.2. Regression Analysis Reveals Different Metabolite Correlation Patterns between HBV and HCV Patients 

After directly comparing the metabolite intensities, we next constructed metabolic perturbation 
networks for both HBV and HCV. These networks are based on the observation that, for some 
metabolite pairs, the correlation of their intensities changes between the different sub-cohorts in our 
dataset. Figure 3 gives such an example. As can be seen from this figure, no correlation is observed for 
the control cohorts (marked as ‘none’ in the legend), nor for the HBV patients. A negative correlation, 
however, can be observed for the HCV cohort. This observation suggests that a metabolomic process 
involving both of these compounds is at play in HCV patients, which is otherwise absent in control 
individuals as well as in HBV patients. 
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Figure 3. Scatterplot of the intensities of urine ribose and urine citric acid. Only the correlation in HCV 
(regression line and 95% confidence interval shown) is statistically significant. 

To investigate to the global extent of this phenomenon, we used robust linear regression models to 
detect all pairs of metabolites where the correlation pattern changes between the control cohort and 
either the HBV or HCV patients (see Materials and Methods). We then summarized all these cases into 
a disease-specific metabolic perturbation network for each virus. In these networks, the nodes represent 
metabolites and the edges represent the correlation patterns between them. We discriminate between 
four different types of edges. The first type is called ‘appear’ and refers to cases in which no correlation 
is observed in the control group but one appears in the virus group. Likewise, the ‘disappear’ type 
represents cases in which an observation is present in the control group but disappears in the virus 
group. Additionally, we also define the ‘flip’ type, which occurs when a positive correlation is observed 
in one group and a negative one in the other. Finally, we also consider ‘change’ relations, which denote 
the cases in which the slope of the regression line changes significantly between both groups, without 
affecting the sign—positive or negative—of the correlation. See the Materials and Methods section for a 
description of how these types are determined statistically. 

Figure 4 shows the resulting metabolic perturbation networks for HBV and HCV in plasma and 
urine. Surprisingly, the vast majority of edges are of the ‘appear’ type, as listed in Table 2. For both 
networks together, 28 ‘appear’ edges were found, compared to only three ‘flip’ edges, and no ‘change’ 
or ‘disappear’ edges. Another striking observation is that, for both HBV and HCV, the metabolic 
perturbation networks are much bigger in plasma compared to urine. Indeed, taken together over both 
virus types, we detected 23 perturbation edges in plasma compared to eight in urine, which is a 
statistically significant difference (߯ଶ-test; ݌ = 0.0071). 
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Figure 4. Metabolic perturbation networks for (a,c) HBV and (b,d) HCV in plasma (a,b) (red node 
borders) and urine (c,d) (yellow node borders). Solid lines denote ‘appear’ type edges and zigzag lines 
‘flip’ edges. The edge color reflects the slope of the correlation in HBV/HCV patients, with green 
denoting positive and red negative correlations. 

Table 2. Counts of the different edge types for the metabolic perturbation networks of each virus in each 
fluid. 

 Appear Flip

HBV plasma 8 1 
urine 2 0 

HCV plasma 13 1 
urine 5 1 

When totaling the number of perturbations across virus types, it can be seen that the HCV network 
is bigger, with 20 edges compared to only 11 edges in the HBV network. Although this difference is not 
statistically significant (߯ଶ-test; ݌ = 0.11), it is still remarkable, given that we included only 19 HCV 
patients in our analysis, compared to 27 HBV patients, which would actually reduce the statistical 
power to detect correlations in the HCV cohort. 

From a qualitative point of view, it is striking that the metabolic perturbation networks of HBV 
and HCV are fairly similar in plasma, sharing seven nodes, whereas the urine networks only have two 
metabolites in common (Figure 4). Indeed, the HBV and HCV plasma networks have a common 
‘backbone’ of an edge between serine and isoleucine, as well as most of the edges connected to the latter 
two nodes. The only unique features of the HBV plasma metabolic perturbation network are the ‘flip’ 
edge between valine and glucose and the ‘appear’ edge between isoleucine and palmitoleic acid. 
Interestingly, the nodes unique to the HCV network are related to the lipid metabolism, apart from 
mannose and glycine. Ethanolamine and myo-inositol are head-groups of phospholipids; myristic acid 
and oleamide are, respectively, a saturated and a monounsaturated fatty acid; and cholesterol is a key 
lipid. The urine networks only share two nodes, glucose and threonic acid. Although both nodes are 
connected by an ‘appear’ edge in both networks, the sign of the correlation is opposite between HBV 
and HCV. 

2.3. Mechanistic Interpretations of the Metabolic Perturbation Networks 
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2.3.1. General Considerations 

It should be recalled that the PCA plots for both the plasma and urine datasets showed clustering 
of the HBV, HCV, and control data, suggesting little, if any, difference in the plasma and urine 
metabolomes for any of the three datasets (Figure 1). However, of the 39 metabolites (Table 1) included 
in the analysis, 20 showed statistically significant differences between the HBV, HCV, and control 
datasets. Furthermore, the robust regression analysis, involving 490 regressions, 190 for the plasma 
metabolites and 300 for the urinary metabolites, produced the metabolic perturbation networks in 
Figure 4.  

The first approach to understanding the binary metabolite relationships described by the 
perturbation networks was to create a metabolic network by retrieving all human enzyme-substrate 
and enzyme-product relations from the KEGG database. For each pair of metabolites connected by an 
edge in a metabolic perturbation network, we then detected all the shortest paths between these in the 
metabolic network. We then compared the number of times each node or edge occurs in these shortest 
paths to the same number in randomized networks (see Materials and Methods) to obtain, for each 
metabolic perturbation network, a statistically significant metabolic network (Appendix A). Figures A1 
and A2 show these metabolic networks for urine and plasma, respectively. It was found that this 
approach resulted in a complex outcome that was difficult to interpret. It was therefore decided to 
proceed using the published literature to interpret the positive and negative correlations in plasma and 
in urine for both HBV and HCV. 

2.3.2. Analysis of the HBV and HCV Metabolic Perturbation Networks 

As can be seen in Figure 4a, the central node of the HBV plasma network is isoleucine, which is 
connected to oleic acid, palmitoleic acid, threonine, proline, and serine, the last of which is a node 
connected to valine and leucine and then to glucose. Interestingly, the edges connecting isoleucine to 
other amino acids (threonine, serine, proline) all consist of positive correlations, while the connections 
to the two monounsaturated fatty acids (MUFAs), oleic acid and palmitoleic acid, represent negative 
correlations. The oleic acid-isoleucine negative correlation (Figure 4a) is consistent with the 
observations that plasma oleic acid was greater in HBV than in the controls and that plasma isoleucine 
was lower in HBV than in the controls (Figure 2).  

The HBV urine network is comprised of just two correlations, a negative correlation between 
gluconolactone and xylitol and a positive correlation between glucose and threonic acid (Figure 4c). All 
four of these cellular metabolites have relationships to the pentose phosphate pathway (PPP). Glucose 
and xylitol feed the PPP through glucose-6-phosphate and xylulose/xylulose-5-phosphate, respectively [42]. 
Gluconolactone and threonic acid are metabolites produced by the PPP from glucose and xylitol, 
respectively [42].  

The HCV metabolic perturbation networks contain more correlations than their HBV counterparts 
(Figure 4b,d). The central node in the HCV plasma network (Figure 4b) is serine, which is connected 
directly to the three BCAAs, leucine, isoleucine, and valine (positive correlations), and also to 
myo-inositol (negative correlation). Leucine is negatively correlated with valine but positively 
correlated with threonine. Other negative correlations in HCV plasma worthy of note are between 
valine and cholesterol, isoleucine with oleic acid (common to HBV plasma; Figure 4a), and glycine with 
ethanolamine. In this last case, serine is decarboxylated to ethanolamine, leading in two further steps to 
glycolic acid, whereas glycine is transaminated to glyoxylic acid, which is reduced to glycolic acid. The 
negative correlation between glycine and ethanolamine would be explained by fluxes in these 
pathways, especially as glycine and serine are metabolically interchangeable [43].  

The urinary ribose and citrate negative correlation (Figure 4d) may be a direct effect of the HCV 
virus. It has been reported that monocyte derived macrophages infected with HIV-1 or HIV-2 
displayed elevated ribose 5-phosphate, a PPP intermediate, with no change in TCA cycle intermediates 
such as citrate when compared with noninfected cells [44]. Citric acid was also negatively correlated 
with L-erythronic acid ((2R,3R)-2,3,4-trihydroxybutanoic acid), the diastereomer of threonic acid [45], in 
the HCV urinary network (Figure 4d). In summary: 
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• The initial PCA analysis of plasma and urine datasets suggested that there were few differences 
between the HBV+, HCV+, and control metabolomes. 

• Univariate statistics gave 28 statistically significant differences for a subset of 20 metabolites; 15 in 
plasma and 13 in urine.  

• Robust regression analysis revealed networks of correlations between pairs of metabolites that 
mainly appear in HBV+ and HCV+ plasma and urine but are not observed in healthy controls. 

• The positive and negative correlations provided novel insights into the HBV+ liver compared with 
the HCV+ liver. 

3. Discussion 

Multiple metabolomic studies on HBV+ and HCV+ patients have been reported. For HBV, the 
studies mostly sought biomarkers of the development of cirrhosis or HCC [24,46–49] or biomarkers 
simply of HBV infection itself [10,28]. Similar studies have been reported in the case of HCV for serum 
biomarkers of progression to HCC [21–23,] and for hepatic fibrosis [17,19]. Since HCV infection can be 
treated, several reports deal with metabolomic changes before and after treatment that were interpreted 
as reflecting the metabolic effects of the virus [2,34]. Finally, urine analysis by NMR has been proposed 
as a means of early detection of HCV infection [8].  

In contrast to the aforementioned studies, ours was the first to compare HBV+ with HCV+ patients, 
together with uninfected healthy controls. Furthermore, both plasma and urine were analyzed. Our 
aim was to understand the differential footprints of HBV and HCV on the liver by uncovering the 
covariation between metabolites. Therefore, a direct comparison between the two viral infections was 
made using the same control group of healthy subjects. It was not our objective to discover biomarkers 
for HBV and HCV infection, as the literature is replete with such data. Our intention was to tease out 
statistically significant correlations, both positive and negative, between pairs of metabolites to create 
what we have called ‘metabolic perturbation networks’. To generate metabolic perturbation networks, 
we conducted a robust regression analysis for both plasma and urinary metabolites, involving 490 
regressions. ‘Perturbation’ refers to the fact that some correlations appeared in, say, HBV or HCV 
patients that were not present in the controls, and a few flipped their correlation from positive to 
negative between HBV and HCV patients. Using this analysis, it was believed that metabolic 
differences between the HBV-infected and the HCV-infected liver could be identified. 

It is pertinent to discuss whether or not the differences between HBV and HCV patients, together 
with the metabolite correlations we observed, could be due to spurious factors. Firstly, bloods were 
collected from all patients, according to a standardized protocol in the hepatology clinic, and the 
plasma was quickly prepared and frozen at -80°C. Furthermore, all patients were fasted for a minimum 
of 6 h. The samples were analyzed by GCMS using the same laboratory procedure for all batches, run 
on the same instrument and by the same analyst. However, the HBV patients were statistically 
significantly younger than the HCV patients, with significantly lower plasma ALT values. These 
observations with age and ALT were not unexpected, for they have been reported by others in a large 
European study [50]. Moreover, a positive smoking history and current use of medication were 
statistically significantly more common in HCV patients than in HBV patients. However, the 
occurrence of diabetes, fasting blood glucose levels, and BMI values did not differ statistically between 
the two patient groups. Therefore, we do not believe that dietary factors or host metabolic factors 
contributed significantly to the metabolic findings that are ascribed here to chronic HBV or HCV 
infection. Furthermore, the stage of hepatic fibrosis as determined by the METAVIR score was not 
statistically significantly different between HBV (2.1 ± 1.4) and HCV (3.1 ± 0.9) patients and therefore 
did not appear to be related to the metabolic findings presented here. 

Amino acids are a source of cellular energy by the anaplerotic feeding of the TCA cycle via 
intermediates such as pyruvate, 2-oxoglutarate, and succinyl-CoA [51], which may explain the multiple 
correlations in plasma amino acid concentrations reported for fasted patients [52]. Moreover, HBV 
appears to elevate amino acid levels in concert in hepatocytes [29], perhaps explaining the positive 
amino acid correlations described here for HBV plasma (Figure 4a). Finally, branched-chain amino 
acids (BCAAs), particularly leucine but also isoleucine and valine, regulate protein translation and, 



Metabolites 2017, 7, 51 10 of 22 

 

therefore, amino acid levels, involving mTORC1 activation [53] by the HBV HBx protein [54]. In 
addition, HBx has been shown to activate fatty acid oxidation [55], fueling the TCA cycle with increased 
acetyl-CoA and thus will decrease the demand on amino acid anaplerosis. This may explain the 
negative correlations of HBV plasma for isoleucine with both oleic acid and palmitoleic acid. 

Regarding xylitol in the urine of HBV patients, this polyol was found to exhibit the largest decline 
of any urinary metabolite detected between control samples and liver cirrhosis/hepatocellular 
carcinoma patients in Egypt [56]. Furthermore, it was reported over four decades ago that patients 
infused with xylitol showed grossly increased urinary excretion of threonic acid, interpreted as arising 
through the PPP [42,43]. In addition, L-threonic acid ((2R,3S)-2,3,4-trihydroxybutanoic acid) is also an 
oxidative metabolite of ascorbic acid formed via dehydroascorbic acid (DHA) [57,58] that is believed to 
be transported into cells by glucose transporters that also transport DHA [59]. Therefore, the 
cotransport of glucose and threonic acid may also explain the positive correlation between these two 
metabolites in HBV urine or, in addition, the conversion of glucose through the PPP to yield threonic  
acid [42,43]. It has also recently been suggested that elevated threonic acid, as an oxidative metabolite of 
ascorbic acid, is a measure of an attenuated oxidative stress response [60]. 

As stated above, the only metabolite that was statistically significantly different between HBV and 
HCV was urinary glycolic acid (Figure 2), reflecting differential glycine and serine metabolism between 
these two virus infections. Concerning the leucine and valine negative correlation, mild liver damage 
caused by the administration of 2 g CCl4 to rats resulted in a rise in plasma valine and a fall in plasma 
leucine 16 h post-administration. With 4 g and 8 g doses, more severe liver damage was recorded, 
together with rises in most plasma amino acids [61]. HCV hepatitis may mimic these amino acid 
changes. Regarding the valine and cholesterol negative correlation in HCV plasma, metabolic 
syndrome was reported to be distinguished from obesity by increased valine, leucine, and isoleucine 
degradation [62]. Both conditions are associated with elevated serum cholesterol. Furthermore, rats fed 
a diet supplemented with BCAAs and had no change in serum total cholesterol but displayed a lower 
hepatic cholesterol deposition [63]. Finally, since cholesterol and BCAAs are potential energy 
metabolites, it is reasonable that their plasma levels might be negatively correlated. Both serine and 
myo-inositol are components of relatively minor membrane phospholipids. Myo-inositol is incorporated 
directly into phosphatidylinositol in the endoplasmic reticulum (ER). Phosphatidylserine is synthesized 
from phosphatidylcholine or phosphatidylethanolamine, also in the ER [64]. However, there is 
competition between serine and myo-inositol for the pathways that lead to these phospholipids [64,65], 
perhaps explaining their negative correlation in HCV plasma. We have previously reported that 
plasma mannose is elevated in HCV+ plasma [36], and this is reflected in Figure 2. Mannose was 
correlated only with threonine in HCV plasma. Protein mannosylation is a common glycosylation 
pattern for HCV [66], and threonine protein residues are a principal site of mannosylation [67]. 
However, it has not been reported that free threonine can be mannosylated or if the amino acid can 
inhibit protein mannosylation, despite the fact that O-α-D-mannopyranosyl-L-threonine is available 
from several commercial sources. This would have furnished an explanation for the negative 
correlation between mannose and threonine. Finally, isoleucine and oleic acid were negatively 
correlated in HCV (and also HBV) plasma. Oleic acid was higher in both HBV and HCV plasma than in 
control plasma, while isoleucine was lower in both HBV and HCV plasma than in control plasma 
(Figure 2). Interestingly, a rat model for postoperative fatigue syndrome, involving both 30% and 70% 
partial hepatectomies, displayed a progressive declining trend from control to 30% hepatectomy to 70% 
hepatectomy for a number of serum metabolites, including isoleucine. Concomitantly, there was an 
increasing trend across the same samples for several other metabolites, including oleic acid [68]. One 
possible explanation for the decline in plasma isoleucine, a BCAA, is that it is used as an energy source, 
as has been reported for fatigued human subjects [69]. Under such circumstances, increased fatty acid 
mobilization may occur as a potential energy source, explaining the rise in plasma oleic acid [68]. This 
would also suggest that both HCV+ and HBV+ patients behave metabolically like patients with 
postoperative fatigue syndrome.  
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Regarding the positive correlation between citric acid and erythronic acid in HCV urine (Figure 4d), 
the literature gives little guidance on this, except that both were uncorrelated in the plasma of patients 
with acute ischemic stroke [70] and that urinary erythronic acid was massively elevated in the 
transaldolase deficiency of the PPP. In this ischemic stroke study, citric acid was not measured, but two 
additional TCA metabolites, 2-oxoglutarate and fumarate, were also massively increased in urine [45]. 
Finally, erythronic acid was one of three upregulated metabolites in both plasma and urine in response 
to a single oral dose of either 50 or 100 g sucrose [71]. It is believed that erythronic acid is increased 
when there is diminished flux through the PPP, as in the case of transaldolase deficiency [45]. 
Erythronic acid has therefore been proposed to be generated by an as yet unknown alternative pathway 
to the PPP [45,71]. This as yet undescribed pathway may be related to the TCA cycle since erythronic 
acid was negatively correlated with citric acid in HCV urine (Figure 4d). While the PPP appeared active 
in HBV liver, the data suggest that it may be impaired in HCV liver.  

The negative correlation between urinary mucic acid and threonic acid in HCV is also of interest 
(Figure 4d). Mucic acid is the dicarboxylic acid of galactose and can be fermented by several species of 
the intestinal microbiota such as Escherichia coli and Salmonella enteritidis [72]. Threonic acid is elevated 
in the serum of mice with experimental intestinal ischemia [73], which may have been the result of 
altered gut floral metabolism. This negative correlation in HCV may result from alterations in the 
intestinal microbiota metabolism. As indicated above, we report a positive correlation between threonic 
acid and glucose in HBV urine (Figure 4c), but, in HCV urine, a negative correlation was found for 
these two metabolites (Figure 4), a clear distinguishing metabolic feature between HBV and HCV 
hepatitis. This observation in HCV is a similar finding to the changes found in intestinal ischemia in 
mice [73]. HCV+ patients tend to be hyperglycemic, as shown in Figure 2 and as has been discussed 
elsewhere [36]. Glucose transport may underlie the relationship between glucose and threonic acid. The 
question, therefore, is whether or not glucose transporters operate differently in HBV+ and HCV+ 
livers. In the case of HBV, the deletion mutant pre-S2 protein is capable of activating the mTOR signal 
cascade [74], which leads to the translocation of the SLC2A1 (GLUT1) transporter protein to the 
hepatocyte membrane, enhanced cellular glucose uptake, and aerobic glycolysis (‘Warburg effect’) [75]. 
By contrast, the HCV NS5A protein promotes hepatic gluconeogenesis [76] through 
phosphoenolpyruvate carboxykinase (PEPCK), which is in part regulated by the energy metabolism of 
the TCA cycle [77,78]. NS5A also suppresses the membrane expression of the SLC2A1 and SLC2A2 
(GLUT2) transporters and therefore glucose uptake into liver [76,79]. These mechanisms are believed to 
contribute to the hyperglycemia frequently associated with HCV infection, at least for HCV genotype 3 
[80]. Moreover, the polyol pathway is upregulated by HCV, whereby glucose is reduced to sorbitol by 
aldose reductase AKR1B10, which is then oxidized by sorbitol dehydrogenase to fructose [36]. NADPH 
is exchanged for NADH in this pathway, which compromises NADPH-dependent reactions such as 
glutathione reductase and nitric oxide synthase [37]. These differential mechanisms of glucose 
homeostasis may underpin the divergent correlations of glucose with threonic acid and glucose with 
fructose in HBV and HCV urines.  

This analysis is consistent with the HBV+ liver importing glucose via the SLC2A1 and SLC2A2 
transporters and activating glycolysis and PPP but attenuating the TCA cycle. In comparison, this 
analysis is consistent with the HCV+ liver not importing glucose but generating it by gluconeogenesis. 
The analysis is also consistent with threonic acid being imported by the HBV+ liver using glucose 
transporters and, in addition, producing by PPP as a result of xylitol metabolism. Additionally, the 
analysis is consistent with glycolysis and PPP being downregulated in the HCV+ liver, with a 
consequent decrease in plasma lactic acid, and is also consistent with intracellular glucose leaking from 
the cell and contributing to the hyperglycemia frequently observed with chronic HCV infection. 
Finally, the analysis is consistent with the BCAAs valine, leucine, and isoleucine being metabolized in 
the HCV+ liver via the TCA cycle, thus lowering their plasma concentrations and bolstering 
gluconeogenesis. 

Our bioinformatic investigation of the GCMS data resulting from the analysis of plasma and urine 
samples from HBV+ and HCV+ patients, together with HBV- and HCV- controls, has produced 
divergent metabolic pictures of the HBV and HCV infected liver. In the case of HBV infection, it could 
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be interpreted that glucose was actively imported and used to fuel glycolysis and the PPP. In the case of 
HCV infection, the liver appeared not to import glucose but rather to synthesize it by gluconeogenesis 
using TCA cycle intermediates in part derived from BCAAs. We derive these interpretations using the 
following published observations. Our plasma analyses revealed that all three BCAAs were 
statistically significantly depressed in HCV+ patients. We have interpreted this as enhanced 
anaplerosis, which helps to fuel gluconeogenesis. After several catabolic steps, both leucine and 
isoleucine enter the TCA cycle as acetyl-CoA, and valine enters via succinyl-CoA. The expression of all 
the genes that regulate the rate-limiting steps of BCAA catabolism (BCAT2, DBT, DLD, BCKDHA, and 
BCKDHB) is correlated with insulin sensitivity [81]. HCV infection has long been recognized as being 
associated with type 2 diabetes mellitus (T2DM) [82], and a mouse model expressing the full HCV ORF 
has recently established that impaired glucose metabolism is a probable cause [83]. Of note was that 
this mouse model had reduced the hepatocyte membrane expression of SLC2A2 and displayed an 
attenuated uptake of glucose and higher hepatic glucose production. These data are consistent with our 
metabolomic findings, described above. The combination of reduced glucose uptake and impaired 
insulin signaling in these HCV protein expressing mice was interpreted as the cause of insulin 
resistance [83]. Given the effects of BCAA catabolism on insulin sensitivity [81], what role might 
BCAAs play in reversing insulin resistance? Several clinical investigators have administered BCAAs to 
HCV infected patients in attempts to improve prognosis [84]. This area is controversial, with some 
commentators suggesting that BCAAs can activate mTORC1 and cause insulin resistance [85], despite 
the observed beneficial effects to HCV infected patients of BCAA supplements or a BCAA-rich diet [84,86]. 
These relationships between BCAAs, gluconeogenesis, and hyperglycemia in HCV patients are implicit 
in our metabolomic model, described herein. 

In general, metabolomic investigations using case-control protocols for diseases such as viral 
hepatitis have produced lists of latent biomarkers that have then been subjected to receiver operating 
characteristic (ROC) curve analysis to evaluate their suitability as classifiers (for example, the 
progression of hepatitis [24] or cirrhosis [46] to HCC or distinguishing between different grades of HCC [33]). 
Furthermore, metabolite set enrichment analysis has been reported in metabolomic studies of this kind, 
which use, for example, the MetaboAnalyst 3.0 online algorithm (http://www.metaboanalyst.ca) [87,88]. 
Groups of discovered metabolites are often placed schematically into boxes labeled, for example, 
phospholipid metabolism, long-chain fatty acids, or steroid biosynthesis [87]. In addition, some studies 
have undertaken network analysis, the stringing together of the observed list of elevated metabolites in 
a disease state into an annotated network that contains cognate biochemical pathways [16,24]. 
However, these are merely graphical representations of a metabolite list, enhanced or attenuated in a 
particular state.  

We have taken a different approach. Plasma and urine metabolites are not always the products of 
metabolic pathways or their substrates. They may be elevated or reduced in these biofluids as a result 
of alterations in membrane transporters due or in some other way related to the disease state. 
Moreover, a metabolite may not be acting merely as an enzyme substrate; it may inhibit another 
pathway competitively or noncompetitively. In addition, non-peptide neurotransmitters may be 
discovered by metabolomics in plasma or urine in various disease states, and, therefore, the appearance 
of molecules such as acetylcholine or norepinephrine would most likely to be due to neuronal activity 
rather than direct biosynthesis. The approach described here, that is, using robust regression analysis to 
generate metabolic perturbation networks, sought to uncover correlations, both positive and negative, 
between pairs of metabolites in both HBV and HCV infected persons. Rather than a list, these metabolic 
perturbation networks point clearly to the differential metabolic rewiring in HBV and HCV infection, 
as reported here.  

4. Materials and Methods  

4.1. Patient Selection 

We created a combined HBV and HCV patient cohort by complementing the HCV cohort from our 
previous study [36] with a new HBV cohort. In both cases, the patients were positive for the respective 
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virus but had not developed liver cirrhosis (LC) or HCC. In total, our combined cohort consisted of 30 
HBV patients and 30 HCV patients chosen from the Bern Hepatology Biobank. All gave their written 
informed consent to donate blood and urine to the biobank, and the study was conducted according to 
the World Medical Association Declaration of Helsinki. The clinical investigation of HBV and HCV 
patient material was approved by the Ethics Commission of the Canton of Bern (Die Ethikkommission 
des Kantons Bern; reference number KEK 141/14). The HBV group consisted of 16 women and 14 men; 
the HCV group consisted of 15 women and 15 men. The patient age in the HBV group ranged from 20 
to 66 years, with a mean (±S.D.) age of 40.6 ± 10.5 years, and, in the HCV group, it ranged from 28 to 73 
years, with a mean of 50.0 ± 11.1 years (p < 0.01). For the HBV and HCV patients, the average BMIs 
(Kg/m2) were 26.1 ± 5.2 and 25.0 ± 5.2 (n.s.), respectively. For the HBV and HCV patients, the fasting 
blood glucose levels were 5.3 ± 1.4 and 5.0 ± 0.7 (n.s.), respectively, the plasma alanine aminotransferase 
levels (ALT; IU/l) were 49.9 ± 58.2 and 87.2 ± 62.1 (p < 0.01), respectively, and the METAVIR staging 
(degree of fibrosis) was 2.1 ± 1.4 and 3.1 ± 0.9 (n.s.), respectively. Diabetes had been diagnosed for three 
of 30 patients in both groups. A smoking history was determined for seven of 30 HBV and 23 of 30 HCV 
patients (χ2 = 17.1; p < 0.0001), and medication was taken by seven of 30 HBV and 20 of 30 HCV patients 
(χ2 = 11.4; p < 0.001). For this study, we excluded one HBV and six HCV patients that had resolved the 
infection, either spontaneously or after antiviral therapy. 

For each patient, both a urine and a blood plasma sample was taken from the biobank for 
metabolomic profiling. The blood had been collected into EDTA tubes after a minimum of a 6 h fast, 
and, according to strict protocol in the hepatology clinic of the Inselspital Teaching Hospital, the 
plasma was prepared within 30 min and stored at −80 °C. Additionally, we used the same collection of 
control samples that were previously described [36]. This collection consisted of 30 urine samples from 
healthy volunteers (15 F, 15 M; aged 18 to 63 years), who were staff in the university and hospital 
departments, as well as 30 plasma samples from the local blood bank, from voluntary blood donors 
from all over Switzerland (15 F, 15 M; aged 41 to 55 years). All samples tested negative for the presence 
of antibodies and/or antigens for HIV, HCV, and HBV. All samples were also negative for syphilis. 
HIV, HBV, and HCV PCR testing was also negative for all control samples. 

4.2. Gas Chromatography-Mass Spectrometry (GCMS) Analysis of Plasma and Urine 

For the HBV, HCV, and control cohorts, both plasma and urine were profiled on the same GCMS 
instrument by the same operator after double derivatization and using 4-chlorophenylacetic acid as 
internal standard, as described [36,39,73,89]. Annotation of the gas chromatographic peaks was made 
upon both comparisons of the mass spectra with the NIST 14 library spectra collection of 276, 248 mass 
spectra and comparisons of the retention times and mass spectra of an in-house collection of 120 
authentic compounds, as described previously [39,89]. 

4.3. Data Processing, Batch Correction, and Integration 

For each patient cohort, HBV and HCV, and each sample type, urine and plasma, a separate 
dataset was created, consisting of patient and control samples. In each dataset, the relative intensities 
were processed as follows: 

1. A matrix ܫ  was constructed in which the columns represent the samples and the rows the 
measured metabolites 

2. A floor value, ݂, was calculated as ݂ = ௜,௝ܫ where ,ܫ ௜,௝ ofܫ for all elements ⌊(௜,௝ܫ)ଶ݃݋݈⌋ > 0 
3. All elements of ܫ, where ܫ௜,௝ = 0, are assigned a value of 2௙ 
4. The entire matrix is now transformed such that ܫʹ = (ܫ)ଶ݃݋݈ − ݂ 
5. A vector, ݉, is calculated as the column means of ܫʹ, as well as a vector, ݏ, as the column standard 

deviations. A vector, ݋, is defined as ݋ = ݉ −min(݉) 
6. The vector, ݋, is subtracted from each row of ܫʹ 
7. Each row of ܫʹ is divided by ݏ 
8. Finally, all values of ܫʹ are offset by a value such that the lowest value of ܫ is zero. 
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9. The result of these operations is a matrix in which all columns have the same mean and standard 
deviation. 

The replicate samples—columns in the matrix ܫ′—are averaged in order to obtain a final intensity 
matrix, ܬ, with as many columns as subjects, both patients and controls, in the cohort. 

For each sample type, the matrices ܬு஻௏  and ܬு஼௏  are merged by first identifying the set of 
compounds ܥ that were identified in both datasets. A merged matrix, ܯ, is then created by selecting 
from ܬு஻௏ and ܬு஼௏ those rows that correspond to the compounds in ܥ and by concatenating the 
columns of both sub-matrices. The resulting matrix is then batch-corrected using the method described 
by Leek et al. [90]. This step results in two single matrices, ܯ௣௟௔௦௠௔, containing data for 20 metabolites, 
and ܯ௨௥௜௡௘, containing 25 metabolites. 

Finally, ܯ௣௟௔௦௠௔  and ܯ௨௥௜௡௘  are merged into one big matrix, ܯ௠௘௥௚௘ௗ , by concatenating their 
rows. This matrix is then used for all subsequent analyses and will from here on simply be referred to 
as ܯ. 

4.4. Detection of Differentially Abundant Metabolites 

Metabolites that have statistically significant different abundances between two sample groups 
were detected using an unpaired t test. The resulting ݌-values were corrected for multiple testing using 
the Benjamini-Hochberg method. 

4.5. Robust Regression Analysis 

For each pair of metabolites ܺ, ܻ, i.e., each pair of rows in the matrix ܯ, five different robust linear 
models are fitted, each corresponding to a different scenario about how the intensity of ܻ, denoted as ݕ, correlates to the intensity of ܺ, denoted as ݔ, as well as the patient group ݃: 

1. A null model, with a single intercept, representing the case that ݕ is independent of both ݔ and ݃. 
2. An intercept-only model, with a different intercept per subject group, modelling the case that ݕ 

only varies with ݃. 
3. A single intercept, single slope model, for the case in which ݕ only correlates with ݔ and is 

independent of ݃ 
4. A multiple intercept, single slope model, representing the case in which ݕ depends on both ݔ and ݃ but in which the slope does not vary between the different patient groups. 
5. An interaction model, where ݕ depends on both ݔ and ݃, as well as the interaction between 

them, meaning that the slope changes between the patient groups. 

For both the multiple intercept and the interaction models, the reference for both the intercept and 
the interaction terms is the control cohort. As a result, the interaction terms reflect the difference 
between the regression slope coefficients of the HBV and HCV patients and the control subjects. The 
models were fitted using the rlm function from the MASS package in R [91]. Akaike’s information 
criterion (AIC) [27] was then used to determine which of these models fit the data best. Each time the 
interaction model had the best fit, a Wald test was used to calculate the significance of the interaction 
terms of this model. In all other cases, the ݌-value was assumed to be 1. The ݌-values for all models 
were then corrected for multiple testing using the Benjamini-Hochberg method. 

All models with an adjusted ݌-value of 0.01 or less were retained. For each model, 95% confidence 
intervals were constructed for the general slope coefficient and the interaction terms for both HBV and 
HCV. Whenever this interval included zero, the corresponding coefficient was set to zero. Next, for 
each virus type, a network was constructed in which the nodes represent metabolites and the edges the 
models describing the correlation between them. Depending on the values of the general slope 
coefficient and the interaction coefficients for the respective virus, the edges were assigned to one of 
these types: 
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• When the interaction coefficient for the virus was zero, the edge was not included in the network. 
• When the general slope was zero but the interaction coefficient was different from zero, the edge 

type was called ‘appear’ 
• When the general slope was different from zero but the interaction coefficient was zero, the edge 

type was called ‘disappear’ 
• When the both the general slope and the interaction coefficient were different from zero and the 

slope of the HBV or HCV patient group had a different sign than the general slope, the edge type 
was called ‘flip’. Note that the slope of a patient group is calculated as the sum of the general slope 
and the interaction term. 

• When both the general slope and the interaction term were different from zero, the edge type was 
called ‘change’. 

The resulting networks are referred to in the main text as metabolic perturbation networks. 

4.6. Integration with Metabolic Networks 

The collection of known human enzyme-substrate and enzyme-product annotations was retrieved 
from the KEGG database using the KEGGREST R module. For enzymes with unspecific substrate or 
product annotations, such as ‘a carboxylate’, specific annotations, e.g., 4-hydroxyphenylacetate, were 
added manually. These annotations were then merged into a bi-partite graph in which the nodes 
represented either enzymes or compounds and the edges represented substrate-enzyme or 
product-enzyme relations. 

This graph was then used as an undirected metabolic network to find possible metabolic pathways 
between pairs of compounds found to be connected in a metabolic perturbation network. More 
precisely, for every edge ܧ connecting the metabolites ܺ and ܻ in a metabolic perturbation network, 
all possible shortest paths between ܺ and ܻ in the metabolic network were retrieved, if any. The 
output of this step is an integrated network consisting of the original metabolic perturbation network 
and the metabolic shortest paths. 

To assess whether the detected shortest metabolic paths are specific to the metabolic perturbation 
networks, we observed artefacts caused by the presence of hub nodes in the metabolic network, and the 
following Monte Carlo approach was adopted. For each node and metabolic edge in the integrated 
network, an inclusion score indicating the number of times it was included in any of the metabolic 
shortest paths, excluding start and end nodes, is recorded. Next, 1000 Monte Carlo replicates of the 
original metabolic perturbation network are created by first randomly selecting ݊ nodes from the 
entire set of metabolites detected in our dataset and then creating the ݁ edges between the selected 
nodes, where ݊ and ݁ are, respectively, the number of nodes and edges in the original metabolic 
perturbation network. These random networks were then integrated with the metabolic network in the 
same way as the original network, and the inclusion scores for these nodes and edges were also 
determined. This step allows us to compare the inclusion score of a given node or edge in the original 
integrated network to its distribution of scores in the randomized networks. Applying a confidence 
interval of 0.95, we consider an inclusion score in the original network to be significant if there, at most, 
50 random networks with the same score or a higher score for that particular node or edge. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/4/51/s1, Figure S1: 
plasma isoleucine and plasma serine, Figure S2: plasma isoleucine and plasma threonine, Figure S3: plasma leucine 
and plasma glucose, Figure S4: plasma leucine and plasma serine, Figure S5: plasma myristic acid and plasma 
myo−inositol, Figure S6: urine ribose and urine citric acid, Figure S7: urine threonine and urine ribose, Figure S8: 
urine threonic acid and urine mucic acid, Figure S9: urine erythronic acid and urine citric acid, Figure S10: plasma 
myristic acid and plasma cholesterol, Figure S11: plasma valine and plasma serine, Figure S12: plasma isoleucine 
and plasma palmitoleic acid, Figure S13: plasma isoleucine and plasma oleic acid, Figure S14: plasma leucine and 
plasma threonine, Figure S15: plasma isoleucine and plasma proline, Figure S16: urine xylitol and urine 
gluconolactone, Figure S17: plasma valine and plasma glucose, Figure S18: urine threonic acid and urine glucose, 
Figure S19: urine fructose and urine glucose, Figure S20: plasma ethanolamine and plasma glycine, Figure S21: 
plasma threonine and plasma mannose, Figure S22: plasma serine and plasma myo−inositol, Figure S23: plasma 
oleamide and plasma cholesterol, Figure S24: plasma leucine and plasma cholesterol. 
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Appendix A 

 

Figure A1. Integrated perturbation and metabolic network for the HBV and HCV urine samples. Circle 
nodes represent metabolites, and diamonds represent enzymes. Dashed lines represent 
enzyme-substrate relations, and dotted lines enzyme-product relations; solid lines are appearing 
correlations in the metabolic perturbation network (Figure 4). The size of the node and thickness of the 
edge represent the relative significance. 

HBV

HCV
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Figure A2. Integrated perturbation and metabolic network for the HBV and HCV plasma samples. 
Circle nodes represent metabolites, and diamonds represent enzymes. The same legend applies as in 
Figure A1. 
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