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Abstract: The field of metabolomics as applied to human disease and health is rapidly expanding.
In recent efforts of metabolomics research, greater emphasis has been placed on quality control and
method validation. In this study, we report an experience with quality control and a practical
application of method validation. Specifically, we sought to identify and modify steps in gas
chromatography-mass spectrometry (GC-MS)-based, non-targeted metabolomic profiling of human
plasma that could influence metabolite identification and quantification. Our experimental design
included two studies: (1) a limiting-dilution study, which investigated the effects of dilution on
analyte identification and quantification; and (2) a concentration-specific study, which compared the
optimal plasma extract volume established in the first study with the volume used in the current
institutional protocol. We confirmed that contaminants, concentration, repeatability and intermediate
precision are major factors influencing metabolite identification and quantification. In addition,
we established methods for improved metabolite identification and quantification, which were
summarized to provide recommendations for experimental design of GC-MS-based non-targeted
profiling of human plasma.
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1. Introduction

High-throughput molecular profiling is being increasingly used in large numbers of human samples
to identify novel biomarkers and mechanisms of health and disease. Metabolomics, a subfield in molecular
profiling, investigates the metabolome, the total quantitative collection of small-molecule metabolites in
biofluids such as plasma [1,2], in an identified and quantified manner [3]. Since metabolomic changes
are downstream of alterations at the genomic, transcriptomic and proteomic level [4], metabolomics is
particularly suited for identification of biomarkers, examination of molecular physiology, and investigation
of genetic and environmental modifications [5]. Commonly utilized technologies in metabolomics include
liquid or gas chromatography (LC and GC) coupled to mass spectrometry (MS), capillary electrophoresis
(CE), and nuclear magnetic resonance (NMR) spectroscopy [6].

Two general approaches exist in metabolomic profiling: targeted and non-targeted. The targeted
approach identifies and quantifies select known metabolites, usually via isotope-labeled internal
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standards; the non-targeted approach aims to profile as many metabolites as possible, the identities
of which are not established prior to analysis. The main advantage of the non-targeted approach is
a broader coverage of the metabolome with opportunities for discovering novel pathways [7]. However,
the non-targeted approach comes with inherent challenges surrounding metabolite identification and
quantification, the first step of metabolomic profiling that directly impacts further biological insight.
These challenges arise from both the complexity of biofluids with a wide range of compound classes
and metabolite abundance, and intrinsic limitations of available analytical techniques [8,9]. For example,
unknowns or analytes with no chemical identification discovered in metabolomic profiling studies
frequently exceed the number of known metabolites with positive or putative identification by
2–3 times [10,11]. In recent years, with the advancements in metabolomic profiling approaches,
more insights have been gained into the human blood metabolome [12,13]. Comprehensive databases
for the human blood metabolome such as the Human Metabolome Database (http://www.hmdb.ca)
have also been constructed to improve the identification of metabolites and characterization of metabolic
pathways. Systematic metabolite identification and quantification in non-targeted metabolomic profiling
have resulted in the discovery of novel disease biomarkers and pathways [14], while overlooking these
key steps prior to drawing biological inferences has led to early pitfalls [15].

Compared to the targeted approach, non-targeted metabolomic profiling is also associated
with greater difficulties in quality control and method validation where common parameters
considered in method validation of targeted analysis such as accuracy or trueness cannot
be adapted easily [16]. Efforts to overcome these difficulties, both at the experimental and
computational level, have become a focus of metabolomic research [17–23]. These efforts include
research on standardizing the experimental protocols [19,24,25], strategies for incorporating quality
controls [18,26–29], and recommendations for employing statistics in the experiment design [30].
These efforts have also resulted in the formation of many working groups and data repositories (e.g.,
Metabolomics Workbench [31]) for standardization [17,32]. Currently, more research is still needed
in the practical applications of quality control and method validation. For example, while chemical
contamination has been suggested to interfere with metabolomic profiling [14], no previous study has
investigated the effect of contaminants on metabolite identification and quantification systematically.
As a result, recommendations for experimental design frequently include the incorporation of blanks
containing identical reagents as biological samples [7,18,27], but few recommendations exist concerning
ways to process and utilize blank data. The effect of concentration on metabolite identification has also
been reported, where increased concentration resulted in higher numbers of identified components [33],
but most of these studies were restricted to standard solutions [33] or a subset of isotope-labeled
metabolites [34]. While some studies have advocated the use of linearity and repeatability and
intermediate precision in quality control samples to monitor analytical performance [7,19,27], few have
investigated their effects on metabolite quantification in complex biological samples or provided
practical guidelines for improvement.

In this study, we sought to identify and modify steps in non-targeted metabolomic profiling
of human plasma that could influence metabolite identification and quantification. We performed
non-targeted metabolomic profiling using gas chromatography-mass spectrometry (GC-MS), due to its
broad coverage, high sensitivity, and reproducibility [2,35,36]. Our hypothesis is that contaminants,
concentration, and repeatability and intermediate precision are major factors influencing metabolite
identification and quantification. In addition to developing methods for improved identification
and quantification, we hope to provide recommendations for experimental design in GC-MS-based
non-targeted metabolomic profiling of human plasma.

2. Results

Our experimental design included two studies: (1) the limiting-dilution study, which investigated
the effects of dilution on analyte identification and quantification, and (2) the concentration-specific
study, which compared the optimal concentration established in the first study with the standard
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volume used in the current institutional protocol [37]. For both studies, aliquots of human plasma
were deproteinated with methanol, dried, methoxymated, trimethylsilylated, and run on a 6890N
GC/5975 Inert MS (Agilent Technologies, Santa Clara, CA, USA).

Results from all aliquots were included in the analysis. A total of 320 analytes were detected in
the limiting-dilution study, consisting of 183 known analytes and 137 unknowns. After excluding
29 analytes present in less than 20% of non-blanks (known: 24, unknown: 5), 291 analytes (known: 159,
unknown: 132) were included in further analysis.

2.1. Selectivity: Contaminant Profile

The selectivity of an analytical method is defined as the ability to quantify the analytes accurately
in the presence of interferences, such as process impurities and chemical contamination [18,38].
Examination of the contaminant profile can prevent false-positive discoveries and increase
the selectivity of non-targeted metabolomic profiling. In the limiting-dilution study, 156 out of
the 291 (53.6%) profiled analytes were present in at least one blank (148) or annotated as non-metabolites
after manual curation (8). These analytes were characterized as contaminants, and were further
classified into definite (present in greater than or equal to 20% or 6 blanks or annotated as
a non-metabolite after manual curation, 123) or potential contaminants (present in greater than
or equal to 1 but less than 6 blanks, 33). Classes of these contaminants (Figure 1) include process
impurities (e.g., silicone oils and alkane hydrocarbons) present in blanks or discovered after manual
curation (Supplemental Table S1), metabolites present in blanks (Table 1), and unknowns present
in blanks. The majority of unknown (66.7%, 88) and 42.8% (68) of known analytes were contaminants.
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Figure 1. Contaminants represent 54% of all analytes detected. Classes of contaminants: process
impurities (e.g., silicone oils and alkane hydrocarbons) present in blanks or discovered after manual
curation (25), metabolites present in blanks (43), and unknowns present in blanks (88).

Table 1. Metabolite contaminants detected in blanks by type (definite or potential) and chemical class.
Detection rate in blanks varied by metabolite type.

Type Class Metabolite No. of Blanks (%)

Definite Amino acids Glycine 6 (20%)
- Benzene derivatives Benzoic acid 22 (73.3%)
- Carbohydrates Glucose and other aldohexoses 20 (66.7%)
- - Sucrose and similar disaccharides 10 (33.3%)
- Fatty acids Heptadecanoic acid or Octadecanol 23 (76.7%)
- - Myristic acid or Pentadecanol 27 (90%)
- - Nonanoic acid 12 (40%)
- - Oleic acid 12 (40%)
- - Palmitic acid 27 (90%)
- - Pentadecanoic acid or Hexadecanol 14 (46.7%)
- - Stearic acid 27 (90%)



Metabolites 2017, 7, 45 4 of 16

Table 1. Cont.

Type Class Metabolite No. of Blanks (%)

- Lipids alpha-Monopalmitin 27 (90%)
- - beta-Monopalmitin 27 (90%)
- - beta-Monostearin 27 (90%)
- - Glycerol 26 (86.7%)
- - Thymol 15 (50%)
- Organic acids Pyruvic acid 20 (66.7%)
- - Succinic acid 7 (23.3%)
- Other Phosphoric acid 23 (76.7%)
- - Uridine 27 (90%)

Potential Amino acids Aspartic acid 3 (10%)
- Benzene derivatives Gentisic acid 4 (13.3%)
- Phenol 2 (6.7%)
- Carbohydrates Fructose or similar ketohexose 1 (3.3%)
- Fatty acids Arachidic acid or 1-Heneicosanol 3 (10%)
- - Decanoic acid 1 (3.3%)
- - Lauric acid 4 (13.3%)
- - Methyl palmitate 2 (6.7%)
- - Methyl stearate 2 (6.7%)
- Lipids Gamma-Tocopherol 2 (6.7%)
- Organic acids Acetoacetate or 2-Aminoisobutanoic acid 3 (10%)
- - Glycolic acid 2 (6.7%)
- - Lactic acid 5 (16.7%)
- - Urea 2 (6.7%)
- Other 1,2-Propanediol 1 (3.3%)
- - 4-Hydroxypyridine or 3-Hydroxypyridine 3 (10%)
- - Ethanolamine 2 (6.7%)
- - O-Methylphosphate 3 (10%)
- - Prunetin or similar isoflavone 1 (3.3%)

Five contaminants exhibited positive run-order effects (Spearman’s rho greater than 0.5,
p-value less than 0.05), including four unknowns and one equipment component; 16 contaminants
exhibited negative run-order effects (Spearman’s rho less than −0.5, p-value less than 0.05), including
1 equipment component, 4 metabolites and 11 unknowns (Supplemental Figure S1).

The majority (49, 72.1%) of the 68 known contaminants (41 definite, 8 potential) from
the limiting-dilution study were reproducible in the concentration-specific study. The majority
of non-reproducible known contaminants were metabolites (16) undetected in blanks in the
concentration-specific study. The concentration-specific study also produced 3 new contaminants.
Additionally, 12 of the 74 (16.2%) unknown definite contaminants, as characterized by a match from the
auxiliary library of unknowns, were reproducible. These results were used to establish a contaminant
repository consisting of highly reproducible and potential contaminants for reference in future studies.

Definite non-metabolite contaminants (equipment components and unknowns, 98) and reagent
derivatives (EDTA, MSTFA and pyridine derivatives, 5) were excluded from further analysis. Potential
contaminants were included after background adjustment by subtracting the mean batch-specific
blank level from the analyte level. Five potential contaminants with unadjusted levels lower than the
background were excluded. Combined with noncontaminants, 183 analytes remained as features to
describe potentially authentic metabolites. Known analytes identified in the NIST SRM1950 plasma
were consistent with those reported in previous publications [28]. The identities of these analytes,
together with analytes identified in the volunteer plasma, are listed in Supplemental Table S2.

2.2. Linearity: Signal-Concentration Relationship

Linearity refers to the ability to obtain measured analytical signals directly proportional to the
concentration of analytes [39]. Linearity is a multifactorial problem affected by ionization efficiency
of the analyte, ion transport from the ion source to the mass analyzer, and linear response of the
detector. Assessment of the linearity of this signal-concentration relationship provides validation
to simultaneous measurement of multiple metabolite concentrations in non-targeted metabolomic
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profiling [19]. In the limiting-dilution study, the linear regression model was deemed appropriate
by F-test in 112 (61.2%) analytes, including 74 known analytes and 38 unknowns. After excluding
16 definite or potential contaminants, 55 analytes exhibiting lack of fit for the linear model were refitted
with sigmoid curves using logistic regression models, as well as polynomial models (quadratic, cubic
or 4th order), to test the hypothesis that saturation of the chromatography column is responsible for
the lack of fit. F-test revealed that sigmoid curves were appropriate for 26 analytes and polynomial
models were appropriate for 18 analytes in this subgroup, confirming the effects of saturation.

For the 112 analytes where the use of the linear regression model was appropriate, the adjusted
R2 was used to assess the degree of linearity (Figure 2). Approximately half of analytes (47.9%, 23)
with low linearity (R2 less than 0.5) were definite or potential contaminants. Known analytes had
a significantly higher linearity than unknown analytes (p = 0.01, Table 2). Examination of the estimated
parameter β1 revealed that all except one analyte, a potential contaminant, had positive slopes.
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Figure 2. Distribution of R2 value for all analytes. Approximately half of analytes (47.9%, 23) with low
linearity (R2 less than 0.5) were definite or potential contaminants.

Table 2. Distribution of adjusted R2 by analyte type. Known analytes had a significantly higher
linearity than unknowns. Fisher’s exact test comparing known and unknowns p-value = 0.01.

Summary No. (% ) Known Unknown

R2
adj greater than 0.95 3 2 (1.6%) 1 (1.8%)
R2

adj (0.7, 0.95) 64 52 (41.3%) 12 (21.1%)
R2

adj (0.5, 0.7) 30 22 (29.7%) 8 (21.1%)
R2

adj less than 0.5 50 24 (32.5%) 24 (63.2%)

2.3. Linear Dynamic Range

The linear dynamic range can be used to determine the optimal range for analyte detection.
Outside the linear dynamic range, estimation of the analyte concentration becomes uncertain and may
deviate significantly from the actual value [39]. In the limiting-dilution study, the majority (90.5%) of
analytes’ linear dynamic range (LDR) was between concentrations of 4.98 × 10−9 and 7.48 × 10−9
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(v/v, corresponding to a plasma extract volume of 100–150 µL) or 7.48 × 10−9 and 9.97 × 10−9

(corresponding to a plasma extract volume of 150–200 µL, Table 3). Only one analyte’s LDR was above
1.50 × 10−8 (plasma extract volume 300 µL). Using this information, the concentration of 7.48 × 10−9

(plasma extract volume 150 µL) was determined optimal.

Table 3. Linear dynamic range for all analytes. The majority (90.5%) of analytes’ linear range was
between 100 and 200 µL.

Plasma Extract Volume (µL) No. Analytes (%)

75–100 8 (4.5%)
100–150 100 (55.9%)
150–200 62 (34.6%)
200–300 6 (3.4%)

300+ 1 (0.6%)

2.4. Repeatability and Intermediate Precision

Since all plasma extracts used in this study were obtained from one sample (single blood draw
from one individual), biological variability was minimized. Therefore, repeatability and intermediate
precision in this study reflected mainly of process variability in sample preparation and instrument
variability; each plasma extract aliquot served as quality control. Median within-batch RSD for all
analytes was significantly higher at low plasma extract volumes than at high volumes (Figure 3,
Kruskal-Wallis rank sum test, p-value less than 0.001). Post-hoc pairwise comparisons using the
Conover’s test for multiple comparisons revealed that this difference was significant for the lowest
three volumes (25, 50 and 75 µL) and no longer significant starting at 100 µL.
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Figure 3. Boxplot of repeatability (within-batch relative standard deviation or RSD) by plasma extract
volume. The horizontal lines represent the median and the lower and upper hinges correspond to
the 25th and 75th percentiles. The asterisks * denote RSD that was significantly different in post-hoc
pairwise comparisons using the Conover’s test for multiple comparisons.

Averaged across all plasma extract volumes, within-batch RSD was significantly higher in
definite and possible contaminants (median = 3.42, 25th/75th: 2.48/5.13) than non-contaminants
(median = 3.06, 25th/75th: 2.33/3.92, Wilcoxon rank sum test, p-value = 0.04). Analytes with low
linearity also had significantly higher within-batch RSD (median = 4.50, 25th/75th: 3.15, 4.93) than
analytes with high linearity (median = 2.33, 25th/75th: 1.73/2.83, Wilcoxon rank sum test, p-value less
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than 0.001). There was no significant difference in within-batch RSD for known analytes vs. unknowns
(Wilcoxon rank sum test, p-value = 0.22).

The median between-batch RSD for all analytes was significantly higher at lower volumes than
at high volumes (Figure 4, Kruskal-Wallis rank sum test, p-value less than 0.001). Post-hoc pairwise
comparisons revealed that this difference was significant for all volumes below 400 µL. Between-batch
RSD was larger than within-batch RSD for 141 (76.2%) analytes.
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in post-hoc pairwise comparisons using the Conover’s test for multiple comparisons.

Averaged across all plasma extract volumes, between-batch RSD was significantly higher in
definite and possible contaminants (median = 5.22, 25th/75th: 3.82/7.63) than non-contaminants
(median = 3.72, 25th/75th: 2.81/4.75, Wilcoxon rank sum test, p-value less than 0.001). Analytes with
low linearity also had significantly higher within-batch RSD (median = 6.46, 25th/75th: 4.64/7.95) than
analytes with high linearity (median = 2.86, 25th/75th: 2.33/3.42, Wilcoxon rank sum test, p-value less
than 0.001). There was no significant difference in within-batch RSD for known analytes vs. unknowns
(Wilcoxon rank sum test, p-value = 0.18).

An analysis-of-variance (ANOVA) test comparing a linear regression model with the addition
of a batch variable and the basic model revealed that 173 (93.5%) analytes exhibited significant
intermediate precision to warrant the inclusion of a batch variable in the analysis.

2.5. Concentration-Specific Study

After exclusion of contaminants, 133 known analytes detected in the concentration-specific study
were compared to the limiting-dilution study. The majority of these analytes (117, 88.0%) were detected
previously in the limiting-dilution study. Analytes not previously detected (16) were considered
non-reproducible and excluded from the concentration comparisons.

Comparison of analyte detection at plasma extract volume 150 vs. 700 µL (plasma concentration
7.48 × 10−9 vs. 3.49 × 10−8) revealed 7 known analytes and 13 unknowns that were detected
inconsistently (less than 20%) at 150 µL and consistently (greater than 50%) at 700 µL. All seven
known analytes except one were of low to moderate linearity (adjusted R2 less than 0.7) in the
limiting-dilution study.
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3. Discussion

In this study, we investigated the steps in GC-MS-based non-targeted metabolomic profiling
of human plasma that could influence metabolite identification and quantification. We tested and
confirmed that contaminants, concentration, and repeatability and intermediate precision are major
factors influencing the identification and quantification of metabolites. The findings of this study lead
to recommendations for experimental design in GC-MS-based non-targeted metabolomic profiling of
human plasma.

Through methodical inclusion and systematic analysis of blanks, we discovered that the majority
of unknowns and close to half of known analytes detected were contaminants. This result highlights the
importance of including blanks in GC-MS-based non-targeted metabolomic profiling, a step that is not
universally incorporated in practice currently. While the majority of contaminants were equipment
components, unknowns, or reagent derivatives, 19% were metabolites with levels above the detection
limit but below true biological levels. These metabolite contaminants consist of a wide range of
metabolites, such as amino acids, carbohydrates, fatty acids, lipids and organic acids. The most likely
sources of metabolite contaminants are the polypropylene tubes used in sample preparation, with oils
used as extrusion aids or mould-release agents. Our results provide direct evidence that contaminants
could share similar chemical and physical properties to true metabolites, as proposed previously by
Dunn et al. [27]. Without background correction, these metabolite impurities could affect the selectivity
of metabolite quantification by providing false positive signals. While inclusion of blanks may increase
the cost of metabolomic assays, the additional information gained in both metabolite identification
and quantification warrants investigators considering routinely including them in study designs.
In addition to improving selectivity, our results also demonstrated that using blanks could provide
insight into the nature of unknowns and significantly narrow their search space. Unknowns are often
considered spurious peaks from reagent contaminants, chemical artifacts during derivatization or
deconvolution artifacts as opposed to true metabolites, and most current studies exclude all unknowns
routinely from further analysis. While some studies have reported the number of unknowns [40],
few have reported their characteristics or distribution. In this study, we discovered that while the
majority of unknowns were contaminants, some were absent in blanks, results that were reproducible
in the second study. By including reproducible unknowns in metabolomic profiling, the statistical
power could be increased, potentially leading to the discovery of novel biomarkers and pathways.

Comparison of the limiting-dilution and concentration-specific study showed that the contaminant
profile is highly reproducible. This result prompted us to establish a contaminant repository consisting
of highly reproducible and potential contaminants for reference in future studies.

Few previous studies have explored the signal-concentration relationship in complex biological
samples such as human plasma [34]. Our study utilized analytical replicates to examine the
appropriateness of a linear model through comparing the pure error variability and variability
from lack of fit. In our study, the signal-concentration relationship was linear for only 61.2% of
analytes. Potential explanations for nonlinearity include contaminant effect and saturation effect.
Contaminant effect arises from the metabolite impurities present in equipment and reagents that could
affect the samples differently. At lower concentrations, false positive signals may arise from these
impurities, thus affecting metabolite quantification. Conversely, as concentration increases beyond
a certain threshold, the chromatography column may become saturated, resulting in peak broadening,
decreased sensitivity and poor quantification. In this study, we examined saturation effect using
sigmoid and polynomial models as alternatives to the linear regression model. Our results showed
that saturation effect could explain close to half of the nonlinearity.

Our results showed that known analytes had significantly higher linearity than unknowns.
This is likely because many unknowns may be spurious peaks arising from deconvolution artifacts or
impurities. The classes of metabolites represented by linear analytes are diverse, suggesting that the
functional group is not the only factor that affects linearity. Previous studies have advocated using
dilution in quality control samples of metabolomic profiling to generate a list of highly linear “targets”
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that can be used for further method validation [7]. These known analytes showing high linearity in this
study were used to construct a list of targets that we will use for performance monitoring in the future;
the unknowns showing high linearity were added to our institutional library as potential metabolites
of biological importance.

By examining the linear dynamic range for all analytes, we determined that the optimal
concentration for quantification was 7.48 × 10−9 for the majority of analytes, corresponding to a plasma
extract volume of 150 µL. The optimal protocol established for sample preparation and derivatization
(SOP) can be found at: http://dmpi.duke.edu/files/dmpi_gc-ms_protocol.pdf. The subsequent
concentration-specific study confirmed that by decreasing the plasma extract volume from 700 to
150 µL (concentration from 3.49 × 10−8 to 7.48 × 10−9), only a few low abundant, low linear metabolites
and unknowns were less consistently detected. One of the main challenges in metabolomic profiling
is the trade-off between detection and quantification. Using higher plasma volumes may increase
the detection rate of low abundant analytes. However, at higher volumes, peaks for highly abundant
analytes may become saturated, resulting in decreased accuracy in quantification. In the application of
metabolomic profiling to human diseases, quantification of most analytes may be more important than
detection of low abundant analytes, especially when the goal is to differentiate as many metabolite
levels between cases and controls as possible. Conversely, for studies on samples with low abundant
metabolites (e.g., neonates), using a higher plasma volume and thus metabolite concentration may be
required to achieve improved identification and quantification. Of note, the optimal plasma volume
established in this study may not be generalizable to other studies using different analytical instruments
and experimental conditions. Therefore, we recommend establishing the linear dynamic range specific
to individual instruments prior to initiating large-scale non-targeted metabolomic profiling studies.

In this study, repeatability was greatest at the lowest three volumes. This result is consistent
with previous reports [34]. Sources of repeatability include variability in sample preparation and data
acquisition. Specifically, contaminants affected repeatability significantly, as evidenced by higher
within-batch RSD in contaminants than non-contaminants. The fact that within-batch RSD did
not differ in known analytes compared to unknowns suggests that repeatability is intrinsic to the
experimental process, rather than analyte-specific. The overall low within-batch RSD confirms that the
method is highly reproducible, and meets the requirements similar to targeted methods.

Intermediate precision was higher than repeatability for the majority of analytes in this study.
Sources of intermediate precision are similar to repeatability and include variability in sample
preparation and data acquisition. In addition, since different batches were performed on different days,
change in sensitivity over time may also contribute to intermediate precision as sample components
aggregate in the GC injector or electrospray ion source [27]. While inter-experiment RSD was below
10% for the majority of analytes at all concentrations, the significant batch effect on quantification for
most analytes suggests that batch controls should be included routinely in reporting and analysis of
metabolomic profiling.

Broad-scan, non-targeted GC/MS metabolomics is useful for examining small compounds
in plasma whose concentrations range from low micromolar to millimolar. However, GC has numerous
limitations, including the need to extract and derivatize analytes to render them sufficiently nonpolar
for GC. GC is poorly suited for some compounds, including those that are highly volatile and elute
in the solvent front, as well as thermolabile or highly polar metabolites, such as quaternary amines,
guanidino compounds, internal zwitterions, and molecules with phosphodiester bonds. Protocols and
instruments vary widely. In assays for the hundred-plus plasma metabolites that are readily accessible
by GC/MS, optimization experiments are essential during development of a stable analytic platform.

4. Materials and Methods

Our experimental design included two studies: (1) the limiting-dilution study (Figure 5),
which investigated the effects of dilution on analyte identification and quantification, and (2) the
concentration-specific study, which compared the optimal concentration established in the first study

http://dmpi.duke.edu/files/dmpi_gc-ms_protocol.pdf
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(7.48 × 10−9, corresponding to a plasma extract volume of 150 µL) with the standard volume used in the
current institutional protocol [37] (3.49 × 10−8, corresponding to a plasma extract volume of 700 µL).
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myristic acid (C14:0-D27-TMS) to remove proteins. Following centrifugation at 2081× g for 5 min at 
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Figure 5. (a) Schematic of the sample preparation steps for the limiting dilution study; (b) an example
of the injection order of the plasma extract aliquots. Aliquots were analysed in a randomized order
to minimize biases in sample preparation and data acquisition. Blanks containing the reagents only
were included in at the beginning, middle, and end of each run. The concentration-specific study used
a similar protocol except for different plasma extract volumes (0, 150 and 700 µL only).

4.1. Sample Acquisition, Preparation, and Derivatization

Both studies utilized a single EDTA-anticoagulated blood sample obtained from one healthy
volunteer after 10 h of fasting. The blood sample was collected at the beginning of the limiting-dilution
study and plasma was extracted after centrifugation. The plasma sample was then separated into
1.2 mL aliquots and stored at −80 ◦C prior to sample preparation.

The limiting-dilution study was divided into 10 batches with identical experimental design
(Figure 5) spanning 16 consecutive days, while the concentration-specific study was conducted
within a two-day period. For both studies, plasma aliquots (100 µL each) were first extracted with
750 µL methanol spiked with a retention-time-lock internal standard of 6.25 mg/L perdeuterated
myristic acid (C14:0-D27-TMS) to remove proteins. Following centrifugation at 2081× g for 5 min at
room temperature, the supernatants were pooled into a 10 mL glass tube. Varying amounts of the
pooled methanolic extract were then dispensed into new microcentrifuge tubes, and ballasted with
7.5:1 MeOH/H2O (v/v) for a total volume of 700 µL. The limiting-dilution and concentration-specific
study differed in the volumes of pooled methanolic extract used, corresponding to different plasma
concentrations. For the limiting-dilution study, each batch consisted of 33 aliquots with 11 different
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plasma extract volumes (0–700 µL), corresponding to 11 plasma concentrations repeated three times
(Table 4). The concentration-specific study consisted of one batch of 32 aliquots: 15 replicates for each
of the two concentrations 7.48 × 10−9 and 3.49 × 10−8 (corresponding to plasma extract volumes of
150 µL and 700 µL, respectively) and two blanks (reagents only). For both studies, each aliquot
of methanolic extract ballasted with MeOH/H2O was dried with a SpeedVac SPD111V sample
concentrator (Thermo Fisher Scientific, Asheville, NC, USA) for 5 h, followed by the addition of 100 µL
ethyl acetate as an azeotropic drying agent, and another 45 min of SpeedVac drying. The dried plasma
extracts were derivatized with 25 µL of 18 mg/mL methoxyamine hydrochloride in pyridine at 50 ◦C
for 30 min, followed by trimethylsilylation with 75 µL of N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA) at 50 ◦C for 30 min.

Table 4. Experimental design for each batch in the limiting-dilution study. Eleven different plasma
extract volumes repeated three times were included in each batch (total number of aliquots = 33).
Each plasma extract volume was ballasted with 7.5:1 methanol/H2O (v/v) to bring the total volume to
700 µL. The entire limiting-dilution study consisted of 10 batches with identical experimental design.

Methanolic Plasma Extract
Volume (µL)

Methanol/H2O Volume 1

(µL)
Equivalent Plasma Volume

Injected 2 (nL)
Equivalent Plasma

Concentration 3 (v/v)

0 700 0 0
25 675 5.7 1.25 × 10−9

50 650 11.3 2.49 × 10−9

75 625 17.0 3.74 × 10−9

100 600 22.6 4.98 × 10−9

150 550 33.9 7.48 × 10−9

200 500 45.2 9.97 × 10−9

300 400 67.9 1.50 × 10−8

400 300 90.5 1.99 × 10−8

600 100 135.7 2.99 × 10−8

700 0 158.4 3.49 × 10−8

1 7.5:1 methanol/H2O (v/v) solution was used to bring the total volume up to 700 µL prior to drying.
2 Calculated using injection volume (5 µL out of 100 µL derivatized plasma) and split ratio (25:1): 0.1 mL of
plasma × 106 nL/mL × (plasma extract volume/850) × (5/100)/26. 3 Calculated using weight-based estimate of
total plasma volume 4.54 L.

4.2. GC-MS Analysis

The derivatized aliquots were analyzed with a 6890N GC-5975 Inert MS (Agilent Technologies,
Santa Clara, CA, USA) using previously described methods [37]. A high-volume, ProSep inlet
(liner dimensions 2 × 6.0 × 243 mm, Patent No: US 6,484,560 B1, Apex Technologies, Inc., Edison, NJ,
USA) [37] was used to allow for programmed-temperature vaporization and diversion of the heavy
contaminants away from the GC-MS. Volumes of 5 µL were injected into a DB5-MS capillary column
(two 15 m × 250 µm × 0.25 µm; J & W Scientific, Folson, CA, USA connected in series by a microfluidic
flow controller, Agilent Technologies, Santa Clara, CA, USA) in 25:1 split mode. The split ratio was
determined empirically in prior experiments. Initial inlet pressures were adjusted empirically to
achieve a retention time of 16.727 min for the internal standard. Helium was used as the carrier gas,
and the pressure was programmed with helium flow at a constant rate of 2.0 mL/min. The initial
GC oven temperature was 60 ◦C, and the temperature was increased at a rate of 10 ◦C /min to a
final temperature of 325 ◦C. At the end of each run, both the inlet and the oven were held at 325 ◦C
for a “bake-out” to minimize carryover. During this “bake-out”, the upstream GC column was
back-flushed via the mid-column microfluidic splitter, while the inlet was purged with high-flow
helium at 50 mL/min. Positive ions were generated with conventional electron ionization (EI) at 70 eV;
detection was achieved using a full scan mode from 600 to 50 m/z. Aliquots were run in a randomized
order to ensure that the orders of sample preparation and data acquisition did not introduce biases
(Figure 5). Method blanks containing the reagents only were processed following the same procedure
as the biological aliquots and included at the beginning, middle, and end of each run.
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Instrument maintenance was performed after every week of analysis, and included cleaning
the ionization source components, tuning the mass spectrometry analyzer, and changing the GC
liner. After instrument maintenance, injections of the same volunteer plasma were performed
prior to continuing the study to compare the retention times, analyte detection, and peak shapes
to ensure consistency.

4.3. Metabolite Identification and Quantification

GC-MS data were first deconvoluted with AMDIS (build 140.24, version 2.72, National Institute
of Standards and Technology, Gaithersburg, MD, USA), with the following settings, which experience
has shown to be suitable: component width 12 scans; exclusions of the total-ion chromatogram
and m/z 73, 74, 75, 147, 148, and 149; adjacent peak subtraction-none; resolution-medium;
sensitivity-high; and shape requirements-low. Peak annotation was achieved using our institutional
library. The institutional library consists of the Fiehn RTL spectral library [41] with additions
established using purified standard compounds in the DMPI metabolomics laboratory and spectra from
the Golm Metabolome Database [42] and similar public spectral libraries. Metabolite identification
was based on retention index and spectral match scores. Identified (known) analytes with reverse
scores greater than or equal to 75 were included in further analysis. Unidentified (unknown) analytes
were catalogued using an auxiliary library of spectra corresponding to unidentified peaks that were
conserved across samples. These were categorized according to retention index and the dominant m/z
spectral fragment. Retention indices were assigned by a quadratic equation defining the retention
index (RI) as a function of retention time (RT), derived from injections of a ladder of fatty acid methyl
esters, or FAMES, where RI = 2.246 × RT2 + (21.61 × RT) + 507.9, with the RIs of FAMES defined
as 800 for methyl octanoate, 900 for methyl nonanoate, and so on. Analyte levels were reported as
the log-base-2 transformed values of integrated peak areas. Analytes detected in less than 20% of
non-blanks were excluded from further analysis.

To validate findings in these two studies, a third study was conducted using paired samples
consisting of (1) the volunteer plasma used in the first two studies, and (2) the NIST SRM1950 plasma
standard (5 × 1 mL) [28]. These paired samples were prepared and analyzed in three batches using
the same methods as the limiting dilution study. Identities of known metabolites detected in the NIST
SRM1950 plasma standard were compared to previous reports in the literature [28].

4.4. Parameters Assessed for Method Development

To test our hypothesis, we examined five parameters previously proposed for bioanalytical
method development [7] in the limiting-dilution study: selectivity, linearity, linear dynamic range,
and repeatability and intermediate precision.

Selectivity is defined as the ability to identify and quantify analytes in the presence of potential
contaminants such as process impurities, reagent derivatives, and sample carryover [7]. We assessed
selectivity through examining analytes detected in blanks, with the assumption that any analyte
detectable in greater than or equal to 1 blank is a contaminant. These contaminants may include
components from collection tubes and plastic ware, reagent derivatives, and metabolites introduced
through the preparation process that mimic the same metabolites present in biological samples.
Additional contaminants were discovered by manual curation (examination of the annotation):
analytes with non-metabolite annotations (e.g., silicone oils) were also classified as contaminants.
All contaminants were further classified into definite (present in greater than or equal to 20%/6 blanks
or annotated as a non-metabolite) or potential contaminants (present in greater than or equal to 1 but
less than 6 blanks). Run-order effects in blanks were estimated as the Spearman’s correlation coefficient
between run order and contaminant levels.

While accuracy of quantification is not easily achievable in non-targeted metabolomic profiling,
linearity, or the ability to obtain signals directly proportional to the concentration of analytes within
a given range [7], can be assessed as a measure of quantification. Linearity was commonly assessed
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using the coefficient of determination, or R2, in previous studies [34]. Although convenient, R2 is a
limited measure in assessing goodness-of-fit of a linear regression model, as non-linear relationships
can present with a high R2 value. In this study, we took advantage of the analytical replicates in the
study design and assessed linearity of the signal-concentration relationship using a linear regression
model: Yij = β0 + β1Xj + εij, where Yij denotes the analyte level for the ith aliquot for the jth level
of X (i = 1, . . . , 30; j = 1, . . . , 10), Xj is the log2 of plasma extract volume, and εij ~iid N (0, σ2).
The parameters β0 and β1 were estimated using the least squares solution. The appropriateness of
the linear regression model was examined using residual plots by plotting the residuals against fitted
values. Additionally, the F-test for lack of fit was used to test the full model: Yij = µj + εij, where
E[Yij] = µj, versus the reduced model: Yij = β0 + β1Xj + εij. Analytes for which the linear model was
deemed appropriate were further assessed using the adjusted coefficient of determination, or adjusted
R2; analytes exhibiting lack of fit for the linear model were refitted with sigmoid curves using logistic
regression or polynomial models.

Linear dynamic range for each analyte was evaluated using response factors obtained by dividing
the analyte levels by their concentrations [38]. The linear range was defined as the range between 0.95
and 1.05 times the average value of the response factors. The optimal concentration was determined as
the concentration where the majority of analytes were in their linear dynamic range.

Repeatability and intermediate precision in analyte quantification were assessed by examining the
coefficient of variation or relative standard deviation (RSD). Specifically, repeatability, or within-batch
variability, was assessed by examining the RSD for each analyte at each plasma extract volume,
averaged across the 10 batches. Intermediate precision, or between-batch variability, was assessed
by examining the RSD for each analyte at each plasma extract volume, using the mean analyte levels
for each batch. Kruskal-Wallis test with post-hoc pairwise comparisons using the Conover’s test
was performed to compare the repeatability and intermediate precision RSD at different volumes.
In addition, an analysis-of-variance (ANOVA) test comparing a linear regression model with the
addition of a batch variable with the basic linear regression model was used to estimate batch effects.
A two-tailed alpha of 0.05 was used.

The concentration-specific study compared analyte detection, defined as the presence of an
analyte above the 20% cut-off, at the optimal concentration established in the first study (7.48 × 10−9,
corresponding to a plasma extract volume of 150 µL) with the standard used in the current institutional
protocol (3.49 × 10−8, corresponding to a plasma extract volume of 700 µL). Reproducibility of the
contaminant and metabolite profile was also assessed by comparing the results of the limiting-dilution
and concentration-specific study.

5. Conclusions

Using a limiting-dilution and concentration-specific study, we confirmed that contaminants,
repeatability and intermediate precision and concentration are major factors influencing metabolite
identification and quantification, and established methods for improved metabolite identification and
quantification. These methods are summarized (Table 5) to provide recommendations for experimental
design of GC-MS-based non-targeted profiling of human plasma metabolome.

Table 5. Recommendations for experimental design of GC-MS-based non-targeted profiling of human
plasma metabolome, including recommendations on the inclusion of blanks, applications of linearity,
control for repeatability and intermediate precision, establishment of linear range and treatment
of unknowns.

Experimental Design Recommendations

Establish method blanks Include 3 blank samples in the beginning, middle and end of every
sequence run
Use both blanks and manual curation for contaminant profiling
Establish a list of highly reproducible and potential contaminants



Metabolites 2017, 7, 45 14 of 16

Table 5. Cont.

Experimental Design Recommendations

Linearity Incorporate dilution into QC samples
Metabolites showing linearity can be used as targets to validate the
methodology and monitor changes
Lack of linearity may indicate contaminant effect or saturation effect

Repeatability and intermediate precision Batch should be included in reporting and analysis of non-targeted
GC-MS profiling

Range Linear dynamic range should be established through dilution studies
Optimal concentration established through dilution studies should be
used for metabolic profiling

Unknowns Unknowns presenting as contaminants can be excluded from
further analysis
Highly-linear unknowns may be biologically important metabolites
Reproducible, highly linear and non-contaminant unknowns should
be added to the library or databases for future references

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/3/45/s1,
Figure S1: Example of positive (left) and negative (right) run order effect on contaminant levels. Contaminant
on the left is an unknown with retention time 8.125 min; contaminant on the right is beta-monopalmitin,
Table S1: Non-metabolite known contaminants detected in blanks, Table S2: Known analytes identified in
the volunteer and NIST SRM 1950 plasma.

Acknowledgments: Funding for this study was supported by the TSFRE Braunwald Research Fellowship and
National Institute of Health Grant T32HL007101 (H.W.).

Author Contributions: H.W., E.R.H, J.R.B. and S.S. conceived and designed the experiments; H.W. and
S.K.O’N. performed the experiments; H.W., M.J.M, S.K.O’N. and E.R.H. analyzed the data; C.B.N. contributed
reagents/materials/analysis tools; H.W., J.R.B. and M.J.M wrote the paper. All authors contributed to the
preparation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beecher, C.W.W. The human metabolome. In Metabolic Profiling: Its Role in Biomarker Discovery and Gene
Function Analysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 311–318.

2. Wishart, D.S. Computational approaches to metabolomics. In Methods in Molecular Biology; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 263–282.

3. Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171.
[CrossRef] [PubMed]

4. Barba, I.; Garcia-dorado, D. Metabolomics in cardiovascular disease: Towards clinical application.
Coron. Artery Dis. 2012. Available online: https://cdn.intechopen.com/pdfs-wm/32774.pdf (accessed on
23 August 2017).

5. Worley, B.; Powers, R. Multivariate analysis in metabolomics. Curr. Metabolom. 2013, 1, 92–107.
6. Dunn, W.B.; Bailey, N.J.; Johnson, H.E. Measuring the metabolome: Current analytical technologies. Analyst

2005, 130, 606–625. [CrossRef] [PubMed]
7. Naz, S.; Vallejo, M.; Garcia, A.; Barbas, C. Method validation strategies involved in non-targeted

metabolomics. J. Chromatogr. A 2014, 1353, 99–105. [CrossRef] [PubMed]
8. Koek, M.M.; Muilwijk, B.; Van Der Werf, M.J.; Hankemeier, T. Microbial metabolomics with gas

chromatography/mass spectrometry. Anal. Chem. 2006, 78, 1272–1281. [CrossRef] [PubMed]
9. Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.;

Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused
untargeted metabolomics. Metabolomics 2013, 9, 44–66. [CrossRef]

10. Du, X.; Zeisel, S.H. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics:
Current status and future perspectives. Comput. Struct. Biotechnol. J. 2013, 4, 1–10. [CrossRef] [PubMed]

11. Kopka, J. Current challenges and developments in GC-MS based metabolite profiling technology. J. Biotechnol.
2006, 124, 312–322. [CrossRef] [PubMed]

www.mdpi.com/2218-1989/7/3/45/s1
http://dx.doi.org/10.1023/A:1013713905833
http://www.ncbi.nlm.nih.gov/pubmed/11860207
https://cdn.intechopen.com/pdfs-wm/32774.pdf
http://dx.doi.org/10.1039/b418288j
http://www.ncbi.nlm.nih.gov/pubmed/15852128
http://dx.doi.org/10.1016/j.chroma.2014.04.071
http://www.ncbi.nlm.nih.gov/pubmed/24811151
http://dx.doi.org/10.1021/ac051683+
http://www.ncbi.nlm.nih.gov/pubmed/16478122
http://dx.doi.org/10.1007/s11306-012-0434-4
http://dx.doi.org/10.5936/csbj.201301013
http://www.ncbi.nlm.nih.gov/pubmed/24688694
http://dx.doi.org/10.1016/j.jbiotec.2005.12.012
http://www.ncbi.nlm.nih.gov/pubmed/16434119


Metabolites 2017, 7, 45 15 of 16

12. Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.;
Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [CrossRef] [PubMed]

13. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.;
Dong, E.; et al. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 2013, 41, 801–807.
[CrossRef] [PubMed]

14. Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.;
Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature
2011, 472, 57–63. [CrossRef] [PubMed]

15. Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.L.; Clarke, S.; Schofield, P.M.;
McKilligin, E.; Mosedale, D.E.; et al. Rapid and noninvasive diagnosis of the presence and severity of
coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 2002, 8, 1439–1444. [CrossRef]
[PubMed]

16. Riedl, J.; Esslinger, S.; Fauhl-Hassek, C. Review of validation and reporting of non-targeted fingerprinting
approaches for food authentication. Anal. Chim. Acta 2015, 885, 17–32. [CrossRef] [PubMed]

17. Reza, P.R.; Masanori, M.S.; Correa, E.; Dayalan, S.; Tim, A.G. Data standards can boost metabolomics research,
and if there is a will, there is a way. Metabolomics 2016, 12, 1–13.

18. Lind, M.V.; Savolainen, O.I.; Ross, A.B. The use of mass spectrometry for analysing metabolite biomarkers in
epidemiology: Methodological and statistical considerations for application to large numbers of biological
samples. Eur. J. Epidemiol. 2016, 31, 717–733. [CrossRef] [PubMed]

19. Kanani, H.; Chrysanthopoulos, P.K.; Klapa, M.I. Standardizing GC-MS metabolomics. J. Chromatogr. B Anal.
Technol. Biomed. Life Sci. 2008, 871, 191–201. [CrossRef] [PubMed]

20. Gika, H.G.; Wilson, I.D.; Theodoridis, G.A. The Role of Mass Spectrometry in Nontargeted Metabolomics, 1st ed.;
Elsevier: Philadelphia, PA, USA, 2014; Volume 63, pp. 213–233.

21. Fiehn, O. Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry.
TrAC Trends Anal. Chem. 2008, 27, 261–269. [CrossRef] [PubMed]

22. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.;
Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis: Chemical analysis working
group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

23. Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry-based
metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [CrossRef] [PubMed]

24. Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.;
Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and
plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc.
2011, 6, 1060–1083. [CrossRef] [PubMed]

25. Ammerlaan, W.; Trezzi, J.-P.; Lescuyer, P.; Mathay, C.; Hiller, K.; Betsou, F. Method validation for preparing
serum and plasma samples from human blood for downstream proteomic, metabolomic, and circulating
nucleic acid-based applications. Biopreserv. Biobank. 2014, 12, 269–280. [CrossRef] [PubMed]

26. Godzien, J.; Alonso-Herranz, V.; Barbas, C.; Armitage, E.G. Controlling the quality of metabolomics data:
New strategies to get the best out of the QC sample. Metabolomics 2014, 11, 518–528. [CrossRef]

27. Dunn, W.B.; Wilson, I.D.; Nicholls, A.W.; Broadhurst, D. The importance of experimental design and QC
samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 2012, 4,
2249–2264. [CrossRef] [PubMed]

28. Simon-Manso, Y.; Lowenthal, M.S.; Kilpatrick, L.E.; Sampson, M.L.; Telu, K.H.; Rudnick, P.A.; Mallard, W.G.;
Bearden, D.W.; Schock, T.B.; Tchekhovskoi, D.V.; et al. Metabolite profiling of a NIST standard reference
material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries,
and web-based resources. Anal. Chem. 2013, 85, 11725–11731. [CrossRef] [PubMed]

29. Sangster, T.; Major, H.; Plumb, R.; Wilson, A.J.; Wilson, I.D. A pragmatic and readily implemented quality
control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 2006, 131, 1075–1078.
[CrossRef] [PubMed]

30. Trutschel, D.; Schmidt, S.; Grosse, I.; Neumann, S. Experiment design beyond gut feeling: Statistical tests
and power to detect differential metabolites in mass spectrometry data. Metabolomics 2015, 11, 851–860.
[CrossRef]

http://dx.doi.org/10.1371/journal.pone.0016957
http://www.ncbi.nlm.nih.gov/pubmed/21359215
http://dx.doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://dx.doi.org/10.1038/nature09922
http://www.ncbi.nlm.nih.gov/pubmed/21475195
http://dx.doi.org/10.1038/nm1202-802
http://www.ncbi.nlm.nih.gov/pubmed/12447357
http://dx.doi.org/10.1016/j.aca.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26231890
http://dx.doi.org/10.1007/s10654-016-0166-2
http://www.ncbi.nlm.nih.gov/pubmed/27230258
http://dx.doi.org/10.1016/j.jchromb.2008.04.049
http://www.ncbi.nlm.nih.gov/pubmed/18538643
http://dx.doi.org/10.1016/j.trac.2008.01.007
http://www.ncbi.nlm.nih.gov/pubmed/18497891
http://dx.doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://dx.doi.org/10.1038/nprot.2006.59
http://www.ncbi.nlm.nih.gov/pubmed/17406261
http://dx.doi.org/10.1038/nprot.2011.335
http://www.ncbi.nlm.nih.gov/pubmed/21720319
http://dx.doi.org/10.1089/bio.2014.0003
http://www.ncbi.nlm.nih.gov/pubmed/25075813
http://dx.doi.org/10.1007/s11306-014-0712-4
http://dx.doi.org/10.4155/bio.12.204
http://www.ncbi.nlm.nih.gov/pubmed/23046267
http://dx.doi.org/10.1021/ac402503m
http://www.ncbi.nlm.nih.gov/pubmed/24147600
http://dx.doi.org/10.1039/b604498k
http://www.ncbi.nlm.nih.gov/pubmed/17003852
http://dx.doi.org/10.1007/s11306-014-0742-y


Metabolites 2017, 7, 45 16 of 16

31. Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, R.;
Nair, K.S.; et al. Metabolomics workbench: An international repository for metabolomics data and metadata,
metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016, 44,
D463–D470. [CrossRef] [PubMed]

32. Salek, R.M.; Arita, M.; Dayalan, S.; Ebbels, T.; Jones, A.R.; Neumann, S.; Rocca-Serra, P.; Viant, M.R.;
Vizcaíno, J.A. Embedding standards in metabolomics: The metabolomics society data standards task group.
Metabolomics 2015, 11, 782–783. [CrossRef]

33. Lu, H.; Liang, Y.; Dunn, W.B.; Shen, H.; Kell, D.B. Comparative evaluation of software for deconvolution of
metabolomics data based on GC-TOF-MS. TrAC Trends Anal. Chem. 2008, 27, 215–227. [CrossRef]

34. Aa, J.; Trygg, J.; Gullberg, J.; Johansson, A.I.; Jonsson, P.; Antti, H.; Marklund, S.L.; Moritz, T. Extraction
and GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 2005, 77, 8086–8094. [CrossRef]
[PubMed]

35. Pasikanti, K.K.; Ho, P.C.; Chan, E.C.Y. Gas chromatography/mass spectrometry in metabolic profiling of
biological fluids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 202–211. [CrossRef] [PubMed]

36. Wishart, D.S. Computational strategies for metabolite identification in metabolomics. Bioanalysis 2009, 1,
1579–1596. [CrossRef] [PubMed]

37. McNulty, N.P.; Yatsunenko, T.; Hsiao, A.; Faith, J.J.; Muegge, B.D.; Goodman, L.; Henrissat, B.; Oozeer, R.;
Cools-Portier, S.; Gobert, G.; et al. The impact of a consortium of fermented milk strains on the gut
microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 2011, 3. [CrossRef] [PubMed]

38. Gustavo González, A.; Ángeles Herrador, M. A practical guide to analytical method validation, including
measurement uncertainty and accuracy profiles. TrAC Trends Anal. Chem. 2007, 26, 227–238. [CrossRef]

39. Christenson, R.H.; Duh, S.H. Methodological and analytic considerations for blood biomarkers.
Prog. Cardiovasc. Dis. 2012, 55, 25–33. [CrossRef] [PubMed]

40. Styczynski, M.P.; Moxley, J.F.; Tong, L.V.; Walther, J.L.; Jensen, K.L.; Stephanopoulos, G.N. Systematic
identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery.
Anal. Chem. 2007, 79, 966–973. [CrossRef] [PubMed]

41. Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and
retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass
spectrometry. Anal. Chem. 2009, 81, 10038–10048. [CrossRef] [PubMed]

42. Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmüller, E.; Dörmann, P.; Weckwerth, W.;
Gibon, Y.; Stitt, M.; Willmitzer, L.; et al. GMD@CSB.DB: The Golm metabolome database. Bioinformatics 2005,
21, 1635–1638. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/gkv1042
http://www.ncbi.nlm.nih.gov/pubmed/26467476
http://dx.doi.org/10.1007/s11306-015-0821-8
http://dx.doi.org/10.1016/j.trac.2007.11.004
http://dx.doi.org/10.1021/ac051211v
http://www.ncbi.nlm.nih.gov/pubmed/16351159
http://dx.doi.org/10.1016/j.jchromb.2008.04.033
http://www.ncbi.nlm.nih.gov/pubmed/18479983
http://dx.doi.org/10.4155/bio.09.138
http://www.ncbi.nlm.nih.gov/pubmed/21083105
http://dx.doi.org/10.1126/scitranslmed.3002701
http://www.ncbi.nlm.nih.gov/pubmed/22030749
http://dx.doi.org/10.1016/j.trac.2007.01.009
http://dx.doi.org/10.1016/j.pcad.2012.05.001
http://www.ncbi.nlm.nih.gov/pubmed/22824107
http://dx.doi.org/10.1021/ac0614846
http://www.ncbi.nlm.nih.gov/pubmed/17263323
http://dx.doi.org/10.1021/ac9019522
http://www.ncbi.nlm.nih.gov/pubmed/19928838
http://dx.doi.org/10.1093/bioinformatics/bti236
http://www.ncbi.nlm.nih.gov/pubmed/15613389
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Selectivity: Contaminant Profile 
	Linearity: Signal-Concentration Relationship 
	Linear Dynamic Range 
	Repeatability and Intermediate Precision 
	Concentration-Specific Study 

	Discussion 
	Materials and Methods 
	Sample Acquisition, Preparation, and Derivatization 
	GC-MS Analysis 
	Metabolite Identification and Quantification 
	Parameters Assessed for Method Development 

	Conclusions 

