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Abstract: Modified quantitative structure retention relationships (QSRRs) are proposed and 
applied to describe two retention data sets: A set of 94 metabolites studied by a hydrophilic 
interaction chromatography system under organic content gradient conditions and a set of 
tryptophan and its major metabolites analyzed by a reversed-phase chromatographic system under 
isocratic as well as pH and/or simultaneous pH and organic content gradient conditions. According 
to the proposed modification, an additional descriptor is added to a conventional QSRR 
expression, which is the analyte retention time, tR(R), measured under the same elution conditions, 
but in a second chromatographic column considered as a reference one. The 94 metabolites were 
studied on an Amide column using a Bare Silica column as a reference. For the second dataset, a 
Kinetex EVO C18 and a Gemini-NX column were used, where each of them was served as a 
reference column of the other. We found in all cases a significant improvement of the performance 
of the QSRR models when the descriptor tR(R) was considered.  

Keywords: quantitative structure retention relationship models; HPLC retention; metabolites 
identification 

 

1. Introduction 

In metabolomics, the identification of metabolites in biological samples is of a great importance. 
Liquid chromatography couple to mass spectrometry (LC-MS) is widely used in metabolomics. 
However, even if accurate measurements of mass-over-charge ratio, m/z, have been taken, only the 
molecular type of the metabolite can be determined. That happens because there are many analytes 
that have the same molecular weight. For this reason, the use of retention data is of great help for the 
identification of metabolites in metabolomics and in this direction, quantitative structure-retention 
relationship (QSRR) models are used more frequently [1]. QSRR models relate chromatographic 
retention data with molecular descriptors (MDs)—i.e., theoretical or experimental properties of 
molecules—in order to predict the retention time and to annotate the metabolites. 



Metabolites 2017, 7, 7 2 of 7 

 

The more frequently used MDs in QSRR models are physicochemical descriptors because they 
are strongly correlated with solute retention [2]. So, QSRR models can be developed either from a 
small set of a priori chosen MDs based on solute physicochemical properties that are compiled from 
the literature or from a large set of calculated MDs by using appropriate software [2,3]. Besides the 
MDs recorded in the literature, experimental values of the descriptors can be applied in the QSRR 
models [4]. Moreover, different modeling methodologies, such as multiple linear regression (MLR), 
partial least squares (PLS), generic algorithms (GA), and artificial neural network (ANN), can be 
applied in order to develop a QSRR model [2,4–20]. Additionally, the QSRR models can be used in 
combination with the principal component analysis (PCA), when a large number of columns have 
been used, and the column classification can be achieved [21]. In literature, three LC-MS methods 
based on a reversed phase (RP), a hydrophilic interaction chromatography (HILIC), and a 
pentafluorophenylpropyl (PFPP) stationary phase have been used for metabolite identification via 
QSRR models [6]. It is also worth mentioning that the pH-gradient conditions are helpful in peptide 
separation [22,23] and in polar solution separation in general. 

In the present study, we propose a modification of conventional QSRR models by adding an 
extra term, which is the metabolite retention time measured under the same experimental conditions 
in a second (reference) chromatographic column. That is: 

tR(Α) = a1MD1 + a2MD2 + … + anMDn + btR(R) (1) 

where tR(A), tR(R) are the metabolite retention times measured under the same conditions in the 
chromatographic column under study (A) and in the reference column (R), MD1, …, MDn are either a 
priori chosen MDs or the statistically significant molecular descriptors among a variety of theoretical 
MDs and a1, a2, ..., an, and b are adjustable parameters calculated by using the multiple linear 
regression (MLR) method.  

Note that in a QSRR study on gas chromatographic data, a similar modification was proposed 
by Kaliszan and Hōltje, where retention data obtained on two phases of different polarities were 
used for the determination of the stationary phase polarizability coefficient [24]. Note also that in the 
QSRR models developed in the present study, the dependent variable—i.e., the retention 
parameter—is expressed in terms of retention time instead of logarithm of retention factor, logk, 
following the practice adopted in gradient elution mode [2,4,8,21,22]. 

To test the performance of the proposed modification, two data sets have been adopted. The 
first dataset consisted of 94 metabolite standards and the second one consisted of eight solutes, 
which were tryptophan and its major metabolites.  

2. Materials and Methods 

2.1. Experimental 

The first dataset of the 94 metabolites was analyzed by a HILIC system. The LC–MS analysis 
was used and it was performed on a Waters ACQUITY TQD System (Waters Corporation, Milford, 
MA, USA). The flow rate was fixed at 400 μL/min and the injection volume at 10 μL. Column 
temperature was maintained at 50 °C. Both positive and negative ionization were used depending 
on the analyte (polarity switching). In the source the capillary voltage was set to 2.5 kV in negative 
ionization mode or 3.5 kV in positive ionization mode. Block and desolvation temperatures were set 
at 150 and 350 °C, respectively. Desolvation gas flow rate was 650 L/h and no cone gas was applied. 
The data analysis was performed with Waters MassLynx version 4.1 (SCN 882) and TargetLynx. 

The 94 metabolite standards used as analytes, classified in seven chemical groups (sugars, 
aminoacids, acids, nucleonic bases-nucleosides, vitamins, alkaloids, and amides), are presented in 
Table S1 as Supplementary Materials. Stock solutions of the compounds were prepared in 
concentrations of 1000 μg/mL in methanol:water 1:1 (v/v).  

The LC analysis was performed in two HILIC columns: (Α) a BEH HILIC Amide Waters Acquity 
(1.7 μm, 2.1 × 150 mm) and (Β) Bare Silica Waters BEH HILIC. The mobile phases used were aqueous 
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buffer HCOONH4—HCOOH with pH = 3 modified by 95% acetonitrile (eluent A) or 60% acetonitrile 
(eluent B). The applied gradient program is presented in Table S2 as Supplementary Materials. 

The second dataset analyzed by an RP-chromatographic system consisted of a Shimadzu 
LC-20AD pump, a Shimadzu DGU-20A3 degasser, a model 7125 syringe loading sample injector 
matted with a 5 mL loop, a Kinetex EVO C18 (5 μm 150 × 4.6 mm), and a Gemini-NX (5 μm 150 × 4.6 
mm) column thermostatted at 25 °C by a CTO-10AS Shimadzu column oven and a Shimadzu 
UV-visible spectrophotometric detector (Model SPD-20A) working at 254 nm. The analytes were 
tryptophan and its major metabolites. In more details, the solutes behave in the mobile phase pH 
range tested as: ampholytes (anthranilic acid, ANA, 3-Hydroxyanthranilic acid, HANA, tryptophan, 
TRP, and L-kynurenine, KYN), diprotic acids (5-hydroxytryptophan, HTRP, kynurenic acid, KYNA, 
and 5-hydroxyindole acetic acid, HIAA), and monoprotic bases (5-hydroxytryptamine, HT). These 
eight solutes were studied under isocratic as well as pH and/or simultaneous pH and organic 
content gradient conditions. Their retention data and the experimental conditions are presented in 
Tables S3 and S4, respectively, in Supplementary Materials. 

2.2. Molecular Descriptors and Statistical Procedures 

In order to develop QSRR models that can describe the 94 standard metabolites, 309 molecular 
descriptors (MDs) were calculated by using RDKit toolkit and RCDK software. No geometry 
optimization was performed before computation of descriptors. These MDs are given in Table S5 as 
Supplementary Materials. For the second dataset, we used three a priori chosen MDs: pKa1, pKa2, 
and logP. The definition of the selected MDs is presented in Table S6 as Supplementary Materials. 

Multiple linear regression (MLR) was applied to determine QSRR models by means of the 
linear procedure in IBM SPSS Statistics 21 using two options: The Enter option was used in order to 
include certain MDs in the model and the Forward option to include only statistically significant 
MDs. That is, at each step of the Forward option, the variable, which is not yet in the equation, with 
the smallest p-value is entered provided that this value is smaller than 0.05. The procedure stops 
when there are no variables that meet this criterion. 

3. Data Analysis and Discussion 

3.1. QSRR Models for 94 Metabolites Standards 

The application of MLR with the Forward option to the first dataset of 94 standard metabolites 
initially using 309 theoretical MDs resulted in two six-parameter QSRR models that can describe the 
retention data in each chromatographic column (Amide and Bare Silica). That is: 

tR = a1MD1 + a2MD2 + … + anMDn (2) 

where n = 6 and tR is the metabolites retention time measured under gradient conditions in a certain 
chromatographic column. Table 1 presents these statistically significant MDs, the corresponding 
adjustable parameters, their standard deviations, the average and maximum absolute difference 
between experimental and calculated retention time from Equation (2), and the standard error of the 
estimate (SEE) for the Amide and Bare Silica columns. 

From the results presented in this table, we conclude that the six-parameter QSRR models 
describe the retention data on both columns equally satisfactorily. To examine if this description can 
be further improved by the proposed modification of QSRR models, the retention time of the 
metabolite standards from Bare Silica column was used as an extra independent parameter 
(experimental descriptor) in classic QSRR model of Equation (2). In this model the MDs used were 
those determined in the previous step, i.e., tpsaEfficiency, XLogP, nBase, MDEC.33, nR, and C2SP3. 
The adjustable parameters of this model along with its performance are given in Table 2. It is seen 
that when the metabolites retention time in a second (reference) chromatographic column is used in 
a QSRR model as an extra independent parameter, the fitting performance is improved 
considerably, since all quantities related to model performance—i.e., average absolute difference of 
experimental and calculated tR, maximum absolute difference of experimental and calculated tR, and 
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the standard error of the estimate, SEE—are improved. Note that the standard error of the estimate 
is usually used as a measure of the relative quality of statistical models for a given set of data. That 
is, SEE estimates the quality of each model relative to each of the other models studied under the 
same conditions and the best model is that with the minimum SEE value. Therefore, based on this 
criterion, the proposed modification yields a better QSRR model.  

Table 1. QSRR models describing the retention of 94 metabolite standards for each chromatographic 
based on Equation (2). 

MDs  
(Amide) 

Adjustable Parameters 
(Amide) 

MDs
(Bare Silica) 

Adjustable Parameters  
(Bare Silica) 

tpsaEfficiency 9.64 ± 0.85 tpsaEfficiency 8.02 ± 0.88 
XLogP −0.84 ± 0.14 nA 3.73 ± 0.57 
nBase 3.37 ± 0.42 nHBAcc 0.35 ± 0.10 

MDEC.33 0.25 ± 0.08 fr_C_O_noCOO 1.48 ± 0.31 
nR −8.77 ± 2.64 fr_NH1 −1.49 ± 0.50 

C2SP3 0.24 ± 0.10 khs.sNH2 1.02 ± 0.41 
 1.8/7.8/2.31 2.0/6.7/2.5 1 

1 Average absolute difference of experimental and calculated tR/Maximum absolute difference of 
experimental and calculated tR/Standard error of the estimate SEE. 

Table 2. QSRR model describing the retention of 94 metabolite standards for the Amide column 
based on Equation (1) and using their retention data on the Bare Silica column as a reference column.  

MDs/tR(R) Adjustable Parameters
tpsaEfficiency 5.62 ± 0.81 

XLogP −0.53 ± 0.11 
nBase 0.67 ± 0.46 

MDEC.33 0.24 ± 0.60 
nR −1.49 ± 2.19 

C2SP3 0.03 ± 0.08 
tR(R) 0.60 ± 0.07 

 1.3/4.2/1.7 1
1 Average absolute difference of experimental and calculated tR/Maximum absolute difference of 
experimental and calculated tR/Standard error of the estimate SEE. 

3.2. QSRR Models for Each Chemical Group of 94 Metabolites Standards 

The majority of the 94 metabolite standards was classified in four groups of chemically related 
compounds, which are 13 sugars, 33 amino acids, 21 acids, and 14 nucleonic bases-nucleosides, see 
Table S1 of the Supplementary Materials. For each chemical group the procedure described in the 
previous section was applied and two QSRR models, without and with the term btR(R), were 
developed. The results are presented in Table 3 and show again that the proposed modification 
considerably improves the model performance. As expected, the QSRR models developed for each 
chemical group describe the retention of metabolites better than a QSRR model developed for all  
the metabolites. 

3.3. QSRR Models for Tryptophan and Its Major Metabolites 

The QSRR models described in the previous sections concern organic content gradient 
conditions on HILIC columns. In order to examine whether the proposed modification of the QSRR 
models works also on reversed-phase columns under isocratic as well as pH and/or simultaneous 
pH and organic content gradient conditions, we analyzed the retention data of tryptophan and its 
major metabolites shown in Table S3. The study was performed under four elution conditions in two 
chomatographic columns (Table S4 as Supplementary Materials). 

To analyze these data, three a priori chosen MDs—derived from chemicalize.org—were used. 
These MDs were pKa1, pKa2, and logP. For the application of the proposed modification of the QSRR 
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models, each of the two chromatographic columns was used as a reference column of the other 
column. 

The QSRR models with and without the proposed modification are shown in Tables 4 and 5, 
respectively, where we again observe the better performance of the models under the proposed 
modification. Note that the different elution order of the analytes on the two different columns used 
does not affect the performance of the proposed models. 

Table 3. QSRR models describing the retention of each of four groups of chemically related 
compounds for Amide column based on Equations (1) and (2), where in Equation (1) the Bare Silica 
column is used as a reference column. 

Metabolites 
Chemical Group 

MDs 
Adjustable Parameters 

of Equation (2) 
MDs/tR(R) 

Adjustable Parameters
of Equation (1) 

Sugars 
tpsaEfficiency 13.07 ± 0.91 tpsaEfficiency 13.51 ± 0.94 

nHBAcc 0.53 ± 0.06 nHBAcc 0.24 ± 0.23 
  tR(R) 0.36 ± 0.17 

  0.7/2.1/1.0 1 0.6/1.9/0.9 1 

Amino acids 

tpsaEfficiency 6.86 ± 1.79 tpsaEfficiency 2.63 ± 0.47 
MinPartialCharge −13.36 ± 1.87 MinPartialCharge 0.72 ± 0.77 

nHBAcc 0.76 ± 0.21 nHBAcc 0.11 ± 0.06 
  tR(R) 0.95 ± 0.04 

  1.1/4.3/1.5 1 0.3/0.8/0.4 1 

 

MDEC.33 0.80 ± 0.25 MDEC.33 0.39 ± 0.10 
XLogP −1.76 ± 0.33 XLogP −0.42 ± 0.17 

khs.sNH2 5.47 ± 1.42 khs.sNH2 0.26 ± 0.70 
nHBAcc 0.88 ± 0.26 nHBAcc −0.33 ± 0.15 

  tR(R) 1.50 ± 0.10 
  2.8/8.4/1.81 0.4/1.5/0.6 1 

Nucleonic 
bases-nucleosides 

tpsaEfficiency 14.93 ± 1.21 tpsaEfficiency 7.24 ± 3.9 
  tR(R) 0.92 ± 0.45 

  2/4.2/2.41 1.7/3.1/2.1 1 
1 Average absolute difference of experimental and calculated tR/Maximum absolute difference of 
experimental and calculated tR/Standard error of the estimate SEE. 

Table 4. QSRR models, based on Equation (2), describing the retention of tryptophan and its major 
metabolites for each chromatographic column. 

Three-Parameter QSRR Model
EVO Gemini 

MDs G1 G2 G3 G4 G1 G2 G3 G4
pKa1 −0.82 ± 0.30 −0.60 ± 0.32 −0.61 ± 0.24 −0.41 ± 0.50 −1.08 ± 0.30 −0.74 ± 0.37 −0.71 ± 0.15 −0.56 ± 0.65 
pKa2 1.17 ± 0.13 0.86 ± 0.14 1.01 ± 0.11 0.73 ± 0.22 1.52 ± 0.13 1.09 ± 0.18 1.27 ± 0.07 0.93 ± 0.29 
logP 2.30 ± 0.57 1.96 ± 0.62 1.63 ± 0.47 2.36 ± 0.96 2.91 ± 0.58 2.04 ± 0.76 2.24 ± 0.29 2.22 ± 1.05 

1.2/2.8/1.9 1 1.3/3.1/2.1 1 1.0/2.4/1.6 1 1.8/5.8/3.2 1 1.1/2.9/1.9 1 1.6/3.6/2.5 1 0.6/1.4/1.0 1 2.5/6.9/4.2 1

1 Average absolute difference of experimental and calculated tR/Maximum absolute difference of 
experimental and calculated tR/Standard error of the estimate SEE. 

Table 5. QSRR models, based on Equation (1), describing the retention of tryptophan and its major 
metabolites for each chromatographic column using the other column as a reference one. 

Three-Parameter QSRR Model 
EVO Gemini 

MDs/tR(R) G1 G2 G3 G4 G1 G2 G3 G4 
pKa1 0.15 ± 0.27 −0.07 ± 0.21 0.42 ± 0.28 −0.03 ± 0.26 −0.33 ± 0.23 −0.08 ± 0.26 −0.37 ± 0.11 −0.08 ± 0.34 
pKa2 −0.20 ± 0.33 0.08 ± 0.21 −0.82 ± 0.45 0.08 ± 0.19 0.46 ± 0.26 0.13 ± 0.26 0.70 ± 0.14 0.08 ± 0.25 
logP −0.31 ± 0.68 0.50 ± 0.49 −1.61 ± 0.82 0.82 ± 0.60 0.82 ± 0.57 −0.13 ± 0.68 1.33 ± 0.26 −0.54 ± 0.91 
tR(R) 0.90 ± 0.21 0.72 ± 0.18 1.44 ± 0.35 0.69 ± 0.17 0.91 ± 0.22 1.11 ± 0.28 0.56 ± 0.14 1.17 ± 0.28 

0.6/0.9/0.9 1 0.6/1.2/1.0 1 0.5/0.7/0.7 1 1.0/1.5/1.6 1 0.6/1.0/0.9 1 0.7/1.6/1.3 1 0.3/0.6/0.5 1 1.2/2.4/2.0 1 
1 Average absolute difference of experimental and calculated tR/Maximum absolute difference of 
experimental and calculated tR/Standard error of the estimate SEE. 
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4. Conclusions 

To sum up the above results, it was found that the proposed modification of conventional 
QSRR models, which introduces the retention on a reference chromatographic column as an extra 
descriptor, significantly improves the performance of the developed QSRR models in comparison to 
classic ones. Note that in the proposed QSRR models, the term tR(R) is always statistically significant. 
Consequently, these models could be used with confidence in the identification of metabolites by 
predicting their retention time on a liquid chromatography column. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/1/7/s1, Table S1. 
94 metabolites standards used in the first dataset, classified in 7 chemical groups (sugars, aminoacids, acids, 
nucleonic bases-nucleosides, amides, vitamins and alkaloids) and their retention data obtained under the same 
elution conditions on two different chromatographic columns; Table S2. Gradient program applied for the 
LC-MS analysis of 94 standard metabolites; Table S3. Solutes of the second dataset (tryptophan and its major 
metabolites) and their retention data obtained under four elution conditions on two different chromatographic 
columns; Table S4. Elution conditions applied for the HPLC analysis of tryptophan and its metabolites; Table 
S5. 309 MDs calculated from RDKit toolkit and RCDK software; Table S6. The descriptor class and the definition 
of the MDs used in all proposed models. 
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