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Abstract: Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating
disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic
responses to inoculation. Previously published studies have determined major metabolic changes
induced by pathogens in resistant and susceptible plants. Functionality of the majority of these
metabolites in resistance remains unknown. In this work we have made a compilation of all
metabolites determined as selectively accumulated following FHB inoculation in resistant plants.
Characteristics, as well as possible functions and targets of these metabolites, are investigated using
cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like
molecules against fungal pathogens. Results of computational analyses of binding properties of
several representative metabolites to homology models of fungal proteins are presented. Theoretical
analysis highlights the possibility for strong inhibitory activity of several metabolites against some
major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity
of several of these compounds has been experimentally confirmed in fungal growth inhibition assays.
Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant
wheat varieties while showing novel application of cheminformatics approaches in the analysis of
plant/pathogen interactions.

Keywords: Fusarium head blight; Fusarium graminearum; cheminformatics; metabolomics;
plant resistance; biotic stress; antifungal; carbonic anhydrase; cytochrome P450

1. Introduction

Fusarium graminearum is the primary pathogen causing Fusarium head blight (FHB) or scab,
a devastating disease primarily affecting wheat and barley crops in humid and semi-humid areas
worldwide. FHB causes major crop losses, as well as indirect losses due to grain contamination
caused by potent mycotoxins, especially deoxyvalenol (DON) [1]. Strategies for the eradication of
FHB include fungicide applications, cultural practices, and the longer-term development of genetic
resistance in the plant. Although there are several registered fungicides for application in wheat
and barley, none are very effective neither in the reduction of yield loss nor in the reduction of
mycotoxin contamination [1–3]. Crops with genetic resistance have the highest potential and are a
major breeding objective worldwide. DNA marker analysis has provided identification of quantitative
trait loci (QTL) that provide partial resistance to some biotic stressors, including FHB [4]. Over one
hundred FHB resistance-associated QTLs have been identified in wheat, but the specific functions
of these QTLs is still largely unknown [4,5]. Genetic control of resistance can induce biochemical
profile change leading to the resistance response. Biochemical resistance is directly associated with
specific proteins and metabolites. Metabolomics methods have been used in a number of studies to
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determine major metabolic response induced by FHB infection in resistant and non-resistant wheat
and barley, showing significant concentration changes in hormones, as well as primary and secondary
metabolites, as a response to FHB. Analysis of metabolic factors affecting resistance is primarily aimed
at detection of major effects of gene control on metabolism and possible new foci for further gene
manipulation. Metabolomics data can also be used for the determination of biomarkers of resistance,
infection, and plant response. Finally, metabolomics provides information about the resistance-related
metabolites that can induce development of bio-inspired fungicides or help determine fungal protein
targets for the development of specifically-targeted fungicides.

A number of secondary metabolites, including hormones, phenolic, and polyphenolic compounds,
are significant in plant response to fungal infections. Hormones are metabolites that can easily
circulate through parts of, or through the whole organism and that, even at low concentrations, signal
and control responses, growth, and the development of organisms [6]. Plant hormones, including
auxins, cytokinins (CK), gibberellins (GA), abscisic acid (ABA), ethylene (ET), bassino-steroids (BR),
jasmonic acid (JA), and salicylic acid (SA), have major roles in plant defense against biotic and
abiotic stressors [6,7]. Several functions of SA, JA, and ET have been described in great detail [8,9].
Other hormones, including ABA, auxin, GA, CK, BR, and strigolactones, have been implicated as
important components of plant defense; however, their specific roles are not yet fully described.
SA plays a major role in plant defense and is generally involved in the activation of defense responses
against biotrophic and hemi-biotrophic pathogens where SA levels increase in pathogen challenged
plants. Exogeneous applications of SA have been shown to induce expression of pathogenesis related
genes (PR) [8,10–12]. JA and ET have stronger association with the defense against necrotrophic
pathogens and herbivorous insects [13–15]. Auxin and ABA are also emerging as hormones involved in
the regulation of the response to both biotrophic and necrotropic pathogens, although the mechanisms
of their action are still not clear [7,16–19]. GA hormone is produced by plants, fungi, as well as bacteria,
and appears to also have a significant role in plant disease progression, but the specific function has
not been described [20].

The roles of phenolic compounds (including phytoalexins) in fungal responses of plants have
been reviewed by Lattanzio et al. [21]. Phenolic compounds refer to all secondary natural metabolites
arising from the shikimate-phenylpropanoids-flavonoids pathways. Antifungal phenolics, which
include tannins and proanthocyanidins, can be either preformed (phytoanticipins) and redistributed
following infections, or can be synthesized following interaction between the host and fungal
parasite (phytoalexins). Over the last several years a number of metabolomics studies have been
performed in order to determine plant metabolites associated with fungal infection, including
FHB. Mass spectrometry was used for study of metabolic changes following FHB infection in
resistant barley genotypes [22,23] as well as resistant wheat cultivars [5,24,25]. Nuclear magnetic
resonance-based metabolite profiling was utilized for screening of passive resistance in wheat against
FHB [26]. Finally, several volatile organic compounds produced by chickpeas show strong anti-FHB
activity [27]. The effect of a small number of these metabolites has been tested in vitro. Phenoloic
acids, including ferulic acid, are the most abundant in wheat bran. Following infection, phenolic acids
are over-concentrated in resistant wheat and they have been demonstrated as efficient inhibitors of
mycotoxin production in several strains of Fusarium [28,29]. Antifungal and antibacterial activity of
tannic acid has been known for a long time [30–32], with activity against Fusarium graminearum shown
recently [33].

The goal of the work presented here was to determine whether plant-produced metabolites can
act as drug-like agents of the plant’s biotic response, and what are their possible protein targets.
Cheminformatics analysis was used to identify plant metabolites with the highest potential to
function as fungal growth inhibitors and, subsequently, the effect of several selected metabolites was
tested experimentally. We present here a compilation of all previously determined resistance-related
metabolites, followed by cheminformatics analysis of physicochemical properties and the relationships
between these compounds. Possible protein targets of some of these compounds have been predicted
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using publicly available data for these, and related, molecules. The interaction potential between plant
metabolites and proteins in fungus is explored computationally using high throughput small molecule
docking. Subsequently, selected metabolites have been tested experimentally showing activity against
Fusarium graminearum in fungal growth inhibition assays.

2. Results and Discussion

2.1. Selection of Metabolites and Cheminformatics Analysis of Their Molecular and Drug-Like Properties

Metabolic changes resulting from FHB infection in resistant or less susceptible plants have
been explored in wheat [5,24,25,32–34] and barley [23,35]. Anti-fusarium metabolites have also
been explored in chickpeas, and their effect was tested for protection of wheat from FHB [27].
Additionally, investigations of metabolites commonly involved in biotic responses [21,36], as well
as plant hormones with possible roles in resistance [7,18,37] have also been performed. Although
there is some overlap in metabolites that accumulate as a response to biotic stress across these distinct
experiments and across different species, there are also many unique metabolites identified in the
different reports. Discrepancies in observed metabolic profiles can be a result of different behaviors
of plants over time, in distinct conditions, or in different tissues. Metabolic coverage also depends
on experimental procedures. Finally, continual improvements in sensitivity of experimental and
analytical methods can introduce new metabolites to the measurements. In this work we have
made a compilation of all metabolites determined in previously published studies dealing with
FHB infection in grains. A complete list of these resistance related (RR) metabolites is provided
in Supplementary Table S1. In total, 478 RR metabolites have been included in our database.
Of 478 RR metabolites 474 are registered within PubChem [38] and, thus, have accessible structural
information. Supplementary Table S1 includes PubChem [38] CIDs for these 474 metabolites, as well
as compounds’ names provided in original references or in PubChem [38] for all RR metabolites.
For metabolites that have not been registered in PubChem [38] Supplementary Table S1 shows IDs
for either KNApSAcK [35], HMDB [39], and ChEBI [40] databases. These molecules belong to many
different groups, including phenols, polyphenols, flavonoids, etc. Molecules can be classified based
on their chemical characteristics, functional groups, size, biological pathways of origin, etc., and for
many of the metabolites presented these types of classification are available in the original literature.
Figure 1A shows the calculated values of several significant molecular characteristics for RR metabolites
compared to those for all known plant metabolites (from PubChem [38] and Golm databases [41]),
such as the molecular weight (MW), the number of both hydrogen acceptors and donors (HBA and
HDA), and the number of heavy atoms (HA).

In order for RR metabolites to act as plant-produced antifungal agents they must have drug-like
properties that can be simply represented through Lipinski “Rule-of-five” characteristics [42,43].
Lipinski rule-of-five is a standard method in drug discovery and its utility in antifungal development
has been recently shown [43]. A comparison of Lipinski rules between RR metabolites, all known plant
metabolites, and FDA approved drugs (Figure 1B–D) allows a quick investigation of the possibility
for plant selection of drug-like characteristics in RR metabolites. A number of other molecular
characteristics calculated for this set (in total 251 properties calculated using RCDK) including physical,
chemical, and electronic properties again show similar ranges in the two groups of metabolites
(data available from the authors). RR metabolites span a wide range of molecules from the highest
molecular weight metabolites—tannic acid (MW = 1701.198; included as a general resistance related
metabolite [21]) and Phyllanthusmin B (MW = 926.6506; produced by resistant wheat)—to the lowest
molecular weight molecule, ethylene (general plant hormone). The size and number of hydrogen
bond donors and acceptors for RR metabolites are for the large majority of RR metabolites within the
Lipinski rule-of-five for drug-like molecules (Figure 1A).
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Figure 1. (A) Range of molecular sizes and structures in resistance-related (RR) metabolites, 
including the molecular weight (MW), the number of bonds (nBonds), the number of CH3 groups 
(nCH3), and the number of rotatable bonds (nRotBonds); (B–D) show values for Lipinski 
“rule-of-five” characteristics [42] of molecules in RR, plant metabolites (Metab), and FDA-approved 
drug (FDA) sets; (B) shows values of the logarithm of the partition coefficient for n-octanol/water 
LogP (XLogP) relative to MW; (C)topological polar surface area (TPSA) of molecules relative to MW 
and (D) Zagreb Index values (ZgIndex) relative to MW. Stars in (B–D) show the average values for 
all molecules in the group with black indicating FDA, red indicating RR, and blue indicating Metab. 
The larger similarity between RR and FDA molecules is apparent in all cases suggesting that RR 
metabolites have increased drug-like qualities, particularly in terms of passive membrane transport 
relative to average plant metabolite. 

The drug-like characteristics of RR metabolites are explored in comparison to all known plant 
metabolites in the Golm database [41] and all FDA approved drugs included in the ZINC database 
[44]. For this analysis we selected from PubChem [38] all RR metabolites that have available 3D 
structures, as well as any plant metabolites provided by the Golm database [41] with 3D structures. 
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yielded 416 RR metabolites, 1171 plant metabolites, and 1985 FDA-drugs. For these metabolites we 
have calculated several physicochemical properties, including octanol/water partition coefficient 
(logP), molecular weight (MW), topological polar surface area (TPSA), and Zagreb Index using the 
RCDK package in R [45] (RCDK was developed by R. Guha), and comparisons between the RR 
metabolites, plant metabolites (Metab), and FDA drugs are shown in Figure 1B–D. Plots show (as 
filled yellow stars) average values for each group of metabolites. Although characteristics of 
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Figure 1. (A) Range of molecular sizes and structures in resistance-related (RR) metabolites, including
the molecular weight (MW), the number of bonds (nBonds), the number of CH3 groups (nCH3),
and the number of rotatable bonds (nRotBonds); (B–D) show values for Lipinski “rule-of-five”
characteristics [42] of molecules in RR, plant metabolites (Metab), and FDA-approved drug (FDA) sets;
(B) shows values of the logarithm of the partition coefficient for n-octanol/water LogP (XLogP) relative
to MW; (C) topological polar surface area (TPSA) of molecules relative to MW and (D) Zagreb Index
values (ZgIndex) relative to MW. Stars in (B–D) show the average values for all molecules in the group
with black indicating FDA, red indicating RR, and blue indicating Metab. The larger similarity between
RR and FDA molecules is apparent in all cases suggesting that RR metabolites have increased drug-like
qualities, particularly in terms of passive membrane transport relative to average plant metabolite.

The drug-like characteristics of RR metabolites are explored in comparison to all known plant
metabolites in the Golm database [41] and all FDA approved drugs included in the ZINC database [44].
For this analysis we selected from PubChem [38] all RR metabolites that have available 3D structures,
as well as any plant metabolites provided by the Golm database [41] with 3D structures. FDA-approved
drugs with 3D structures from ZINC drug database were also selected [44]. This yielded 416 RR
metabolites, 1171 plant metabolites, and 1985 FDA-drugs. For these metabolites we have calculated
several physicochemical properties, including octanol/water partition coefficient (logP), molecular
weight (MW), topological polar surface area (TPSA), and Zagreb Index using the RCDK package
in R [45] (RCDK was developed by R. Guha), and comparisons between the RR metabolites, plant
metabolites (Metab), and FDA drugs are shown in Figure 1B–D. Plots show (as filled yellow stars)
average values for each group of metabolites. Although characteristics of molecules in all three groups
are comparable, average MW:logP, MW:TPSA, and MW:Zagreb Index for RR and FDA molecules are
more closely related, suggesting that RR metabolites generally have more drug-like characteristics
than general plant metabolites.
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The majority of RR metabolites have a larger average partition-coefficient (XlogP) value than what
is seen in the overall plant metabolite set indicating their higher lipophilicity. XlogP is an atom-additive
method for calculating the octanol/water partition coefficient (logP). It obtains the logP value for a
compound by summing the contributions from component atoms and correction factors. Lipinski’s
rule-of-five allowed range for XlogP is −0.4 to 5 and the majority of RR metabolites fit within these
limits (Figure 1B). The topological polar surface area (TPSA) of molecules defines the sum of surfaces of
polar atoms in a molecule (calculated using the method developed by [46]). In the currently used form,
molecules with TPSA larger than 140 Å2 are believed to have a low capacity for unaided penetration
through cell membranes, while those with TPSA less than 60 Å2 are easily absorbed by the cellular
membrane [47]. Molecules with TPSA over 60 Å2 are believed to be favored and further regulated by
molecular transporters, such as ABC transporters [48]. The average TSPA of RR metabolites is larger
than for overall plant metabolites and highly comparable to the average for FDA-approved drugs
(Figure 1C). It should be kept in mind that ABC transporters are crucial pathogen-related proteins
highly overexpressed and involved in FHB resistance [49], possibly suggesting their role in active
transport of RR metabolites. Figure 1D compares values for the Zagreb Index between RR, FDA,
and plant metabolites. The Zagreb Index, is a topological measure of molecular branching, calculated
as the sum of the squared vertex valences, i.e., the number of connections to heavy atoms regardless of
their bond order [50]. Overall, the Zagreb Index values (ZgIndex) are significantly higher for RR than
plant metabolites, and highly similar between RR and FDA molecules, although values for all three
groups are still within the previously proposed, very large, optimal range of 22–452 [51].

2.2. Metabolite Activity

A number of biological assays have already been performed for many of the metabolites within
the RR group. Protein targets are also known for many of these and this data is available through
the PubChem database [38]. This information can guide us in proposing possible functions of tested,
as well as related, molecules in the biotic response of a plant. Known activities for RR metabolites
are shown in Figure 2. According to the publicly available tests, serotonin is the most promiscuous
compound, showing binding with the largest number of tested proteins. The largest number of tested
compounds target carbonic anhydrase proteins.

The RR metabolites show activity against a number of proteins and the complete list can be
obtained from the authors. A number of metabolites have more than one known protein target and for
several protein targets more than one metabolite shows activity (Figure 2).

A number of active metabolites listed in Figure 2 have been previously shown as antifungals.
General antifungal and antibacterial activity of tannic acid, for example, has been known for
a long time [30–32] and activity against Fusarium graminearum was recently experimentally
shown [34]. Our analysis presents several possible protein targets for tannic acid, including carbonic
anhydrases and a bromodomain adjacent to the zinc finger domain 2B, both having homolog in the
Fusarium graminearum sequence. Many other targets of tannic acid have been defined in the literature.
While the activity of tannic acid against Fusarium gaminearum has already been reported, it serves as a
good positive control. At the same time, tannic acid is a large phenolic compound that has structural
similarity to many other, simpler phenolic acids, detected in grains infected with FHB. Examples of
these include ferulic acid, p-coumaric acid, salicylic acid, gallic acid, caffeic acid, etc. These significantly
smaller products of the phenylpropanoid biosynthetic pathway possibly have similar protein binding
targets as tannic acid.



Metabolites 2016, 6, 31 6 of 15
Metabolites 2016, 6, 31  6 of 15 

 

 
Figure 2. Known protein targets of RR metabolites. Shown are high-activity relationships where (A) 
shows metabolites with known activity against known protein targets; and (B) protein targets listed 
with more than four active metabolites determined from the subset of metabolites measured within 
the RR set. Protein names correspond to the UniProt database [52] names and are listed in the figure 
legend. 

Other highly active, tested metabolites include luteolin and serotonin, both structurally related to 
a number of other RR metabolites. Although their activities in bioassays have been  
extensively studied, their effect against Fusarium graminearum has, to the best of our knowledge, not 
been explored. Luteolin, as well as several other flavones with different hydroxylation patterns, have 
been previously identified as RR molecules with some protein targets already identified for  
apigenin and kaempferol (Figure 2). These, as well as several other luteolin-related molecules, have 
been observed in infected wheat [5,23]. Luteolin is a highly potent antioxidant and radical scavenger, 
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Figure 2. Known protein targets of RR metabolites. Shown are high-activity relationships where
(A) shows metabolites with known activity against known protein targets; and (B) protein targets
listed with more than four active metabolites determined from the subset of metabolites measured
within the RR set. Protein names correspond to the UniProt database [52] names and are listed in the
figure legend.

Other highly active, tested metabolites include luteolin and serotonin, both structurally related to
a number of other RR metabolites. Although their activities in bioassays have been extensively
studied, their effect against Fusarium graminearum has, to the best of our knowledge, not been
explored. Luteolin, as well as several other flavones with different hydroxylation patterns, have
been previously identified as RR molecules with some protein targets already identified for
apigenin and kaempferol (Figure 2). These, as well as several other luteolin-related molecules,
have been observed in infected wheat [5,23]. Luteolin is a highly potent antioxidant and radical
scavenger, similarly to other flavonoids. Likewise to other metabolites, the activity of luteolin
has been primarily tested against mammalian proteins. Once again, many of the proteins that
luteolin is active against have close protein sequence homologs in Fusarium graminearum. It is
also interesting that glycosylated luteolin gets actively transported by ABC-type transporters [53].
Luteolin is structurally related to a number of other flavones and flavone derivatives within
our RR metabolites set (e.g., isovitexin-7-O-xyloside, isovitexin 2”-O-(6′ ′ ′-feruloyl)glucoside,
isovitexin-7-O-glucosyl-2”O-rhamnoside, and kaempferol-3-glucoside-7-rhamnoside, to name just
a few).

Serotonin (5-hydroxytryptamine) is an extensively studied neurotransmitter in mammals, as well
as a widely-distributed metabolite in plants. Serotonin is highly structurally similar to auxin
(indol-3-acetic acid), one of the major plant hormones. It has been hypothesized that serotonin acts
as an auxin function inhibitor, thereby regulating root development [54]. In resistant wheat infected
with Fusarium graminearum a concentration increase has been observed in hydroxycinnamic acid
amide-conjugated putrescine, tyramine, agmantine, and serotonin acting as pytoalexins [5]. Serotonin
and its derivatives p-coumarylserotonin and feruloylserotonin were accumulated in Bipolaris oryza
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infected rice [55] where serotonin treatment suppresses the growth of fungal hyphae. Several other
metabolites within the RR group also contain an indole ring and are highly similar to serotonin.

2.3. Protein Targets

As previous testing of biological activity of compounds was primarily performed on mammalian
proteins, we have utilized sequence similarity studies and homology modelling to establish protein
functions in wheat and Fusarium graminearum systems. Out of 327 protein targets obtained as possible
action sites for the tested RR metabolites, 211 are Homo sapiens proteins. In order to determine
relevance of this finding to interactions between plants and Fusarium graminearum we have mapped the
complete human proteome against protein sequences available for Fusarium graminearum (strain PH-1;
data obtained from the Broad Institute). Statistical information for complete human to complete
Fusarium graminearum proteome mapping is shown in Figure 3. Out of all 89,033 human proteins
obtained from UniProt database [52], 36% could be mapped to the 13,321 Fusarium graminearum
proteins obtained from the Broad Institute database [56].
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proteome. Sequence similarity was determined using in-house methodology.

For the subset of 211 human proteins shown as targets of tested plant metabolites, 138 have
significant homologs in the Fusarium graminearum sequence. Therefore, within the subset of
metabolite-targeted proteins, 65% have homologs in Fusarium graminearum.

Homology Modelling and Docking Analysis—Activity of Metabolites against Fungal Targets

The majority of proteins listed as targets in Figure 2 have highly similar Fusarium graminearum
protein homologs based on the sequence comparison performed in this work. For example,
CA Fusarium graminearum sequence FGSG_04603 has the alpha CA superfamily domain and closest
similarity to human CA (BLAST score: 7× 10−20). Carbonic anhydrase (CA) is a known target of tannic
acid [57], serotonin, ferulic acid [58], as well as number of other RR metabolites either through specific
or non-specific binding and inhibition. At the same time CA has been indicated as an interesting
target for antifungal agents (recently reviewed in [59]). Although several indicated metabolites have
experimentally shown binding to human CA, binding to fusarium CA was not tested for any of the
RR metabolites. In order to explore the possible binding of RR metabolites to fusarium CA we have
performed high-throughput computational docking analysis.

For docking Fusarium graminearum CA was modelled using the homology modelling method
provided by Swiss-Model [60–62], in comparison to proteins with highest sequence similarity with
available X-ray 3D structures. Fusarium graminearum sequence FGSG_04603 was used as it was the
closest homolog to several isozymes of human carbonic anhydrases of known structure.

A number of X-ray crystal structures are available for CA proteins, including representatives of
different classes as well as distinct isozymes from human cells. Several available crystal structures
include inhibitory molecules. Docking analysis for all RR metabolites was performed for human CA
for comparison and Fusarium graminearum CA. Human CA I in complex with the inhibitor topiramate
(pdb: 3LXE) was selected for the analysis of human protein. This is the structure of one of the
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known target proteins of serotonin and contains an inhibitor, allowing the determination of the grid
zone for docking analysis. Fungal CA homolog FGST_04603 was modeled using crystal structure
pdb: 3Q31 of the fungal alpha carbonic anhydrase from Aspergillus oryzae. Carbonic anhydrase from
Aspergillus oryzae showed 39.32% sequence identity with Fusarium graminearum CA, studied here.

Figure 4A shows Ramachandran plots of the 3D structure of human carbonic anhydrase I (3LXE)
and the homology model of protein FGSG_04603 is modeled using the 3Q31 crystal structure. Figure 4B
shows a structural comparison between human carbonic anhydrase 1 (3LXE) and the model of
Fusarium graminearum carbonic anhydrase FGSG_04603 in space filling and skeletal format. A skeletal
format compares active sites of the carbonic anhydrase proteins following structure alignment.
Additionally, the inhibitor (green), in order to mark the active site of the two proteins, is shown.
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(A) Ramachadran plots showing protein backbone dihedral angles for amino acids. Dots present the
angles (psi vs. phi) and outlined are energetically preferred angles. Shown are values for measured and
calculated protein structures for human CA1 (measured) and fungus (calculated); and (B) comparison
of structures of human and fungal CAI binding regions with inhibitory molecules included in green.

Structure quality has been assessed using Ramachandran plots for the model (Figure 4A).
A comparison of Ramachandran plots for the 3LXE structure and the model show a similar distribution
of residues in structural groups of the β-sheet, as well as the left- and right-handed α-helix. A large
majority (over 90%) of residues (excluding glycine and proline, not shown here) fit within the allowed
regions for both the published X-ray structure and our homology model. A visual inspection of
structures and, particularly, residues within the active site, show similarities between 3LXE and
modelled FGSG_04603 structures (Figure 4B). The majority of the residues in the vicinity of the active
site are identical in the two proteins, suggesting similar activity, as well as inhibitory characteristics.

As only a relatively small number of RR metabolites have been experimentally tested,
other possibly stronger inhibitors may exist within the set. In order to assist the selection of
metabolites for further experimental analysis binding energy of RR metabolites have been tested
computationally using high-throughput docking analysis performed using PyRx (Scripps Research
Institute, La Jolla, CA, USA) [63] and AutoDock4 (Scripps Research Institute, La Jolla, CA, USA) [64].
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A zinc atom has been added to the FGSG_04603 structural model according to the analysis of the
structural overlap between the experimental and modeled data. Charges were first calculated using
the Geisteiger model (under AutoDock4). Subsequently the zinc atom was assigned a charge of +2 and
designated as not chemically bonded to the protein. Three-dimensional structures of all ligands were
obtained from the PubChem database [38] and were used directly in PyRx. AutoDock4 analysis was
performed for selected metabolites, including the assignment of charges to ligands using the Geisteiger
model. All single bonds (outside of rings) in ligands were rotatable while the protein was kept rigid.
High-throughput docking analysis was performed for both human and Fusarium graminearum proteins.
Several compounds were selected for further testing based on their binding energies that previously
indicated, experimentally, relevance as antifungal agents, as well as having proven activity as inhibitors
of proteins in mammalian cells that have close orthologes in Fusarium graminearum. Further testing of
other proposed Fusarium graminearum CA inhibitors are underway in our group.

2.4. Experimental Analysis

Several selected metabolites from the set of bibliome and computationally-determined binders to
CA were tested against Fusarium graminearum in fungal growth inhibition assays, including tannic
acid, trans-Ferulic acid, naringenin, and N-(p-coumaroyl) serotonin. The effect of these compounds on
Fusarium graminearum growth in cultures is shown in Figure 5 with IC50 values listed in Table 1.
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Figure 5. Fungal growth inhibition assay in the presence of increasing metabolite concentrations.
(A) Radial growth of a fungal colony inoculated at the center of a potato dextrose agar (PDA) plate
in the presence of different metabolites after three days post inoculation; and (B) radial fungal
growth (diameter in mm) of a Fusarium graminearum inoculum measured over three days in the
presence of increasing concentrations of each metabolite. Each point shows the average of three
replicates ± standard deviation.
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Table 1. IC50 values for tested compounds determined against Fusarium graminearum cell cultures.

Compound IC50 (mM)

Tannic Acid 0.58
trans-Ferulic Acid 3.1

Naringenin ~1
indole-3-carboxylic acid > 10

The strongest inhibitor of Fusarium graminearum growth of the tested metabolites is tannic
acid, followed by naringenin and ferlic acid. These compounds have been shown previously to
be highly promiscuous inhibitors of a range of metalloenzymes in mammalian cells including CA,
P450, and lipoxygenase. The majority of protein targets for tannic and ferulic acid have close
sequence orthologs in Fusarium graminearum and many (e.g., CA, P450, lipoxygenase) are important
in Fusarium graminearum growth and virulence. Structural analysis of these proteins has shown
significant similarity, particularly in the binding/active-site regions, suggesting activity of similar
inhibitory molecules.

3. Materials and Methods

3.1. Metabolite Characterization

Metabolite information was obtained from automated and manual searching of all available
literature dealing with the subject of metabolite or metabolomics analysis in wheat, barley, or oats
infected with Fusarium graminearum. In addition, plant hormones, as well as metabolites listed as
generally related to biotic responses are included. All metabolites determined from the literature have
been mapped to the PubChem database [38] and CIDs were assigned. Molecular characteristics have
been determined using ChemmineR [65], RCPI (developed by N. Xiao), and RCDK (developed by
R. Guha), running under R and Bioconductor, and using 3D molecular structures for the analysis
of physiochemical characteristics of molecules. These methods provided constitutional, topological,
geometrical, and electronic descriptors, as well as molecular fingerprints, and were used to determine
overall molecular characteristics, e.g., size; drug-likeness with Lipinski rule-of-five properties, and
molecular chemical structure similarities. For a comparison of molecular characteristics we have also
obtained all known plant metabolites from the Golm database [41], as well as all FDA approved drugs
obtained from the ZINC database [44].

3.2. Protein Target Analysis

Experimentally-determined protein targets of metabolites have been obtained from the PubChem
Database [38] using Bioactivity information. Only assays with known protein targets and with
metabolites shown to be active have been retained. Several Perl and R scripts have been written
in-house to search for protein information relating bioassay IDs with protein target IDs with protein
names and structures. As most publicly available bioassay testing has been done for general resistance
metabolites we have determined related metabolites in the selected group of resistance-related
metabolites studied here using a structure similarity search provided under ChemmineR [65].

3.3. Sequence Comparison

Homo sapiens to Fusarium graminearum sequence comparisons have been performed using methods
developed in-house. In this approach gene and protein sequences across species are compared in
order to determine possible orthologs. Input sequences representing 13,321 protein encoding gene
models for Fusarium graminearum were obtained from the Broad Institute Fusarium Comparative
Database [56]. 89,033 Human protein sequences were acquired from the October 2014 release of the
UniProt knowledge base [52].
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The OrthoPred tool was applied to the input protein sequences using bidirectional BLAST
local alignments (e-values greater or equal to 1 × 10−4 and word seed equal to 3) and
detected 2930 one-to-one orthologs between the two species. The average BLAST e-values for
Fusarium-to-human and human-to-Fusarium mappings were 5.5 × 10−7 and 1.9 × 10−7.

3.4. Homology Modelling

Three-dimensional structures of proteins for Fusarium graminearum have been obtained using
homology modelling methods provided by Swiss-Model [60–62]. Swiss-Model is a web-based,
fully-automated protein structure homology modelling tool. It first performs identification of one
or more known protein structures with some sequence identity to the studied protein. Following
users’ selection of homologous sequences for modeling, the software determines optimal 3D
structures. Structures determined by Swiss-Model were validated using Ramachadran plot analysis
(calculated using UCSF Chimera 1.9 (UCSF, San Francisco, CA, USA) and structure comparison with
related proteins.

3.5. Docking Analysis

Docking was performed using AutoDock4 (Scripps Research Institute, La Jolla, CA, USA).
AutoDock4 performs a rapid energy evaluation through a pre-calculated grid of affinity potentials.
The macromolecule is kept rigid while torsional flexibility is allowed for the ligand molecule. The grid
box for all calculations included active sites based on X-ray and literature information. Initial structures
of all ligands were obtained from PubChem [38]. Following the addition of hydrogen atoms, all ligand
structures were optimized using Gaussian 97 software using a semi-empirical optimization model.
Atom charges in ligands were calculated using the Gasteiger method in Autodock4.

3.6. Fusarium graminearum Dose-Response Growth Assays

Tannic acid, trans-ferulic acid, indole-3-carboxylic acid and naringenin were purchased from
Sigma-Aldrich. The effects of increasing concentrations of several metabolites on the hyphal growth of
Fusarium graminearum were tested on potato dextrose agar (PDA) plates. Briefly, metabolites dissolved
in various solvents (tannic acid in water, trans-ferulic acid in ethanol, indole-3-carboxylic acid in
ethanol, and naringenin in ethanol) were spread on PDA plates (25 mL media per plate) to obtain a final
metabolite concentration of 0.01–10 mM. Equal volumes of water or ethanol were spread onto control
plates according to the solvent used to dissolve the various metabolites. The plates were incubated for
an hour to let the metabolites absorb into the media. A small plug of Fusarium graminearum Z-3639
was placed at the center of each plate and the plates were incubated under constant light at 27 ◦C
for three days. The diameter of fungal colonies in each plate was measured and recorded each day
after inoculation.

4. Conclusions

Cheminformatics analysis has shown drug-like characteristics for RR metabolites observed in
resistant grains infected with FHB. Some of the known protein binders for several RR metabolites had
close homologs in the Fusarium graminearum proteome, suggesting possible targets for inhibition by RR
metabolites. High-throughput computational docking analysis of interactions between RR metabolites
and possible target proteins have shown that several of the RR metabolites can potentially act as
significant inhibitors of carbonic anhydrase in Fusarium graminearum. Many of these metabolites result
from secondary pathways stemming from tryptophan and include serotonin derivatives produced
in the hydroxycinnamic acid and serotonin amide biosynthesis pathway, as well as products of IAA
biosynthesis (auxin) and flavones, resulting from phenylalanine biosynthesis. Previously, experimental
studies confirmed anti-fungal activity of several of these selected compounds, and herein we show
that some have a significant effect on Fusarium graminearum hyphal growth. Further in planta tests
investigating the ability of the compounds tested in vitro herein, as well as several other selected
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metabolites, to reduce FHB on wheat, are currently underway, aiming towards better understanding of
possible antifungal targets, as well as focused modification of wheat to produce higher concentration
of relevant RR metabolites.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/6/4/31/s1,
Table S1: List of resistance related metabolites obtained from referenced publications with their plant origin.
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