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Abstract: The insulin-dependent activation and recycling of the insulin receptor play an
essential role in the regulation of the energy metabolism, leading to a special interest for
pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively
investigated, experimentally as well as theoretically. We developed a time-resolved, discrete
model to describe stochastic dynamics and study the approximation of non-linear dynamics
in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we
analyzed the structure of the regulatory system and demonstrated the close interrelation
of structural network properties with the kinetic behavior. The transition invariants
decomposed the model into overlapping subnetworks of various sizes, which represent basic
functional modules. Moreover, we computed the quasi-steady states of these subnetworks
and demonstrated that they are fundamental to understand the dynamic behavior of the
system. The Petri net approach confirms the experimental results of insulin-stimulated
degradation of the insulin receptor, which represents a common feature of insulin-resistant,
hyperinsulinaemic states.
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1. Introduction

Physical activity and insulin control the energy metabolism in mammalian cells. In response to
elevated blood glucose levels, pancreatic beta cells located in the islets of Langerhans secrete insulin. The
secreted insulin triggers the uptake of glucose in adipose and muscle tissue. Standard medical diagnosis
of diabetes, insulin resistance, and other disorders of the energy metabolism include the testing of the
glucose-insulin regulatory system [1–3], e.g., by an oral or intravenous glucose tolerance test.

Initially, insulin binds and activates the insulin receptor (IR) located as a homodimer in the membrane
of the cell. Upon a very fast binding event of insulin to the extracellular binding site of the IR
homodimer [4,5], a slower rate-limiting phase occurs that manifests with a conformational change in
the complex [6]. The binding of insulin to the IR triggers autophosphorylation of the intracellular
IR domain, and the autophosphorylation initiates a signaling cascade for the regulation of glucose
uptake [7,8]. The cell maintains the capability to tight regulation by recycling of the phosphorylated IR
homodimer. The recovery of the IR is accomplished either by the dissociation of insulin from the IR or
via an internalization of the entire complex (endocytosis), which moves the complex into the cytoplasm.
In the cytoplasm, the insulin dissociates from the IR, and the dissociated insulin is degraded [9]. After
dissociation of insulin, the IR becomes dephosphorylated and either returns back to the membrane or is
degraded, see Figure 1. The recycling of the internalized IR is a critical step for the regulation of the
energy metabolism and subject of intensive experimental and theoretical studies.

Since the binding of insulin and insulin analogs to the IR is of great importance to pharmaceutical
applications, extensive experimental research [4–6,10–14] has been focused on this complex
extracellular mechanism. The engagement of insulin with the receptor displays allosteric properties,
such as negative cooperativity and insulin dependence of the dissociation rate. Several groups [15–21]
have proposed mechanisms for the binding process. Molecular processes inside the cell are much more
difficult to be experimentally accessed.

Only little is known, how the IR transmembrane domains transfer signals across the membrane
and how the receptor becomes activated. A broad range of experimental methods [22–26] provides
quantitative data, but currently, the experimental view on the molecular details of the life cycle of the IR
inside the cell remains still unclear. The various theoretical models for the IR recycling do not converge
on a unique, consensus network topology. The modeling of the detailed topology of the life cycle of the
IR remains problematic due to many still unknown biochemical and structural properties.

Numerous mathematical models for the glucose-insulin regulatory system have been developed over
the past 50 years; for a review see [27]. One of the first models [28–30] of the IR recycling is the
two-component ordinary differential equation (ODE) system of Quon & Campfield [31]. Their model
is able to reproduce experimental data of ligand-induced down- and up-regulation of receptors as well
as the initial spontaneous display of the surface IRs for cell cultures of BC3H-1 myocytes. Extended
and more detailed models have been developed and studied over the last years [10,32–51]. For a map
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of relationships between the models, see Figure 2 in the review of Ajmera et al. [52]. Each proposed
model is able to reproduce a given set of experimental data measured under specific conditions for a
given cell type, e.g., adipocytes, lymphocytes, hepatocytes, or myocytes. The values for the kinetic and
equilibrium rate constants depend on several factors, such as cell type, temperature, and composition of
the culture media.

Figure 1. The processes of insulin-dependent activation and recycling of the IR. First,
insulin binds to the IR. Afterwards, the IR gets autophosphorylated. Two alternative
processes describe the dephosphorylation of the IR: (1) The IR can dephosphorylate on
the plasma membrane by the dissociation of insulin; (2) The IR can be internalized into
the cytoplasm. There, the insulin is degraded, and the IR is transported back to the
plasma membrane. The processes of dephosphorylation on the plasma membrane and in
the cytoplasm are both catalyzed by the enzyme PTP1B.

The IR is synthesized in the endoplasmic reticulum and delivered via the Golgi apparatus to the
plasma membrane. Ligand binding triggers endocytosis, and the internalized activated tyrosine kinase
receptor is a target for effective lysosomal degradation [53,54]. The main focus of mathematical
modeling is the regulation of glucose uptake within the time range of minutes up to few hours.
Consequently, the models either completely neglect the synthesis and degradation of the IR or apply
a reaction rate constant of k = 1.67 × 10−18 min−1 [34,35,41,42,51] for the degradation process.
This assumes an astronomic time scale of 1.1 × 1012 years, leading to a theoretical steady-state value
of 100 M IR concentration for a cell [37]. Recently, Song et al. [55] have demonstrated that the
E3 ligase activity of the muscle-specific mitsugumin 53 (MG53) regulates the IR stability through
ubiquitin-dependent degradation. They have identified the protein, MG53, as a therapeutic target for
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treating metabolic disorders. Note that the down-regulation of the IR by insulin-stimulated endocytosis
and degradation is a common feature of most insulin-resistant, hyperinsulinaemic states [56–60].

Figure 2. The PN describes the topological network structure of insulin dependent activation
and recycling. Rectangles represent transitions, i.e., reactions. Places are plotted as circles.
Directed, weighted edges connect transitions and places. The places represent chemical
species, e.g., insulin, receptors, or complexes, and can carry tokens, which represent discrete
amounts of the chemical species. Transitions can consume tokens from the pre-places and
generate tokens on the post-places.

This work presents a Petri net (PN) approach [61–64,110] for the modeling of the IR recycling.
PNs are worthwhile for modeling the IR recycling for two reasons. First, all theoretical models
published so far in the literature are based on the approximation of the kinetics by the mass action
principle. Conventionally, a mass action principle formulates an ODE system [65–67] or a master
equation [68–70] for discrete entities. The mass action principle assumes an isotropic and homogeneous
physical environment in which a molecule can freely move in any direction, which is not given for the
movement of the IR in the environment of a highly structured and organized cell. Second, the steps
involved in the IR recycling are specific to the cell type and the environmental conditions of the cell. A
model may approximate the system’s behavior for given experimental conditions, but the application to
another cell type or to altered environmental conditions at least requires the adaption of the model, e.g.,
by refitting the rate constants and initial concentrations.

We chose the network topology, shown in Figure 2, in accordance with the reaction system of
Sedaghat et al. [34], who proposed a mathematical model of the metabolic insulin signaling pathways.
They abstain from describing allosteric properties of the insulin binding mechanism. Their model gives
a coarse grain, but consistent description of the reactions. In contrast to the majority of more complex



Metabolites 2015, 5 770

models, this model describes a complete life cycle of the receptor, including the steps of synthesis
and degradation. Despite its simplicity the model reflects the basic mechanisms well. It has sufficient
variability to approximate the kinetics of different cell types for a broad range of experimental conditions
if the rate constants are appropriately refitted. The properties of the model have been thoroughly
studied [37,38,42,51,71]. Despite its limitations [46] the model provides a simple reference network
topology which can be easily extended.

In this paper, we present a PN model for the IR activation and recycling. We focused on molecular
processes that regulate the response of a cell to an alteration of the level of secreted insulin. We use the
PN formalism, because it is independent of the physical concept and is able to provide ways to explore
concepts, alternative to the mass action kinetics. The PN approach analyzes the structure of a system
of interacting entities. Neither the values of the rate constants nor the detailed kinetics of each reaction
have to be known a priori. The basic prerequisite for a PN approach is the knowledge of the topology of
the IR life cycle.

The paper is organized as follows. In the first step, we briefly give the main definitions and the
properties of PNs and timed PNs (TPNs). Then, we describe the PN and TPN for the IR system. TPNs
employ special time-dependent firing rules to generate the dynamics of token numbers that may be
capable of mimicking the IR life cycle. In the next part, we apply standard structural PN analysis to
the network topology. We focus on transition invariants (TIs) and their interpretation to understand the
functional modules of the IR life cycle. Based on the TI, we derive analytical expressions for critical
parameters and the time course of concentrations of mass action reaction kinetics. The results of the PN
approach demonstrate that, even without knowing the kinetic parameters, the experimental findings of
insulin-induced long-term down-regulation of the cellular IR level can be confirmed [53,72–91].

2. Methods

2.1. Petri Nets

Petri nets are directed, bipartite graphs. The two types of vertices called places and transitions
define the passive and the active components, respectively, of the system. Vertices are connected
by directed, labeled edges in such a way that only edges between vertices of different type exist.
Considering a transition, the places connected by edges, pointing to the transition, are called pre-places,
and places connected by edges, coming from the transition, are called post-places. Considering a place,
pre-transitions and post-transitions are defined analogously.

Definition Petri net (PN): A PN is a 5-tuple PN = (P, T, F,W,M0), where

• P is a finite set of places,
• T is a finite set of transitions,
• F ⊆ (P × T ) ∪ (P × T ) is a set of edges,
• W : F → N is the set of edge weights, and
• M0 : P → N0 is the initial marking.

The dynamics of the system is implemented using movable objects called tokens which are located
on the places. A certain token distribution defines a certain system state. Tokens can move from one
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place to another one via transitions, following a firing rule. First, the transition has to be activated,
i.e., its pre-places have to carry at least as many tokens as indicated by the corresponding edge weights.
In Place/Transition-PNs (P/T-PNs), tokens will be consumed and removed at the same time. So,
the firing rule does not consider any time constraints or parameters. For a detailed introduction into
PN formalism see [61,62,64,110], and for their application in biology, see [63,107,111].

2.1.1. Timed Petri Nets

TPNs explicitly consider the time, for example as time stamps of tokens or time delay of transitions.
Several definitions are possible, see [92] for a formal introduction. Simulating a TPN, the firing rule
uses a global clock time and follows an artificial integer simulation time (clock) that should not be
confused with the physical reaction time. The global clock time is initialized with zero before starting
the simulation.

We apply the concept of colored PNs (CPNs) [93] to represent a TPN, using the software CPN
Tools [93,94]. CPN Tools provides the opportunity to color a timed token by an associated number
called time stamp. At a given clock time, a timed token is either active, if its time stamp is less than or
equals the global clock time or inactive, otherwise. In a TPN, a transition is capable of processing an
infinitely large number of tokens at a given clock time. We characterize a transition additionally by a
constant delay expression of a transition time inscription.

The firing rule can be described as follows. A transition is active if a sufficient number of active tokens
is available on its pre-places. The algorithm chooses randomly one transition from the set of active
transitions. The selected transition fires by removing active tokens from the pre-places and creating
tokens on the post-places. The time stamp of a token created on a post-place is the current global clock
time plus the time delay of the firing transition. The random selection and firing of active transitions
continues until the set of active transitions is empty. When the set of active transitions is empty and no
further transition can fire, the algorithm increments the clock time until at least one transition is enabled.
To limit the maximal firing rate of a transition, we complemented each transition by a place called
time generation place (TGP). A TGP is a pre- and post-place of a transition. It carries a single timed
token which is necessary to activate the transition, but will not be consumed by firing of the transition.
At every time point the transition fires, the time stamp of the token increases and the single token of the
TGP becomes inactive.

Figure 3 illustrates a small example of a TPN. Figure 3a depicts the TPN before the simulation.
The TPN consists of three places, place 1, place 2, and a TGP, and one transition connected by directed
edges with an edge of weight 1. In the initial state of the TPN, place 2 carries no token and place 1 10

tokens, each of them with a time stamp of @0. There exists a global clock time (not explicitly depicted)
which is in the initial state, i.e., equals 0. For the transition, a time delay of @ + 2 is defined, indicating
that the time stamp of each token processed by this transition increases by 2. The TGP is a pre- and
post-place of the transition, i.e., the token on that place will not be consumed when the transition fires.
This token is initialized with a time stamp of @0.
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Figure 3. An example for a TPN. The TPN consists of three places, place 1, place 2,
and a time generation place (TGP), and one transition connected by directed edges with an
edge of weight 1. (a) In the initial state of the TPN, place 2 carries no token and place 1
10 tokens, each of them with a time stamp of @0. There exists a global clock time (not
explicitly depicted) which is in the initial state 0. For the transition, a time delay of @ + 2

is defined, indicating that the time stamp of each token processed by this transition increases
by 2. The TGP is a pre- and post-place of the transition, i.e., the token on that place will
not be consumed when the transition fires. This token is initialized with a time stamp of @0.
(1′() and 1′[1] are specific notations of the CPN Tools.); (b) The state of the TPN after four
simulation steps. 4 tokens on place 1 were consumed and produced on place 2, carrying the
time stamps, @2,@4,@6, and @8, respectively. The other six tokens remain still on place 1
with a time stamp of zero. The transition is enabled if on place 1 and the TGP exist at least
one token with a time stamp less or equals the global clock time. If there is no transition
activated anymore, the global clock time will be increased until at least one transition can
fire. Here, the global clock time has to be increased by 2 with each firing step. The TGP
ensures that the tokens can be distinguished from each other, i.e., only one token is moved
from place 1 to place 2 for a given global clock time. After the first firing step, the time
stamp of the TGP token and the token on place 2 have a time stamp of 2. The global clock
time is still 0. Now, the transition is not anymore enabled, because there is no token with
a time stamp less than or equals the global clock time on the TGP. For the next firing, the
global clock time has to be increased by 2.

Figure 3b depicts the state of the TPN after four simulation steps. 4 tokens on place 1 were consumed
and produced on place 2, carrying the time stamps, @2,@4,@6, and @8, respectively. The other six
tokens remain still on place 1 with a time stamp of zero. The transition is enabled if on place 1 and on
the TGP exist at least one token with a time stamp less or equals the global clock time. If there is no
transition anymore activated, the clock time will be increased until at least one transition can fire. Here,
the global clock time has to be increased by 2 with each firing step. The TGP ensures that the tokens can
be distinguished from each other, i.e., only one token is moved from place 1 to place 2 for a given global
clock time. After the first firing step, the time stamp of the TGP token and the token on place 2 have a
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time stamp of 2. The global clock time is still 0. Now, the transition is not anymore enabled, because
there is no token with a time stamp less than or equals the global clock time on the time generation place.
For the next firing, the global clock time has to be increased by 2.

2.1.2. General Properties

Several graph-based properties can be defined for PNs. Here, we consider those that have a relevance
in modeling biochemical networks. For a more detailed overview, see [95]. A net is pure if it is loop-free,
i.e., there exist no transition, for which a pre-place is also a post-place. A biological PN is not pure,
if they explicitly model, for example, catalytic reactions, using read or test edges, i.e., loops. A PN is
ordinary, if every edge weight equals one. This is often valid for signal transduction networks, but rare
for metabolic systems, where we often have stoichiometric numbers greater than one. Homogeneity
describes the property for any place, when all edges, starting from the considered place, have the same
weights. A network model should be connected, i.e., there exist a undirected path from each vertex to
each other vertex. An important property is liveness, meaning that there is no deadlock in an initial
marking. A PN is live, if all its transitions are live in the initial marking, i.e., no state is reachable in
which a transition is dead, meaning, it can never fire again. Liveness is a useful property in particular
during the modeling process. Simulating the network, dead locks will easily be indicated. But, for being
sure that there is no deadlock, liveness has to be checked.

2.1.3. Invariant Properties

Invariant properties of a network are important because they describe the complete basic systems
behavior. They can be used for network verification regarding completeness and correctness of a
network. In PNs, two types of invariants can be defined, the place invariants, leading to substance
conservation rules, and the transition invariants, giving functionally basic subnetworks.

The definitions of the invariants are based on the incidence matrix. The incidence matrix C of a PN is
an (n×m)-matrix, where n denotes the number of places and m the number of transitions. Every matrix
entry cij gives the token change on the place pi by the firing of the transition tj . A transition invariant
(TI) is defined as a non-zero vector x ∈ Nm

0 which holds the equation

C · x = 0 (1)

A TI represents a multiset of transitions whose firing has no effect on the marking, i.e., if all of them
have fired the required number of times, an arbitrary initial marking is reproduced. A trivial TI consists
of one forward and one backward reaction. Verifying a PN, the non-trivial TIs are of interest. For the
correctness, each of them should have a senseful biological interpretation. A net holds the CTI property
or it is Covered by TIs, respectively, if each transitions of the PN belongs to at least one TI. A transition
which is not a member of one TI could be removed, because it is not involved in system’s dynamics.
Thus, the CTI property represents a completeness criterion. The transitions of a TI with all the places
and edges in between defines a subnetwork which represents a certain function of the system and can be
interpreted as a functional module. These subnetworks can overlap.



Metabolites 2015, 5 774

Analogously, a place invariant (PI) is defined as a non-zero vector y ∈ Nn
0 which holds the equation

y · C = 0 (2)

A PI characterizes a token conservation rule for a set of places, over which the weighted sum of tokens
is constant independently from any firing, i.e., for a PI y and any markings mi,mj ∈ Nn

0 , which are
reachable from M0 by the firing of transitions, it holds

y ·mi = y ·mj (3)

The non-zero entries of an invariant x, are called its support written as supp (x). An invariant x is
called minimal, if its support does not contain the support of any other invariant z, i.e.,

6 ∃ invariant z : supp (z) ⊂ supp (x) (4)

and the greatest common divisor of all non-zero entries of x is one. In the following, we consider
minimal, non-trivial TIs and PIs. We applied the open-source software MonaLisa [96,97,109].

3. Results and Discussion

Both PN models, the P/T model and the TPN model, are based on the reaction system proposed by
Sedaghat et al. [34]. For the lists of abbreviations see Tables 1 and 2.

IR + I
kbind⇐⇒
kdiss

IRI
kphos−→ IRIP

kdephos,m−→ IR + I

IRIP
kin,p⇐⇒
kout,p

IRIPin
kdephos,c−→ IRin

kout⇐⇒
kin

IR

∅
ksyn⇐⇒
kdeg

IRin

(5)

Table 1. List of abbreviations and initial concentrations. Initial concentrations are adopted
from Sedaghat et al. [34]. The concentrations are given in units of pM = 10−12 M.

Abbreviation Species Initial Concentration(s) [pM]

I insulin [I]0 = 103–106

IR insulin receptor [IR]0 = 0.9

IRI I-IR complex —
IRIP phosphorylated IRI —

IRIPin intracellular IRIP —
IRin intracellular IR [IRin]0 = 0.1
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Table 2. List of kinetic parameters of the reaction system (5). The kinetic parameters are
adopted from Sedaghat et al. [34]. For the rates of degradation and synthesis of the IR in the
cytoplasm, we chose the values of Quon and Campfield [31].

Parameter Process Value Units

kbind binding of insulin 6× 107 M−1 min−1

kdiss dissociation of insulin 0.2 min−1

kphos phosphorylation 2.500 min−1

kdephos,m dephosphorylation on membrane 0.2 min−1

kin internalization of IR 3.3̄× 10−4 min−1

kout transport of IR to plasma membrane 3× 10−3 min−1

kin,p internalization of phosphorylated IR 2.1× 10−3 min−1

kout,p transport of phosphorylated IR to plasma membrane 2.1× 10−4 min−1

kdephos,c dephosphorylation in cytoplasm 0.461 min−1

kdeg degradation 1.67× 10−4 min−1

ksyn synthesis
∗1 1.67× 10−17 M min−1

∗2 1.00× 10−16 M min−1

∗1 if IRin ≥ 10−13 M; ∗2 if IRin < 10−13 M.

3.1. The P/T-PN Model and Its Properties

Figure 2 depicts the PN model of the reaction system Equation (5). The six places drawn as circles
represent the species I, IR, IRI, IRIP, IRin, and IRIPin, and the ten transitions drawn as filled squares
describe the changes of species. Since insulin is supplied by the environment to the system, the species
I is defined to be external. External metabolites can be produced or consumed arbitrarily. The transition
buffer causes the external production of insulin. In terms of PN formalism [95] the network is pure,
ordinary, homogenous, connected, and live.

Place Invariants: The PN has no PI because the model includes an adaption of the cell to a variation
of external insulin concentration via synthesis and degradation of the IR. Neglecting the synthesis and
degradation of the IR, the places IR, IRI, IRIP, IRin, and IRIP which represent the IR in its various forms,
e.g., extracellular, internalized, phosphorylated, would be members of a PI. Such a PI would account for
a conservation of the total amount of IR in the cell. But, due to the synthesis and degradation of the IR,
the cell can adapt its total amount of receptor to an increased concentration of external insulin.

Transition Invariants: The network has six TIs, see Supplemental Material for a list of the TI.
Two invariants, TI1 and TI2, are non-trivial. TI1 highlighted in Figure 4 is a cycle of the processes:
binding of insulin to the IR (kbind), phosphorylation of the insulin-IR complex (kphos), and extracellular
dissociation of the activated insulin-IR complex (kdephos,m). Note that the extracellular recycling of the
IR given by the chain of the elementary (equimolar) reactions, kbind and kphos; and kdephos,m does not alter
the total concentration of insulin, i.e., i + iri + irip = constant, or the total concentration of receptor,
i.e., ir + iri + irip = constant. TI2 highlighted in Figure 5 describes a chain of 6 reactions: buffering
of insulin (buffer), binding of insulin to the IR (kbind), phosphorylation of the insulin-IR complex
(kphos), internalization of the activated insulin-IR complex (kin,p), dephosphorylation of the internalized
insulin-IR complex (kdephos,c), and translocation of internalized IR back to the membrane (kout).
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Figure 4. The transition invariant, TI1, is highlighted in the PN. TI1 describes a cycle
of the processes: binding of insulin to the IR (kbind), phosphorylation of the insulin-IR
complex (kphos), and extracellular dissociation of the activated insulin-IR complex (kdephos,m).
The steady state of this subnetwork has an equilibrium constant of ic = 3.33 nM for the
binding of insulin to the receptor.

Figure 5. The transition invariant, TI2, is highlighted in the PN. The six transitions of
TI2 form a chain of six consecutive reactions: buffering of insulin (buffer), binding of
insulin to the IR (kbind), phosphorylation of the insulin-IR complex (kphos), internalization
of the activated insulin-IR complex (kin,p), dephosphorylation of the internalized insulin-IR
complex (kdephos,c), and translocation of internalized IR back to the membrane (kout).
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3.2. The TPN Model and Its Properties

For the TPN model, we wanted to generate a time behavior that is similar to the numerical solution
of the mass action reaction system of Sedaghat et al. [34]. Since the competition of the two binding
sites of the receptor is not modeled quantitatively by Sedaghat et al., we neglected allosteric effects and
considered the ligand-receptor affinity for the binding of only one insulin molecule. Figure 6 outlines the
TPN model for the IR life cycle. For the lists of abbreviations and kinetic constants, see Tables 1 and 2,
respectively. The TPN explicitly models the enzyme protein-tyrosine phosphatase 1B (PTPN1B),
see Figure 1 for a sketch of the catalytic function of PTPN1B. For a full list of places and transitions of
the TPN, we refer to Tables 3 and 4, respectively.

Figure 6. The TPN model of activation and recycling of the IR. It explicitly includes the
enzyme, protein-tyrosine phosphatase 1B (PTP1B), see Figure 1 for a sketch of the catalytic
function of PTPN1B. The circles represent chemical species, here, mainly the different
insulin complexes, see Table 3. The rectangles describe the transitions, see Table 4. For
a full list of places and transitions of the TPN, we refer to Tables 3 and 4, respectively.
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Table 3. List of places of the TPN and the initial numbers of tokens.

Name Molecule Initial Number of Tokens

I insulin 10,000
IR insulin receptor 90
IRI I–IR complex 0

IRIP phosphorylated IRI 0
IRIPintra intracellular IRIP 0
IRintra intracellular IR 10

PTPN1B protein-tyrosine phosphatase 1B 1000
IRIP PTP1B IRIP–PTPN1B complex 0

IRIPintra PTPN1B IRIPintra–PTPN1B complex 0
Phos phosphate 1000

Table 4. List of transitions of the TPN model of receptor phosphorylation and recycling.
The time inscriptions of the transitions are constant delay increments. We adapted the
values of the constant delays to each initial insulin concentration of 1µM, 100 nM, 10 nM,
and 10 nM separately. This list exemplifies the constant delays for i0 = 1µM.

Name Process Time Inscription

bin_1 binding of insulin @ + 1
dis_1 dissociation of insulin @ + 40

autophos_1 phosphorylation of IRI @ + 1
intra_1 internalization of IR @ + 200

memb_1 transport of IRintra to plasma membrane @ + 85
intra_2 internalization of IRIP @ + 110

memb_2 transport of IRIPintra to plasma membrane @ + 400
dephos_1 dephosphorylation of IRIP by PTPN1B @ + 1
dephos_2 IRIP binds to PTPN1B @ + 40
dephos_3 IRIPintra binds to PTPN1B @ + 20
dephos_4 dephosphorylation of IRIPintra by PTPN1B @ + 1

It turned out that we had to manually adapt the time inscriptions individually for each initial
concentration of insulin to mimic the expected time course of concentrations. Table 5 lists the appropriate
constant time delays for the simulation of 1 µM, 100 nM, 10 nM, and 1 nM initial insulin concentrations.
Figure 7 shows the simulation results for 10 nM (upper part A) and 1 nM (lower part B) initial
concentrations of insulin, respectively. The right part depicts the time course of token numbers that
resemble the concentration curves of the corresponding mass action reaction systems shown in the left
part. For low insulin concentrations of 10 nM and 1 nM, the IR never becomes completely saturated,
a fraction of the receptor remains accessible to insulin, and the concentration of free receptor approaches
a non-zero steady-state concentration. Such steady states are of crucial importance for the analysis of
the ODE model, but the concept of a stable and attractive steady state can not be transferred to a TPN
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model. The reason is that the maximal firing rate of a timed transition is independent from the occupancy
of tokens on its pre-places. As a result, the net production of tokens on a place would be either positive
or negative. No state is possible at which the firing rates of active transitions counterbalance to a zero
net production of tokens. Consequently, in the course of simulating the TPN model, we adjusted the
time delays of the transitions, see Table 5. For such dynamically adapted time delays, the time courses
of token numbers show a visual resemblance to the concentration curves, see Figure 7.

Table 5. Adaption of time delays of timed transitions to initial concentrations of insulin,
1 µM, 100 nM, 10 nM, and 1 nM. The values in parentheses are applied after 4500 and
15, 000 clock times for the insulin concentrations, i0 = 10 nM and i0 = 1 nM, respectively.

Transition 1 µM 100 nM 10 nM 1 nM

bin_1 @ + 1 @ + 7 @ + 16 (@ + 29) @ + 20 (@ + 30)
dis_1 @ + 40 @ + 40 @ + 40 (@ + 39) @ + 40 (@ + 60)

memb_1 @ + 85 @ + 85 @ + 86 @ + 86
intra_2 @ + 110 @ + 110 @ + 119 @ + 119

dephos_2 @ + 40 @ + 40 @ + 40 (@ + 52) @ + 40 (@ + 65)
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Figure 7. The left part depicts the concentrations of the IR (dark blue line),
the phosphorylated insulin-IR complex IRIP (light blue line), the internalized complex
IRIPintra (purple line), and the intracellular IRintra (yellow line) versus reaction time for
initial insulin concentrations, 10 nM (part A, top), and 1 nM (part B, bottom), respectively.
The concentrations are precise numerical simulations of the reaction system Equation (5).
The right part shows the number of tokens versus the global clock time for the corresponding
TPN. One token equates to a concentration of about 10 fM, and 2000 counts of the global
clock time represent one minute reaction time.
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3.3. Quasi-Steady-State Approximation

The time evolution of the insulin system is conventionally studied for the response of the cell to a
high (typically 4-6 orders of magnitude larger than that of the IR), external insulin concentration, or
vice versa for the regulation of the cell back to its basal state in the absence of insulin. The assumption
of a constant insulin concentration is reasonable for modeling of insulin concentration given in excess.
A quasi-steady-state approximation (QSSA) sets the concentration of external insulin to a constant value,
i = i0, and determines the steady states within this assumption.

The TIs decompose the network into subnetworks, for which steady states can be computed. For the
subsystem defined by TI1, we calculated the steady-state concentrations, ir∗, iri∗, and irip∗, see Figure 4
and for the analytical formulae, see Supplemental Material. For the kinetic rate constants in Table 2,
the equilibrium constant for insulin binding becomes ic = 3.33 nM. Figure 8 depicts the dependence
of the fraction of accessible receptor (ir∗/ir0) and activated complex (irip∗/ir0) on the parameter, i0,
i.e., on the concentration of extracellular insulin. The fraction, iri∗/ir0, of the intermediate complex,
IRI, is below 0.1 ppm and, therefore, not depicted in Figure 8. For insulin concentrations well below ic,
only a small fraction of the IR binds an insulin molecule. Increasing the concentration of external insulin,
i0, up to i0 ≈ ic, the steady-state concentration, ir∗, of the accessible IR drops down and simultaneously,
the steady-state concentration, irip∗, of the activated complex, IRIP, grows in linear proportion to the
insulin concentration i0. Both concentrations, ir∗ and irip∗, become equal for i0 = ic, see the vertical
line in Figure 8. Further increase of the external insulin concentration, i0, the steady-state concentration,
irip∗, of the activated complex, IRIP, starts to predominate until nearly all the IR have been activated
to IRIP.

0 %

25 %

50 %

75 %

100 %

100 pM 1 nM 10 nM 100 nM 1 µM

fr
ac

ti
o
n

extracellular insulin 

i r

i r i p

Figure 8. The fractions of the steady-state concentrations, ir∗/ir0 and irip∗/ir0, are plotted
versus the concentration of the external insulin. The vertical line indicates the value of the
equilibrium constant, ic = 3.33 nM. For insulin concentration above ic, more than 50% of
the extracellular IR binds an insulin molecule. All the IR becomes saturated for an insulin
concentration which is large compared to ic, i.e., for i� ic = 3.33 nM.

The steady-state concentrations, ir∗, iri∗, and irip∗, describe an equilibrium of the processes, binding,
phosphorylation, and dissociation, respectively, but completely ignore the process of translocation of
activated receptor into the cytoplasm. Consequently, they represent a justifiable approximation only
for a short reaction time compared to the time scale of the translocation process. The process of
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translocation of the activated IR into the cytoplasm (kin,p) is member of the subnetwork, TI2, see Figure 5.
We derived analytical expressions for the steady-state concentrations, ir†, iri†, irip†, ir†in, and irip†in,
of the corresponding mass action reaction system, see Supplemental Material. The critical insulin
concentration of internalization of the IR becomes i†c = 0.535 nM for the kinetic rate constants in Table 2.

A substantial redistribution of the surface and intracellular IR becomes observable for external insulin
concentrations around i†c. The cell is maximally down-regulated for external insulin concentrations well
above i†c. The distribution of the IR in the maximally down-regulated state is approximately 59% surface
and 41% intracellular. For a discussion of the experimental evidence of the distribution of the surface
and intracellular IR, see the work of Quon & Campfield [31].

Time Behavior

Physiologically, the level of external insulin varies rapidly in response to increased blood glucose
levels. The release of insulin is not continuous, but oscillates on the time scale of minutes. Due to
the dynamics of the tightly regulated insulin level, the cell has no infinite time for an adaption to the
external insulin level. Thus, the time scale on which the IR system will approach the quasi-steady-state
concentrations is important. In the following, we discuss the dynamics of the process of down-regulation
for constantly high insulin levels.

The down-regulation of the cell for high insulin levels passes through three different phases:
(1) binding of insulin to the IR; (2) internalization of the activated IR; and (3) degradation of IR in
the cytoplasm. Figure 9 depicts a precise numerical solution of the complete model for the initial insulin
concentration of i0 = 1 nM. For the kinetic constants and the initial concentrations, see Tables 1 and 2,
respectively. The concentration of the accessible IR on the membrane (ir, broken line with the label free
receptor), the total concentration of the IR on the membrane (irmemb = ir + iri+ irip, dotted line with
the label receptor (membrane)), and the total concentration of the IR (irtot = irmemb + iripin + irin,
solid line with the label receptor (total)) are plotted versus the logarithmic time axis.

In the initial state, no insulin is bound to the surface IR. The down-regulation of the cell starts
with the fast binding of insulin to the IR and the activation, i.e., phosphorylation, of the IR.
The concentrations evolve with time towards the quasi-steady-state concentrations, ir∗ and irip∗.
Analytically, the exponential functions,

ir′(t) = ir∗ + (ir0 − ir∗) eλ1 t and (6)

irip′(t) = (ir0 − ir∗)
[
1− eλ1 t

]
(7)

describe the time course of concentrations. λ1 is the characteristic eigenvalue of the ODE subsystem
defined by TI1. For the analytical expression of λ1, see Supplemental Material.

The overall rate of binding and activation depends on the initial concentration of insulin, i0. For the
initial concentrations of insulin, i0 = 1 nM, 10 nM, 100 nM, and 1 µM, the typical scales of the reaction
time are 1/λ1 = 3.85 min, 1.25 min, 9.69 s, and 0.998 s, respectively. The first response of the cell
to an elevated level of insulin is a reorganization of the free membrane IR to the activated IRIP on
the membrane.
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Figure 9. Precise numerical solutions for the concentration of accessible IR on the
membrane (solid line with the label free receptor), the total concentration of IR on the
membrane, irmemb = ir + iri + irip (solid line with the label receptor (membrane)),
and the total concentration of the IR, irtot = irmemb + iripin + irin (solid line with the
label receptor (total)), are plotted versus the logarithmic time axis. The concentrations are
given in percentage of the total concentration, irtot, of the IR of the basal cell. The initial
insulin concentration is i0 = 1 nM. The down-regulation of the cell for insulin given in
excess passes through three phases: binding of insulin, internalization of the activated IR,
and degradation of the IR inside the cell. The analytical approximation (Equation 6) for
the concentration of the IR is drawn as dotted line with the label TI1 and describes the fast
binding of insulin to the IR. The dotted line with the label TI2 shows the approximation (8).
The analytical solution (Equation 11) for the concentration of the IR is depicted as dotted
line with the label, TI2 + TI6, and is indistinguishable from the precise numerical solution
(solid line free receptor) until the QSSA breaks down, i.e., until the consumption of insulin
becomes measurable. The concentration of insulin is not plotted.

In Figure 9, the exponential function, ir′(t), is plotted for i0 = 1 nM as a dotted red line with the
label TI1. The curve shows an initial drop and becomes constant for long time periods. During the phase
of initial drop, the exponential function ir′(t) is indistinguishable from the precise numerical solution
drawn as bold red line with the label free receptor. The left vertical line in Figure 9 indicates the position
of the time point t = 3/λ1 = 11 min. For a short reaction time (i.e., t < 11 min), the exponential
function ir′(t) correctly describes the binding of insulin to the accessible IR. On a longer time scale,
ir′(t) approaches the constant value ir∗. The quasi-steady-state concentrations, ir∗, and irip∗, neglect
the internalization of the phosphorylated IR, and thus, a deviation of ir′(t) from the numerical solution
becomes more and more distinct for t > 11 min.

After the binding of insulin to the accessible IR and reaching the equilibrium concentrations, ir∗ and
irip∗, the cell commences to internalize the activated IRIP. The process of internalization translocates
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the activated IRIP from the membrane to the cytoplasm. As a consequence, the concentration, ir, of
the accessible IR as well as the total concentration, irmemb, of the IR on the membrane drops down.
The redistribution of the surface and intracellular IR does not change the total concentration, irtot, of the
IR in the cell. Up to the end of the phase of IR internalization, the evolution of concentration with time
is given by the exponential functions,

ir′′(t) = ν ir† + (ir′(t)− ν ir†) eλ2 t,
irip′′(t) = ν irip† + (irip′(t)− ν irip†) eλ2 t, and (8)

ir′′in(t) = ν ir†in + (irin,0 − ν ir†in) eλ2 t

with the eigenvalue λ2 of the ODE subsystem defined by TI2, see Supplemental Material. The mass
conservation of the IR determines the constant parameter,

ν :=
ir0 + irin,0

ir† + irip† + ir†in
=
irtot,0

ir†tot
(9)

with irin,0 as the initial (basal) concentration of the internalized IR. For the initial concentrations of
insulin, i0 = 1 nM, 10 nM, 100 nM, and 1 µM, the typical time scales of the process of receptor
internalization are 1/λ2 = 4h 27min, 3 h 34min, 3 h 18min, and 3 h 16min, respectively.
The approximation, ir′′(t), for the concentration, ir, of the accessible IR is plotted as a dotted line
labeled by TI2 in Figure 9. At least for t < 3/λ2, the precise numerical solution for the concentration
of the IR is well approximated by the superposition of two exponential functions (8); a vertical line at
t = 3/λ2 = 13 h is drawn in Figure 9.

The process of translocation of the activated IR from the membrane into the cytoplasm leads to an
accumulation of internalized IR. Note that the mass conservation,

ir′′(t) + irip′′(t) + ir′′in(t) = ir0 + irin,0 (10)

is fulfilled for approximation (8), and the total amount of IR in the cell, irtot, does not change during the
phase of internalization, see Figure 9.

In contrast to irmemb, the level of receptor concentration in the cytoplasm grows during the phase of
internalization of the membrane IR, where at the end the concentration of the IR in the cytoplasm is
much higher than the steady-state value, ir†in, of receptor synthesis and degradation. Thus, a subsequent
degradation of the IR down-regulates the accumulated concentration in the cytoplasm. The slow
degradation of the intracellular IR leads to a decrease of concentration that can be approximated by

ir′′′(t) = ir† + (ir′′(t)− ir†) eλ3 t,
irip′′′(t) = irip† + (irip′′(t)− irip†) eλ3 t, and (11)

ir′′′in(t) = ir†in + (r′′in(t)− ir
†
in) e

λ3 t

with λ3 = −ksyn/ir
†
tot and ir†tot = ir† + iri† + irip† + ir†in + irip†in.

For the initial concentrations of insulin, i0 = 1 nM, 10 nM, 100 nM, and 1 µM, the typical time
scales of IR degradation are 1/λ3 = 21 days, 11 days, 10 days 6 h, and 10 days 3 h, respectively.
The equations (11) describe the drop of concentration of the accessible IR by three exponential phases,
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see ir′′′(t) plotted as dotted line with the label, TI2+TI6, in Figure 9. A deviation of ir′′′(t) from the
precise numerical solution (solid line labeled free receptor) becomes visible only on a long time scale.
The precise numerical solution does not drop down to the values of the QSSA, ir†, irip†, and ir†in.
Instead, the concentration of the accessible receptor starts to increase again, and swings back to the
concentration of the basal state. The modeled consumption of insulin by the cell leads to a decrease of
external insulin, an effect that we neglect in the quasi-steady-state approximation. For exhausted external
insulin, the cell turns back to the basal state.

The time scale of months makes such a consumption of insulin irrelevant for the behavior of cells
in an organism that regulates tightly, i.e., on the time scale of minutes the insulin level, according to a
varying glucose level. At least from the academic point of view, it is interesting that the consumption of
insulin described by the system is an example for the application of the Lambert function [98]. Inserting
the QSSA, ir†, irip†, and ir†in, into the ODE system leads to

∂i

∂t
= λ4

i

i†c + i
(12)

with λ4 = kout ksyn/kdeg. The analytical solution of the differential equation is given by

i(t) = i†c W

(
eλ4 t+ C1/i

†
c

i†c

)
where W stands for the Lambert function. The integration constant C1 is determined by the initial
condition i(t = 0) = i0, e.g., the initial condition, i(t = 0) = 1, is satisfied for C1 = 1. For kinetic
parameters in Table 2, we get the typical time scale of t4 = 1/λ4 = 5h 33min; for a detailed discussion
see Supplemental Material.

4. Conclusions

We applied the Petri net formalism to analyze the structural properties of a biological signaling model
that describes the insulin-dependent phosphorylation and recycling of the IR. The analysis of the PN
model is valuable and complementary to the numerical kinetic simulation. The concerted application
of kinetic simulations and PN analysis demonstrates an advantageous strategy which is appropriate and
promising also for other and larger biological systems.

First, we constructed a discrete P/T-PN model. The PN analysis started with a verification of
formal constraints that a biological network has to fulfill [63]. Since the insulin model studied here is
well-established in the literature, we abstain from describing the details of standard network verification.
Functional modules are represented by TIs [63,99,100]. Note that the identification of functional
modules in networks is a hard, computational task for a broad range of multidisciplinary applications
[101,108]. Two non-trivial TI decomposed the P/T-PN into two subnetworks, defining basic functional
modules, for which we determined the quasi-steady states. According to analysis of the PN model,
the insulin-dependent evolution of the IR activation and recycling manifests in three phases: (1) At
the initial reaction of a basal cell to an increased concentration of external insulin, the membrane IR
binds insulin and becomes phosphorylated; (2) Then, internalization of the phosphorylated IR from the
membrane into the cytoplasm takes place; (3) In the cytoplasm the IR is degraded. Each phase happens
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at a specific time scale and depicts an exponential transition from one quasi-steady state to another.
Several seconds to few minutes for the binding of insulin, 3–4 h for the internalization of the IR, and
10–20 days for the intra-cellular degradation of the IR are the typical time scales for a set of standard rate
constants [31,34]. The consumption of insulin resulted in a drop of insulin concentration according to
the Lambert function.

Then, we constructed a timed, discrete model. The TPN model gave a rather rough approximation of
the well-established mass action principle. It is surprising that the simple TPN was capable of mimicking
the time behavior of the mass action kinetics to some extent. The evolution of the ODE model with time
strongly relies on the dynamic equilibrium of (quasi-)steady states which are inherent properties of the
mass action kinetics.

The concept of steady states is not applicable to TPNs. The TPN model achieved the desired time
behavior by a completely different mechanism. The ability of a TPN model to produce a distribution of
tokens that evolve in qualitative accordance with continuous concentrations of a mass action reaction
system is a promising result for further studies. The values of the required time delays and the
corresponding maximal token fluxes are of special interest for pharmaceutical applications. Here,
a systematic mathematical strategy to learn the parameters of the TPN from experimental data would
be a valuable improvement.

We demonstrated that the PN formalism enables the decomposition of the network structure into
submodules and a subsequent computation of the corresponding quasi-steady states. The PN approach
goes beyond previous standard steady-state analyses [20] of the Sedaghat’s model [34]. We give
analytical formulas for the states and transitions inherent to the topological structure proposed. The
formulas are valid for any values of kinetic rate constants or initial conditions. Hence, the analysis
revealed the fundamental functional modules of dynamics that the network structure is capable to
generate. The analytic formulas can easily be applied to adapt the model to experimental data, e.g.,
to experimental values for the IR half life and internalization rate. The presented PN approach is
straightforward and worthwhile for other and more complex network structures of the IR life cycle.

From the biological point of view, it is interesting that the PN approach models, for the first
time, the experimentally well-known insulin-stimulated degradation of IR [47,72–90] which plays a
fundamental role in the insulin resistance and metabolic disorders [55,57,59,60]. Due to the (lysosomal)
IR degradation inside the cell, the total amount of the IR starts to decrease as soon as the IR becomes
activated by external insulin and is transported into the cytoplasm. The IR concentration becomes
significantly reduced when the system is permanently activated, see Figure 10. Note that an increase
in insulin secretion characterizes prediabetic patients and type 2 diabetic patients who have developed
an insulin resistance [102]. Experimentally, it is observed that the concentration of the IR is decreased
to about 55% in adipocyte cells obtained from a comparison of type 2 diabetic patients and healthy
adipocyte of humans [56,60]. If the reduction of the IR concentration in patients, having developed
insulin resistance, is caused by a simple imbalance of degradation and synthesis of the IR within cells,
it would be a promising target to inhibit the degradation of IR to treat insulin resistance in type 2
diabetic patients.
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Figure 10. The steady-state concentrations, ir† (red line), irip† (green line), ir†in (blue line),
and irtot = ir†+ irip†+ ir†in (violet line) are plotted versus the external insulin concentration
i0. The critical insulin concentration, i†c = 0.535 nM, and the equilibrium constant,
ic = 3.33 nM, are indicated by left and right vertical lines, respectively. The steady-state
concentration, ir†in, is regulated by synthesis and degradation of the IR in the cytoplasm and
hence, remains constant. The steady-state concentration, irip†, is zero in the basal state of
the cell, i.e., in absence of extracellular insulin, i0 = 0. In the process of down-regulation
of the cell, i.e., for increasing insulin level, i0, the concentration, irip†, increases until it
reaches its maximal values for i0 � i†c. The steady-state concentration, ir†, of the surface IR
is maximal in the basal state and drops down to zero for i0 � i†c.

For future work, we recommend the consideration of regulatory elements for the ubiquitin-dependent
degradation [55] and the transcription [54,103–106] of the IR. Such modeling approaches can give new
insights into the evolution from the healthy state to metabolic disorder and can help to find strategies to
reverse such an undesirable transition.

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/2218-1989/5/4/766/s1.
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