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Abstract: BioCyc.org is a genome and metabolic pathway web portal covering 5500
organisms, including Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and
Escherichia coli. These organism-specific databases have undergone variable degrees
of curation. The EcoCyc (Escherichia coli Encyclopedia) database is the most highly
curated; its contents have been derived from 27,000 publications. The MetaCyc (Metabolic
Encyclopedia) database within BioCyc is a “universal” metabolic database that describes
pathways, reactions, enzymes and metabolites from all domains of life. Metabolic pathways
provide an organizing framework for analyzing metabolomics data, and the BioCyc
website provides computational operations for metabolomics data that include metabolite
search and translation of metabolite identifiers across multiple metabolite databases. The
site allows researchers to store and manipulate metabolite lists using a facility called
SmartTables, which supports metabolite enrichment analysis. That analysis operation
identifies metabolite sets that are statistically over-represented for the substrates of specific
metabolic pathways. BioCyc also enables visualization of metabolomics data on individual
pathway diagrams and on the organism-specific metabolic map diagrams that are available
for every BioCyc organism. Most of these operations are available both interactively and as
programmatic web services.
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1. Introduction

Metabolic pathways provide an organizing framework for understanding metabolomics data. The
BioCyc.org website provides a number of metabolomics data analysis and visualization services in
concert with the 5500 metabolic pathway databases available at the site. These operations include
metabolite search, metabolite enrichment analysis, visualization of metabolomics data on pathway
diagrams and metabolic map diagrams and translation of metabolite identifiers across multiple
metabolite databases. These operations are provided via two access modalities: interactive website
operations and programmatic web services. (Note that we use the term “web service” somewhat loosely
here to refer both to web APIs (application program interface, the program-callable web services) that
generate data and to web APIs that generate web pages.)

BioCyc is a genome and metabolic pathway web portal [1] that contains thousands of
pathway/genome databases (PGDBs). Each PGDB describes the genome and metabolic network of a
sequenced organism. The biological objects modeled within a PGDB include replicons, genes, proteins,
biochemical reactions, metabolites and pathways. For most PGDBs, the metabolic network was inferred
computationally by the Pathway Tools software [2,3]. Some PGDBs contain information from extensive
manual curation of the biomedical literature, e.g., the contents of the EcoCyc [4] database were derived
from more than 27,000 publications.

The MetaCyc [1,5,6] database plays a special role in the BioCyc collection because it is a
“universal” metabolic database that describes 2310 pathways, 12,377 reactions, 10,298 enzymes and
11,987 metabolites from all domains of life. The contents of MetaCyc have been derived from 45,000
publications. The vast majority of reactions, metabolites and pathways in the organism-specific PGDBs
are a subset of those in MetaCyc. MetaCyc also contains extensive atom mapping data that can be used
to track specific atoms through a sequence of metabolic reactions [7].

PGDB data can be accessed in a variety of forms [8]. The BioCyc website provides interactive
querying and visualization of these data, as does the downloadable Pathway Tools software bundled
with BioCyc databases. BioCyc data can be downloaded as a series of data files, can be queried via web
services [9] and can be queried via APIs in Java [10,11], Perl [12], Python [13] and Common Lisp [14].

Related Work

Our metabolite translation service was inspired by previous work, such as the Chemical Translation
Service (CTS) of Wohlgemuth [15], UniChem [16] and MetMask [17]. Rather than translating a
single specified type of identifier to another single identifier, as CTS does, our interface allows users
to identify each metabolite in one line using as many or as few names and identifiers as they have
available, and we indicate all of the identifiers that we have available in BioCyc, again in one line. Our
service spans a smaller number of databases than do CTS or UniChem. Our service is not based
on automatically-calculated correspondences using InChIs (International Chemical Identifiers) as is
UniChem’s, but instead, is based on correspondences stored within each BioCyc database, thus allowing
curation of correspondences that are not detected by InChI matching.

KEGG provides metabolomics visualization services for its pathway diagrams via the KEGG
Mapper [18]. The KEGG Mapper is similar to the single-data-point tool we describe in Section 2.7.3,
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but KEGG Mapper cannot depict multiple data points, as Pathway Tools shows via pop-up windows (see
Figure 4). It is also important to keep in mind the general differences between KEGG maps and BioCyc
pathways discussed in a recent comparison [6]: KEGG maps tend to be significantly larger than BioCyc
pathways, because KEGG maps are mosaics of multiple biological pathways across many species,
whereas BioCyc pathways are single metabolic pathways found in specific organisms. For example,
KEGG map MAP00270 combines individual pathways involved in biosynthesis and degradation of
L-cysteine and L-methionine; therefore, metabolite matches to this KEGG map could be confused with
several pathways.

KEGG Atlas [19] is an analog of the BioCyc Cellular Overview diagrams. Its stated goal is to
support “the mapping of high-throughput experimental data onto the global [metabolic] map.” However,
we found KEGG Atlas unable to successfully visualize metabolomics data (specifically, from the web
page http://www.kegg.jp/kegg/atlas/?01100, we clicked “eco” at the upper-left to display the diagram,
then clicked the “P” button at the top-right and entered several metabolite-ID/color pairs, as per the
instructions, but no metabolites were ever highlighted upon clicking “apply”). Furthermore, KEGG
Atlas uses a set of seven fixed diagrams for different areas of small-molecule metabolism—fixed in the
sense that the same seven diagrams are used for all of the organisms in KEGG. Thus, no one diagram
contains all metabolic pathways for all organisms, and many of the reactions in any given diagram are
not actually present in any specific organism (reactions not present in a selected organism are grayed
out). In contrast, each organism in BioCyc has its own custom-generated Cellular Overview diagram
containing only those reactions present in the PGDB for that organism. It does not support animation
nor omics pop-up diagrams.

KaPPA-View enables viewing of metabolomics data on individual pathway diagrams for a number of
plant species [20]. It does not support viewing on full metabolic network diagrams.

Metscape [21] supports viewing of metabolomics data on diagrams derived from the EHMN
metabolic database [22] for individual pathways or for large networks. Diagrams are displayed by
Cytoscape [23]. It does support animation, but does not support omics pop-ups. Cytoscape diagrams can
be very densely connected, interfering with readability, and do not use graphical conventions typically
used for metabolic pathways.

2. Results and Discussion

This section presents the metabolomics operations available from the BioCyc website and from
the downloadable Pathway Tools software, which includes BioCyc. Furthermore, these operations are
available from other Pathway Tools-based websites [24], such as PlantCyc [25] and SolCyc [26] (the
services available depend on the version of Pathway Tools installed at a site). We note that the BioCyc
operations described herein are processed in the context of a specific PGDB. For example, when a
user performs a metabolite search, that operation searches through all metabolites within a specified
PGDB (usually the currently selected PGDB), such as the EcoCyc PGDB for Escherichia coli. Similarly,
when visualizing metabolomics data on a metabolic map diagram, each PGDB has a different metabolic
map diagram, and the operation must use the diagram for a specified organism. Additional information

http://www.kegg.jp/kegg/atlas/?01100
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about these operations can be found at [27]; online tutorials describing many of these operations can be
found at [28].

2.1. Metabolite Search

BioCyc supports interactive metabolite searches and metabolite searches via web services.

2.2. Metabolite Search: Interactive

The interactive metabolite search enables users to search within a given BioCyc PGDB for metabolites
that satisfy one or more criteria. The resulting BioCyc metabolite pages describe chemical properties of
the metabolite, as well as the reaction(s) and pathway(s) in which the metabolite participates and the
genes and enzymes regulated by the metabolite. This search is available under the website command
Search→ Search Compounds. The user can specify combinations of the following search criteria.

• The common name or synonyms of the metabolite must match one or more names or substrings
supplied by the user;

• The metabolite contains a database identifier supplied by the user, for databases, including
BioCyc, ChEBI [29], KEGG, HMDB [30], and PubChem (see Table 1 for a list of supported
external databases);

• The metabolite matches within a specified tolerance of a molecular weight or monoisotopic
molecular weight supplied by the user;

• The metabolite matches a full or partial chemical formula supplied by the user;
• The metabolite matches an InChI (specifically, InChI-1S) string supplied by the user;
• The metabolite is within a region of the BioCyc chemical ontology (e.g., “a prostaglandin” or

“a steroid”).

Table 1. The metabolite databases to which BioCyc databases currently contain significant
numbers of external links, for which external identifier searches are therefore likely to work;
the names for those databases used in BioCyc searches; and the number of links to each
database in MetaCyc Version 18.5. That MetaCyc version contains 11,681 metabolites.

Database Database Name Link Count

PubChem Compound PUBCHEM 10,135
ChEBI CHEBI 6268
KEGG KEGG 4924
ChemSpider CHEMSPIDER 4100
DrugBank DRUGBANK 402
Lipid Maps LIPID_MAPS 385
HMDB HMDB 2733
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2.3. Metabolite Search: Web Services

BioCyc provides web services for searching for metabolites based on monoisotopic molecular weight,
chemical formula and external database identifiers. It also provides a service for translating metabolite
names and identifiers among multiple databases.

2.3.1. Web Service for Search by Monoisotopic Molecular Weight

BioCyc metabolites can be retrieved based on matches to a specified monoisotopic molecular weight
and tolerance. This web service can be used if the user is retrieving the results by either the “POST” or
“GET” method. The URLs for monoisotopic molecular weight search are as follows.

http://websvc.biocyc.org/[ORGID]/monoisotopicwt?wts=[MONOISOTOPICMW]&tol=[TOLERANCE]

or

http://websvc.biocyc.org/[ORGID]/monoisotopicwt?wts=[MONOISOTOPICMW]&tol=[TOLERANCE]&fmt=json

where:

• [ORGID] is the BioCyc identifier for the organism database, e.g., ECOLI (for EcoCyc), META
(MetaCyc), AFER243159 (Acidithiobacillus ferrooxidans, Strain ATCC 23270).

• [MONOISOTOPICMW] is a floating point number, standing for the monoisotopic molecular
weight in Daltons. One or more monoisotopic molecular weights can be supplied; multiple values
are separated by commas.

• [TOLERANCE] is the search tolerance +/− in ppm.
• fmt=json requests output in the JavaScript Object Notation (JSON) format; the default output

is in a tab-delimited format.

The JSON format (shown in the last example below and defined at www.json.org) is particularly
useful, because JSON data are structured and regular yet easy to parse. JSON is a native format within
the JavaScript programming language that is often used to implement web services in a browser, thus
JSON can be directly used by JavaScript without any need for parsing.

Example URLs:

• http://websvc.biocyc.org/ECOLI/monoisotopicwt?wts=240.063,88.052&tol=5
Retrieve the compounds that have a monoisotopic molecular weight of either 240.063 or 88.052
with a tolerance of 5 ppm in EcoCyc.

• http://websvc.biocyc.org/BSUB/monoisotopicwt?wts=169.988&tol=5&fmt=json
Retrieve the compounds that have a monoisotopic molecular weight of 169.988 within a tolerance
of 5 ppm in Bacillus subtilis in the JSON format.

• http://websvc.biocyc.org/META/monoisotopicwt?wts=123.009,56&tol=5
Retrieve the compounds that have monoisotopic molecular weights of 123.009 or 56 with a
tolerance of 5 ppm in MetaCyc. For 123.009, this query retrieves any compound that has
a molecular weight in the range 123.008385 to 123.00962 Daltons. The query results are
shown below.

The default output is a tab-delimited format as follows (these results were generated by the
preceding example):

www.json.org
http://websvc.biocyc.org/ECOLI/monoisotopicwt?wts=240.063,88.052&tol=5
http://websvc.biocyc.org/BSUB/monoisotopicwt?wts=169.988&tol=5&fmt=json
http://websvc.biocyc.org/META/monoisotopicwt?wts=123.009,56&tol=5
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123.009 1 123.008705 3-chloro-L-alanine CHLORALAN-CPD

123.009 1 123.008705 3-chloro-D-alanine 3-CHLORO-D-ALANINE

123.009 1 123.008705 2-chloro-L-alanine CPD0-1475

123.009 1 123.008705 3-chloro-DL-alanine 3-CHLORO-DL-ALANINE

56 0

The first column contains the input monoisotopic molecular weights. The second column indicates
whether the query was successful (1) or unsuccessful (0). The third column contains the monoisotopic
molecular weight of the compound that is stored in the PGDB. The fourth column contains the metabolite
name. The fifth column contains the BioCyc identifier of the compound.

JSON format:

[{"INPUT":"123.009","STATUS":1,

"RESULTS":[{"MW":123.008705,"NAME":"3-chloro-L-alanine","ID":"CHLORALAN-CPD"},

{"MW":123.008705,"NAME":"3-chloro-D-alanine","ID":"3-CHLORO-D-ALANINE"},

{"MW":123.008705,"NAME":"2-chloro-L-alanine","ID":"CPD0-1475"},

{"MW":123.008705,"NAME":"3-chloro-DL-alanine","ID":"3-CHLORO-DL-ALANINE"}]},

{"INPUT":"56","STATUS":0}]

2.3.2. Web Service for Search by Chemical Formula

This service finds the BioCyc IDs of all metabolites that exactly match a supplied chemical formula.
This web service can be used if the user is retrieving the results by either the “POST” or “GET” method.
The URLs to search metabolites based on chemical formula are as follows.

http://websvc.biocyc.org/[ORGID]/CF?cfs=[CHEMICAL-FORMULA]

or

http://websvc.biocyc.org/[ORGID]/CF?cfs=[CHEMICAL-FORMULA]&fmt=json

where:

• [ORGID] is the identifier for the organism database, e.g., ECOLI, META, AFER243159.
• [CHEMICAL-FORMULA] is the chemical formula to be matched, in the format
([element-symbol][coefficient])+, where “+” is a regular-expression operator
that means the preceding expression can be repeated one or more times. The element symbol is
case sensitive. Coefficients of one may be omitted.
The chemical formula input may contain one or more values, which may be separated by
commas. The search will return all metabolites in the specified database that have a chemical
formula(s) equal to the one provided. Note that two chemical formulas are equal if and only if
they are element-wise equal. For example, C6H6 is equal to H6C6 because both have elements
H6 and C6.

• fmt=json requests output in JSON format; the default output is in tab-delimited format.

Example URLs:

• http://websvc.biocyc.org/META/CF?cfs=C6H6
Retrieve the compound that contains a chemical formula of C6H6 in MetaCyc. The result of this
search is:

C6H6 1 BENZENE benzene

http://websvc.biocyc.org/META/CF?cfs=C6H6
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• http://websvc.biocyc.org/META/CF?cfs=C12H16N3O2S,C6H2N3O3Cl,H3O3
Retrieve the compounds that match any of the three provided chemical formulas in MetaCyc. The
result of this search is:

C12H16N3O2S 1 CPD-15776 oxythiamine

C6H2N3O3Cl 1 CPD0-1250 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole

H3O3 0

• http://websvc.biocyc.org/BSUB/CF?cfs=C6H6&fmt=json
Retrieve the compound that contains a chemical formula of C6H6 in JSON format. The result of
this search is:

[{"INPUT":"C6H6","STATUS":0}]

The default output is a tab-delimited format, as shown in the second example. The first column
contains the provided chemical formula. The second column indicates whether a valid compound that
matches the chemical formula was found (1). The third column contains the BioCyc identifier of
the compound that matches the chemical formula. The fourth column contains the common-name of
the compound.

2.3.3. Web Service for Search by an External Database Identifier

This service finds the BioCyc ID of a metabolite given a foreign ID, that is an identifier of that object
in an external database. This service depends on the foreign ID being stored in the DB-Links slot of the
BioCyc metabolite, and we note that BioCyc’s links to external databases are incomplete. This search
works not only for metabolites, but also for BioCyc objects, such as pathways, reactions, genes and
proteins. This web service can be used if the user is retrieving the results by either the “POST” or
“GET” method. URLs to search for metabolites based on the foreign identifier are as follows.

\http://websvc.biocyc.org/[ORGID]/foreignid?ids=[DATABASE-NAME]:[FOREIGNID]

or

http://websvc.biocyc.org/[ORGID]/foreignid?ids=[DATABASE-NAME]:[FOREIGNID]&fmt=json

where:

• [ORGID] is the identifier for the organism database, e.g., ECOLI, META, AFER243159.
• [DATABASE-NAME] is the name of external database, e.g., KEGG, PUBCHEM, UNIPROT, and

is case-insensitive.
• [FOREIGNID] is the external database identifier. The foreign id input may contain one or more

values, which may be separated by commas. Foreign IDs are case sensitive.
• fmt=json requests output in the JSON format; the default output is in tab-delimited format.

Example:

• http://websvc.biocyc.org/META/foreignid?ids=Kegg:C00849
Retrieve the MetaCyc metabolite that contains a KEGG ID of C00849.

The default output is a tab-delimited format as follows:

Kegg:C00849 1 ETHYLACETATE

http://websvc.biocyc.org/META/CF?cfs=C12H16N3O2S,C6H2N3O3Cl,H3O3
http://websvc.biocyc.org/BSUB/CF?cfs=C6H6&fmt=json
http://websvc.biocyc.org/META/foreignid?ids=Kegg:C00849
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The first column is the input foreign ID. The second column indicates whether a valid object that
matches the foreign ID was found (1). The third column indicates the BioCyc identifier of the object that
matches the foreign ID.

2.4. Metabolite Translation Service

BioCyc provides both interactive and programmatic services to translate sets of metabolites specified
in many alternative ways to the BioCyc identifiers for those metabolites and to identifiers for external
databases. For example, a user could supply a list of KEGG or PubChem metabolite identifiers, or a list
of InChI-1S strings, or a list of chemical names, and obtain the BioCyc and ChEBI identifiers for all of
the preceding items that are recognized. This service can be invoked interactively through [31].

The input to the service is a set of lines, one line per metabolite. Each line contains one or more
metabolite names, identifiers and an optional InChI string, InChI key, monoisotopic molecular weight
and chemical formula. The service looks up each of the preceding fields within the specified BioCyc
database. Three cases are possible for each line:

(1) None of the provided fields is recognized in the specified BioCyc database, in which case
“unknown” is returned, along with the unknown input fields.

(2) All of the recognized names, identifiers, InChI string, InChI key, monoisotopic weight and
chemical formula match a single metabolite, in which case “successful” is returned, along with
the following tab-separated fields:

• BioCyc ID of the matching metabolite;
• BioCyc common name of the matching metabolite;
• Additional identifiers present in BioCyc from other databases for the matching metabolite ;
• InChI-1S string for the metabolite.

In this case, unrecognized input items are ignored.

(3) The recognized names, identifiers, InChI string, InChI key, monoisotopic weight and chemical
formula match more than one BioCyc metabolite, in which case “ambiguous” is returned, along
with the multiple matches that were found.

Consider the following example (note that the line number prefixes, such as L1, were added here to
facilitate understanding and should not be provided in the input data).

Input:

L1: PubChem:125 Kegg:C00001

L2: InChI:InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1

L3: CF:C6H6 MW:78.0469501 InChI-key:InChIKey=UHOVQNZJYSORNB-UHFFFAOYSA-N

L4: TRP

L5: Kegg:C00183 InChI:InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s1

L6: Kegg:C00004

L7: Kegg:C45698

L8: Kegg:C00001 MW:18.01056468

Output (InChI strings are omitted from the output for brevity):
L1: ambiguous BioCyc:4-HYDROXY-BENZYL-ALCOHOL BioCyc:WATER

L2: success BioCyc:ACET acetate HMDB:HMDB00042 DrugBank:DB03166 IAF1260:33590 ChemSpider:170 PubChem:175 ChEBI:30089 KEGG:C00033
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L3: success BioCyc:BENZENE benzene HMDB:HMDB01505 ChemSpider:236 PubChem:241 ChEBI:16716 KEGG:C01407

L4: success BioCyc:TRP L-tryptophan HMDB:HMDB00929 IAF1260:33772 ChEBI:57912 PubChem:6923516 KEGG:C00078

L5: success BioCyc:VAL L-valine MetaboLights:MTBLC57762 HMDB:HMDB00883 IAF1260:34167 ChEBI:57762 PubChem:6971018 KEGG:C00183 CAS:72-18-4

L6: success BioCyc:NADH NADH HMDB:HMDB01487 IAF1260:33484 ChemSpider:10239197 ChEBI:57945 PubChem:21604869 KEGG:C00004

L7: unknown Kegg:C45698

L8: ambiguous BioCyc:WATER BioCyc:OH

2.5. Manipulating Metabolite Sets with SmartTables

The SmartTables facility in BioCyc (formerly called “Web Groups” [32]) allows users to define, store,
manipulate and share lists of metabolites, genes, pathways and other biological entities. SmartTables
are analogous to spreadsheets in that they can display multiple columns of information about a set of
metabolites. However, rather than being supplied by the user, typically, some columns of a SmartTable
are derived from a BioCyc database. SmartTables can be used to drive some of the analyses described
in later sections, such as metabolite enrichment analysis. In our experience, SmartTables are easy for
biologists to use, and provide powerful analyses that previously would have required the assistance of
a programmer.

SmartTable operations are found under the SmartTables item in the main BioCyc menu. Because
SmartTables are associated with a user’s BioCyc account, it is best to create a BioCyc account before
working with SmartTables.

A typical scenario is to for a user to define a new SmartTable by importing a file of metabolites. The
metabolites are specified by name, by BioCyc ID or by external database ID. To illustrate SmartTables,
we have created a SmartTable containing metabolomics data from a personal omics study [33] (see
Figure 1). This SmartTable contains the metabolites observed during the second infection period
reported in this study. We manually mapped the monoisotopic masses provided as supplementary
data to HumanCyc metabolite identifiers. Multiple matches were discarded. We took the union of the
resulting positive-mode and negative-mode metabolite sets. We imported a file of these metabolite
identifiers to construct the SmartTable, which can be accessed through http://humancyc.org/group?id=
biocyc13-61-3633296894.

Once the SmartTable is defined, the user can display database attributes of the metabolites as
SmartTable columns through the “Add Property Column” menu. In Figure 1, we have added columns
showing the chemical structure, monoisotopic molecular weight and identifiers from KEGG and
PubChem. Other operations available for SmartTables include combining two SmartTables through set
operations (e.g., take the union of the metabolites in two SmartTables), filtering a SmartTable to retain or
remove those metabolites that meet some criterion (e.g., remove from the SmartTable those metabolites
with a monoisotopic molecular weight greater than 500) and exporting the contents of a SmartTable to
a file.

Transformations are a more advanced set of SmartTable operations that compute a new column of
information for a SmartTable based on a starting column. For example, in Figure 2, we have transformed
our metabolite SmartTable by adding a column that lists all metabolic pathways in which each metabolite
from Column 1 is a substrate within that PGDB. Other transformations available for metabolites include
computing the set of reactions that a metabolite is involved in, computing the set of genes or enzymes
regulated by the metabolite and computing the set of proteins known to bind the metabolite. Given a

http://humancyc.org/group?id=biocyc13-61-3633296894
http://humancyc.org/group?id=biocyc13-61-3633296894
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new column created by a transformation, clicking on the “+” at the top of the column will create a new
SmartTable containing all objects in that column (i.e., the set of pathways in Figure 2).

Figure 1. Metabolite SmartTable containing 125 metabolites from Chen, 2012; the first five
metabolites are shown here because of space limitations.

Figure 2. This metabolite SmartTable was derived from the SmartTable in Figure 1 by
adding Column 3, which transforms the metabolites in Column 1 to the metabolic pathways
containing those metabolites.
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Different sets of transformations are available for different types of SmartTables. For example, a
SmartTable of pathways can be transformed into the set of genes in the pathway, or the set of reactions
in the pathway, or the set of metabolites in the pathway. A SmartTable of genes can be transformed
into those genes that regulate the initial gene set, into those genes that are regulated by the initial gene
set, into those genes that are present (as orthologs) in another PGDB, or into the metabolic pathways in
which each initial gene plays a role.

2.6. Metabolite Enrichment Analysis

When analyzing a metabolomics dataset, one question that arises is whether the list of metabolites is
over-represented for metabolites in particular metabolic pathways. That is, does the list of metabolites
contain more compounds from certain metabolic pathways than one would expect by chance? This
question can be answered using Fisher’s exact test of statistical significance. Because different pathways
contain different numbers of metabolites, the probability of observing a metabolite by chance differs for
different pathways.

BioCyc provides metabolite enrichment analysis via SmartTables. Given a SmartTable of metabolites
(e.g., Figure 1), the Enrichments menu allows the user to compute pathway enrichment analysis on that
metabolite set using three variations of the Fisher exact test and using four possible multiple-testing
corrections. The operation results in a new SmartTable (see Figure 3); its first column contains every
pathway containing at least one metabolite from the starting SmartTable; its second column contains a
p-value indicating the probability of finding the observed metabolites from that pathway by chance; and
its third column lists those metabolites from the starting SmartTable that are present in each pathway.

Figure 3. SmartTable containing results of running a metabolic pathway enrichment analysis
on the metabolite SmartTable in Figure 1.



Metabolites 2015, 5 302

2.7. Metabolite Visualization on Pathway Diagrams

BioCyc provides both an interactive tool for painting metabolomics data onto pathway diagrams and
a web-service interface to this facility. Both approaches provide several possible display formats, which
depend in part on whether a single data point (e.g., a concentration) is provided for each metabolite or
whether multiple data points are provided:

• Single data point: In this case, the supplied data values are depicted as colored boxes next to each
metabolite in the pathway diagram, with the colors indicating the data values.

• Multiple data points: In this case, the metabolite data are depicted within individual pop-up
window, one window per metabolite. These windows can be formatted as vertical bar charts,
heat maps or X-Y plots.

In both approaches, the metabolomics data are provided in a tab-delimited data file. We next describe
that file format.

2.7.1. Metabolomics Data File Format

The data-file format for supplying metabolomics data is as follows. The first column of each line
specifies a metabolite, and some subsequent tab-separated columns specify metabolomics data values.
Those data values can represent concentrations or any other quantity and can result from any processing
chosen by the user. Note that not every data column need contain metabolomics data; the user selects
which columns will be used in the visualizations, and all other columns are ignored.

An excerpt from a sample data file follows (lines beginning with the “#” character are ignored):

#

# Example metabolomics data file

#

1-hydroxy-2-propanone -8.85 6.72 1.65 5.12

BETAINE_ALDEHYDE 8.03 -6.06 5.13 1.4

ChEBI:16947 1.26 5.39 -9.71 9.8

PubChem:68107 2.05 2.93 4.12 -5.78

glutarate semialdehyde$BioCyc:CPD-280$KEGG:C03273 8.81 4.59 6.45 9.46

ChemSpider:131491$HMDB:HMDB$01164 -5.79 1.58 5.84 8.53

Because of the many alternative names and database identifiers used by different metabolomics
databases and software systems, we provide a flexible mechanism for specifying metabolites. The
user can specify each metabolite in one or more names or identifiers, and the software will attempt
to recognize the metabolite using all of the information provided. The first data line in the preceding
example shows a metabolite specified by a chemical name known to the HumanCyc database. The
second line shows a metabolite specified by the BioCyc identifier used for the compound (in the vast
majority of cases, the same identifier is used for a given metabolite in every BioCyc database). In the
third and fourth lines, metabolites are specified using their ChEBI and PubChem identifiers, respectively.

The fifth and sixth lines show examples of specifying a single metabolite using multiple alternatives
separated by the “$” character; in the case of Line 5, a chemical name, BioCyc ID and KEGG ID are
provided. When multiple alternatives are provided, the software ignores alternatives that are unknown to
it. The software reports when the alternatives provided in one line identify different metabolites.
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2.7.2. Metabolite Visualization on Pathways: Interactive

The interactive tool for visualizing metabolomics data on pathways can be invoked by first retrieving
a pathway page at BioCyc (example: [34]) and then selecting the right-sidebar command “Customize or
Overlay Omics Data on Pathway Diagram.” The resulting pop-up window enables customization of the
pathway diagram by designating which elements of the diagram should be present, by overlaying omics
data onto the diagram via an imported data file, with the result such as that shown in Figure 4.

Figure 4. HumanCyc adenosine nucleotide degradation pathway (SALVADEHYPOX-PWY)
overlayed with metabolomics data. The data for each metabolite are shown in a separate
“omics pop-up” window with eight time points provided for each metabolite. Data were
derived from metabolomics data of Chen et al. acquired during the second infection period
(diabetic onset and respiratory syncytial virus infection). Data shown represent the daily
mean of negative-mode LC-MS peak intensities computed from observed compound peaks
in three technical replicates and scaled by a factor of 1e-6.

2.7.3. Metabolite Visualization on Pathways: Web Service

The visualization shown in Figure 4 can be produced by opening an appropriately formatted
URL, thus allowing external software packages to display metabolomics data onto BioCyc pathway
diagrams. The URL specifies a pathway to display, formatting parameters for the pathway, the omics
dataset to overlay on the pathways and parameters for that overlay operation. The URL in fact generates a
larger web page containing both the pathway diagram and accompanying information, such as a pathway
mini-review and literature citations. URLs to generate a pathway web page with overlayed omics data
are of the form:

http://biocyc.org/[ORGID]/new-image?type=PATHWAY&object=[PATHWAY]&[PARAMETER]=[VALUE]

where:

• [ORGID] is the identifier for the organism database, e.g., ECOLI, META, AFER243159;
• [PATHWAY] is in the BioCyc identifier for the pathway, e.g., GLYCOLYSIS, ARGSYN-PWY,

PWY0-1299;
• Multiple parameter/value pairs can be specified (see Table 2).
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The omics data can be supplied in two ways: as a POST request (which allows the omics data to be
supplied from the local computer) and as a GET request, where a parameter to the GET request is itself
a URL that provides the location of the omics data on a publicly accessible web server.

Table 2. Parameters to customize pathway omics-data visualizations.

Parameter
Name

Possible
Values

Description Default

object
Frame ID, e.g.,
PWY-7180

The BioCyc unique identifier for a pathway.
REQUIRED
no default

datafile Filename
Name of file containing omics data. Should not be used
for a GET.

REQUIRED
for POST
no default

url A URL
A URL that points to omics data file. Should not be used
for a POST.

REQUIRED
for GET
no default

class

gene,
protein,
compound,
reaction, NIL

This parameter declares the type(s) of the IDs found in
Column 0 (the first column) of the data file, e.g., gene
means that Column 0 contains genes. NIL means any of
the four possible types may be present.

gene

datacolumns
numbers
and/or ranges
of numbers

Specifies data columns from datafile to be painted on
pathway graphic

REQUIRED
no default

expressiontype relative, absolute

relative: the numerical data are ratios (e.g., relative to
a control) and are therefore centered around either 0 or
1 (see log parameter). absolute: the numerical data are
absolute values, e.g., intensities or concentrations, and all
non-negative.

relative

log on, off
Indicates whether the provided omics data are log values
(on) or absolute values (off).

on

omicspopups on or omitted
On: display the omics data in pop-up windows, usually
one pop-up per reaction or metabolite.

unspecified

color

default,
specify,
rbg,
rbg-cutoff,
3-color

Selects color scale used to color omics data. default:
Scale ranges from orange to blue. specify: Orange to blue
with a maximum cutoff (maxcutoff parameter detailed in
this table). rbg: Red to green. rbg-cutoff: Red to green
with a maximum cutoff (maxcutoff parameter detailed in
this table). 3-color: Three-color display with a threshold.

default

threshold a numeric value
Required if 3-color specified. See discussion in the
“color” parameter section of this table.

no default

maxcutoff a numeric value
Required if specify or rbg-cutoff specified. See the
discussion in the “color” parameter section of this table.

no default

defaultpopup bar, plot, heat
The style of data display in the omics pop-ups: a bar
graph, an X-Y plot or a heat map.

bar



Metabolites 2015, 5 305

Table 2 explains the parameters that control the overlay of omics data onto pathway diagrams; the
parameters in Table 3 control the rendering of the pathway itself.

Table 3. Parameters to customize pathway appearance.

Parameter
Name

Possible
Values

Description Default

detail level 0, 1, 2, 3, 4

Specifies the detail display level for the pathway. The
presence of specific elements can be individually
determined using other parameters. 0: Minimal detail, only
start/end/branch point metabolites shown. 1: Show main
compounds (those along the pathway backbone). 2: Show
main and side compounds, enzyme and gene names
and EC numbers. 3: Show structures for most main
compounds. 4: Show structures for most main and side
compounds.

0, 1 or 2, depending on the
size and complexity of the
individual pathway.

enz y, n Should enzyme names be shown? Depends on detail-level.
gene y, n Should gene names be shown? Depends on detail-level.
ec y, n Should EC numbers be shown? Depends on detail-level.
secs y, n Should side compounds be shown? Depends on detail-level.

mstruct
none,
most,
all

Should compound structures for main compounds be shown?
most: structures for common compounds, such as ATP and
NAD, are omitted.

none or most, depending on
detail-level.

sstruct
none,
most,
all

Should compound structures for side compounds be shown?
most: structures for common compounds, such as ATP and
NAD, are omitted.

none or most, depending on
detail-level.

reglinks
y, n If n, omit enzyme regulation icons and feedback

inhibition links.
y

nolinks y, n If y, suppress showing links to other pathways. n

pfontsize

tiny,
very-small,
small,
normal,
large,
very-large

Font size used in diagram very-small

bgcolor

w,
cb,
g,
bw, tr

The color scheme for the diagram: w: Colors on a white
background. cb: Colors on a black background. g: Colors
on a gray background. bw: Black on a white background. tr:
Same colors as for w, but on a transparent background.

tr

linear

snake,
horizontal,
vertical

Specify whether linear pathways are drawn horizontally,
vertically or in a horizontal back-and-forth “snake”-like
fashion. Only pathways that contain no cycles or branch
points (including branch points resulting from links to/from
other pathways) are recognized as linear pathways and,
therefore, are sensitive to this parameter.

snake

Additional details regarding Table 2 are as follows:

• Log parameter: Applicable when expressiontype = relative. On implies the data are log ratios
that use a zero-centered scale—that the numerical data within the omics file may contain positive
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and negative values. The value zero is considered to be the center of the numerical values provided
in the data file.
Off implies the data are ratios that use a one-centered scale—any negative or zero values in the
data file will be ignored. For example, the value 0.1 is considered to be at the same distance to
one as the value 10. Accordingly, a logarithm of base 10 is applied to the data before the linear
coloring mapping is applied.

• omicsPopups parameter: Omics pop-up windows are the only way to show data from multiple
columns in the input file. A single column of omics data can be shown either in pop-ups or (if
unspecified) as color-coded squares within the diagram.

• Color parameter: Data values are divided into color bins. This parameter determines which color
scale is used—a color scheme that ranges from orange (most positive values) through gray in the
center to blue (most negative values); or from red through blue in the center to green and yellow.
For each of these color schemes, two options are available:

– The color bins range over the entire color scale, and the cutoff values for the color bins
are derived from the data itself. As a result, different experiments could be displayed using
different color schemes, making it difficult to compare them directly.

– Users may specify a value for the maximum value cutoff (maxcutoff parameter) bin. All
displays that use the same maximum value cutoff will use the same color scale (assuming
other settings are the same) and are therefore directly comparable. All data values greater
than the maximum cutoff value will be displayed in the highest bin color.

– A final alternative is to use only three-color bins, red for data values that exceed some
threshold (see the parameter below), purple for data values that are less than the inverse
of that threshold and gray for values in between.

2.8. Metabolite Visualization on Metabolic Map Diagrams

Pathway-enrichment analysis and pathway visualization of metabolomics data treat metabolomics
data in a localized context, that of individual metabolic pathways. In contrast, the operations described
in this section enable metabolomics data to be visualized in the context of the full metabolic network
of an organism. Each BioCyc PGDB contains an automatically generated diagram called the Cellular
Overview. This diagram is an organism-specific view of the metabolic pathways and transporters of the
organism. The diagram is zoomable and searchable, can be colored with animated experimental datasets
and is generated using the command Metabolism→ Cellular Overview.

The diagram (see Figure 5) is bounded by the cell membrane, in which transporters are embedded.
The TCA cycle and other energy-generating pathways flow down the middle of the diagram, with
biosynthetic pathways to their left and catabolic pathways to their right. Individual reactions not assigned
to pathways are in the region to the right of the catabolic pathways. Dots represent metabolites, and lines
represent metabolic reactions. Mousing over an element of the diagram will identify it via a tooltip
window. In addition, the tooltips provide a button that enables the user to create a visualization of
the data for that diagram element in a pop-up similar to those shown in Figure 4. Because providing
pop-up-style displays for all of the data mapped to a Cellular Overview would clutter the screen with
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hundreds of pop-ups, users can create such windows manually. The right-sidebar menu available for
the diagram contains multiple commands for searching the diagram, such as identifying metabolites by
name or by substring.

Figure 5. Human Cellular Overview diagram highlighted with metabolomics data. The
Omics Viewer Control Panel in the upper right shows the mapping of metabolomics
concentration values to colors and allows the user to start, stop and change the speed of
the animation. Data were derived from metabolomics data of Chen et al. acquired during a
period of diabetic onset and respiratory syncytial virus infection. Data shown represent the
daily mean of positive-mode LC-MS peak intensities computed from observed compound
peaks in three technical replicates and scaled by a factor of 1e-6. The right side of the
Cellular Overview has been omitted because of its size.

Users can create colored overlays of the diagram to aid understanding of experimental datasets,
including gene expression, metabolomics and multi-omics datasets. Experimental data are uploaded
via a tab-delimited file using the format described in Section 2.7.1. Its first column identifies the entity
to be colored; its subsequent columns contain numerical values that determine the coloring. If more than
one numerical column is specified for coloring, an animated view is generated in which each time-point
of the animation corresponds to one data column. Each frame of the animation shows a different column
of data.

3. Conclusions

The BioCyc.org website provides a number of operations that allow scientists to analyze
metabolomics data in the context of metabolic pathways. Scientists can search for metabolites by
chemical formula and monoisotopic molecular weight. The site enables translation of metabolite
identifiers across multiple metabolite databases. Researchers can store metabolite lists as SmartTables
within their BioCyc account. SmartTables enable exploration of the relationships among metabolites
via transformations and set operations, and SmartTables can be shared with selected collaborators or
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made publicly accessible. SmartTables also support metabolite enrichment analysis, an operation that
identifies metabolite sets that are statistically over-represented for the substrates of specific metabolic
pathways. BioCyc also enables visualization of metabolomics data on individual pathway diagrams and
on the organism-specific metabolic map diagrams that are available for every BioCyc organism. Most of
the preceding operations are available both interactively and as programmatic web services.
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