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Abstract: Adiponectin (APN) exerts multiple beneficial effects in obesity and protects 

from liver injury. Different APN isoforms circulate in serum, and here, the effect of low 

molecular weight (LMW) and higher molecular weight (HMW) APN on primary human 

hepatocytes (PHH) has been analyzed. APN is not detected in hepatocyte lysates; levels are 

strongly increased by HMW-APN, but not by LMW-APN, suggesting the distinct  

uptake/degradation of APN isoforms by PHH. Several genes with a role in fibrosis, glucose 

and lipid metabolism known to be regulated by HMW-APN are not affected by the  

LMW-isoform. Follistatin is reduced by HMW-APN and induced by LMW-APN in 

supernatants of PHH. Fibroblast growth factor 21 is repressed by both isoforms. Cellular 

triglycerides and cholesterol levels are not reduced by APN. Total phospholipids, including 

plasmalogens and sphingomyelins, are not changed upon APN incubation, while distinct 

species are either induced or repressed. Unexpectedly, total ceramide is increased by 
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LMW-APN. Current data show that APN isoforms differentially affect hepatocyte gene 

expression, but do not grossly alter the hepatocyte lipidome. 
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1. Introduction 

Obesity is a major risk factor for metabolic diseases, including non-alcoholic fatty liver disease 

(NAFLD) [1]. Higher fat mass is associated with reduced circulating adiponectin (APN), which, by 

itself, exerts multiple beneficial activities, thus counteracting adverse metabolic effects. This adipokine 

exerts insulin-sensitizing, anti-steatotic and anti-fibrotic activities [2]. Various hepatic genes involved 

in mitochondrial function, fibrosis, lipid and glucose metabolism are regulated by this adipokine [3–9]. 

APN also protects hepatocytes from apoptosis by antagonizing free fatty acid-induced CD95 

expression [10]. This adipokine further antagonizes increased bile acid synthesis in NAFLD, which 

contributes to hepatocyte death [11]. In NAFLD patients, systemic APN is decreased and reversely 

correlates with the non-alcoholic steatohepatitis activity score, CD95 mRNA levels, hepatocellular 

apoptosis and serum bile acids [11]. 

Ceramide is increased in the steatotic liver of obese ob/ob and high-fat diet-fed mice. APN lowers 

ceramide and dihydroceramide species and, thereby, ameliorates hepatic insulin sensitivity. Ceramide 

is converted to sphingosine by adiponectin receptor-mediated ceramidase activity. Elevated ceramide 

in palmitate-incubated rat hepatoma cells is also normalized by APN, suggesting a direct effect on 

liver parenchymal cells [12].  

APN has, however, no effect on ceramide levels in lean animals [12]. In the liver of APN-deficient 

mice, ceramide is not induced, and hexosyl ceramide is even reduced [13]. This suggests that 

adiponectin receptor-associated ceramidase is specifically activated in fatty liver. 

APN activity depends on its oligomeric form, which ranges in size from a 90-kDa trimer (low 

molecular weight, LMW) to 180-kDa hexamers (medium molecular weight, MMW) and larger higher 

molecular weight (HMW) forms [14,15]. These oligomeric complexes circulate in blood and have 

partly diverging biological activities. Hexameric and higher order oligomers, but not trimeric forms, 

stimulate nuclear factor kappa B [15]. Trimeric, but not higher order, multimers have  

anti-inflammatory effects in monocytes [16]. In subcutaneous and visceral adipose tissues, APN 

isoform-specific anti-lipolytic effects are actually modified by obesity [17]. Trimeric APN is supposed 

to more effectively lower hepatocyte glucose production [18]. In serum, HMW-APN is modestly more 

abundant than LMW-APN, while MMW-APN is about 20% to 50% lower [19,20]. 

Most studies suggest that HMW-APN represents the physiologically most important form, and only 

this isoform correlates with visceral fat mass, liver steatosis and insulin sensitivity [21–23]. 

Hypothesizing that LMW-APN affects primary human hepatocyte function, the effect of this APN 

isoform on the expression of several genes and the hepatocyte lipidome has been investigated herein.  

Here, recombinant human LMW-APN produced in insect cells and recombinant human HMW-APN 

expressed in a mouse cell line [16] have been used to study the effects of these APN isoforms on the 

expression of genes already described to be regulated by HMW-APN in primary human hepatocytes 
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(PHH) [5,7,8]. Fibroblast growth factor 21 (FGF21) turned out to exert its metabolic function by the 

induction of adiponectin [24], and therefore, the regulation of hepatocyte FGF21 by APN isoforms has 

been determined. Furthermore, various lipid classes have been measured to identify species affected by 

these APN isoforms.  

2. Results and Discussion 

2.1. APN Isoforms in Hepatocyte Lysates 

In monocytes, 10 µg/mL of HMW-APN and 1 and 2 µg/mL of LMW-APN have been shown to be 

biologically active [16]. Therefore, 10 µg/mL of HMW-APN and 2 µg/mL of LMW-APN have been 

used in the current experiments. Primary human hepatocytes could not be obtained in large quantities, 

and therefore, only one concentration of each isoform has been used. 

Hepatocytes were cultivated for 24 h in medium with or without the addition of 10 µg/mL of 

HMW-APN or 2 µg/mL of LMW-APN. Immunoblot analysis shows that APN is not detectable in the 

lysates of non-treated control cells and LMW-APN-incubated PHH. A representative result of three 

independent experiments is shown in Figure 1A,B. APN is found in lysates of hepatocyte cell lines and 

PHH where HMW-APN has been added (Figure 1A). APN was measured by ELISA in lysates of PHH 

incubated with increasing concentrations of APN isoforms. Whereas lysate APN increases with higher 

concentrations of HMW-APN, as has already been shown [25], it is not detected in PHH incubated  

with 5, 10 or 20 µg/mL of LMW-APN (data not shown). This may reflect differences in the uptake 

and/or degradation of the two isoforms studied. In mice, most of the serum adiponectin is cleared by 

the liver, and trimeric APN is removed much faster than HMW-APN [26]. Although there are data 

indicating that clearance is linked to bioactivity, there is no final proof of this assumption [26].  

Figure 1. Adiponectin (APN) in hepatocyte lysates. (A) Primary human hepatocytes 

(PHH), HepG2, Hep3B and PLC/PRF/5 hepatoma cell lines were cultivated in the presence 

of 10 µg/mL of high molecular weight (HMW)-APN for 24 h. APN and Flotillin-1 were 

analyzed by immunoblot, and APN was detected in lysates of HMW-APN-incubated PHH. 

Recombinant low molecular weight (LMW)-APN is shown as the positive control;  

(B) PHH were cultivated in the presence of 2 µg/mL of LMW-APN for 24 h. APN and  

β-actin were analyzed by immunoblot. APN is not detected in cell lysates. Recombinant 

LMW-APN is shown as the positive control. 
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2.2. Effect of APN Isoforms on Genes/Proteins Involved in Fibrosis 

Our group has shown that HMW-APN upregulates the pro-fibrotic and anti-steatotic protein, activin 

A, and suppresses its natural inhibitor, follistatin [7,27]. HMW-APN also increases MMP-9 and TIMP-1, 

which participate in extracellular matrix degradation [8,28]. Simultaneous upregulation of MMPs and 

its inhibitors by adiponectin has also been reported in dermal fibroblasts [29]. Further, cAMP has been 

shown to induce MMP-9 and TIMP-1 in rat hepatocytes [30]. This suggests that MMP-9 activity is 

tightly regulated. Of note, MMP-9 activity is increased by HMW-APN, demonstrating that induction 

of TIMP-1 does not fully block enzyme function [8].  

Here, it has been tested whether LMW-APN also affects the mRNA levels of these genes. However, 

none of these genes is regulated by LMW-APN (Figure 2A,C,E,F). Activin A and follistatin were 

measured in the cell supernatants by ELISA. In accordance with the mRNA data, HMW-APN 

increases activin A and decreases follistatin, as has already been shown [7] (Figure 2B,D).  

LMW-APN, though, has no effect on activin A protein increases follistatin protein in the supernatants 

(Figure 2 B,D). These findings suggest that LMW-APN may even antagonize HMW-APN-mediated 

induction of activin A activity by increasing the level of its inhibitor, follistatin. 

Figure 2. The effect of adiponectin (APN) isoforms on genes/proteins involved in fibrosis. 

(A) Activin A mRNA expression was determined in primary human hepatocytes (PHH) of 

four different donors, either cultivated in the presence of 10 µg/mL of HMW-APN or 2 µg/mL 

of LMW-APN for 24 h. (B) Activin A protein was measured by ELISA in the supernatants 

of cells described in (A); data of five experiments are shown. (C) Follistatin mRNA 

expression in the cells described in (A), data of four experiments are shown; (D) Follistatin 

protein was measured by ELISA in the supernatants of cells described in (A); data of three 

experiments are shown. (E) The expression of MMP-9 mRNA in the cells described in (A); 

data of four experiments are shown. (F) The expression of TIMP-1 mRNA in the cells 

described above; data of four experiments are shown. Data on mRNA expression are given 

as % of control cultivated cells. Numbers within the graphs indicate p-values. 
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2.3. Effect of APN Isoforms on Genes Involved in Glucose and Lipid Metabolism 

HMW-APN reduces the mRNA expression and protein levels of apolipoprotein B-100, the major 

apolipoprotein in very low density lipoprotein, mRNA expression of the phosphatidylcholine 

transporter, ABCB4, and the facilitative glucose transporter, GLUT2 [5]. Again, LMW-APN does not 

affect mRNA levels of these proteins, and apolipoprotein B-100 protein is not altered in the 

supernatants (Figure 3A–C and data not shown). These findings do not indicate that LMW-APN is 

biologically inactive in PHH, but suggest that this isoform exerts effects distinct from HMW-APN.  

Figure 3. Effect of adiponectin (APN) isoforms on genes/proteins involved in glucose and 

lipid metabolism. (A) Apolipoprotein B-100 was determined by ELISA in the supernatants 

of primary human hepatocytes (PHH) of six different donors, either cultivated in the 

presence of 10 µg/mL of HMW-APN or 2 µg/mL of LMW-APN for 24 h. (B) The 

expression of ABCB4 was determined in PHH of five different donors, either cultivated in 

the presence of 10 µg/mL of HMW-APN or 2 µg/mL of LMW-APN for 24 h.  

(C) The expression of GLUT2 was determined in PHH of six different donors, either 

cultivated in the presence of 10 µg/mL of HMW-APN or 2 µg/mL of LMW-APN for 24 h; 

(D) The expression of FGF21 was determined in PHH of five different donors, either 

cultivated in the presence of 10 µg/mL of HMW-APN or 2 µg/mL of LMW-APN for 24 h. 

Data are shown as % of control cultivated cells. Numbers within the graphs indicate p-values. 

 

2.4. Effect of APN Isoforms on Fibroblast Growth Factor 21 

FGF21 is produced in several organs, including the liver, and is a potent anti-diabetic protein [24]. 

FGF21 induces APN, which mediates part of its beneficial effects [24]. Here, it was analyzed whether 

APN itself regulates hepatocyte FGF21. FGF21 is reduced by both APN isoforms (Figure 3D). Systemic 

FGF21 is not altered in APN knock-out mice, excluding APN as a principal regulatory factor [24,31]. 

Anyway, LMW-APN and HMW-APN both lower FGF21 mRNA in PHH. This does not contradict the 

findings in animal studies [24,31], because lower production in liver parenchymal cells does not 

mandatorily cause reduced circulating FGF21. Further, changes in mRNA expression may not necessarily 

result in reduced protein production, and FGF21 protein levels have not been determined herein. 
  



Metabolites 2014, 4 399 

 

 

2.5. Effect of APN Isoforms on Triglycerides and Cholesterol 

APN knock-out mice fed a standard chow do not develop liver steatosis, and total cholesteryl ester 

concentration is even modestly reduced in the liver [13]. In accordance, APN isoforms do not reduce 

triglyceride levels in PHH (Figure 4A). Total cholesterol is also not changed in PHH of five different 

donors incubated with APN isoforms for 24 h (Figure 4B), and lower cholesteryl ester in the mice [13] 

is most likely not a direct effect of APN deficiency. 

Figure 4. Effect of adiponectin (APN) isoforms on cellular lipids. (A) Triglycerides (TG) 

were determined in cell lysates of PHH of five different donors, either cultivated in the 

presence of 10 µg/mL of HMW-APN or 2 µg/mL of LMW-APN for 24 h. (B) Cholesterol 

(Chol) in cell lysates described in (A). (C) Phosphatidylcholine (PC) 30:0 in cell lysates of 

PHH of four different donors, either cultivated in the presence of 10 µg/mL of HMW-APN 

or 2 µg/mL of LMW-APN for 24 h. (D) Lysophosphatidylcholine (LPC) 22:6 in cells 

described in (C); (E) Phosphatidylserine (PS) 38:1 in cell lysates described in (C).  

(F) Phosphatidylethanolamine-based plasmalogens (PE P)-16:0/22:3 in cell lysates 

described in (C). Values are given as % of control cultivated cells. Numbers within the 

graphs indicate p-values. 

 

2.6. Effect of APN Isoforms on Phosphatidylcholine and Lysophosphatidylcholine 

APN isoforms do not alter total, monounsaturated (MUFA), polyunsaturated (PUFA) and saturated 

phosphatidylcholine (PC) species in PHH of four different donors within 24 h of cultivation (data  

not shown). PC 30:0 (0.23 ± 0.01 nmol/mg in control-, 0.28 ± 0.03 nmol/mg in HMW-APN- and  

0.23 ± 0.03 nmol/mg in LMW-APN-incubated cells) is raised by HMW-APN (Figure 4C) and PC 32:2 
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(0.15 ± 0.05 nmol/mg in control-, 0.16 ± 0.06 nmol/mg in HMW-APN- and 0.17 ± 0.04 nmol/mg in 

LMW-APN-incubated cells) and PC 38:6 (7.42 ± 3.52 in control-, 6.87 ± 4.24 in HMW-APN- and  

8.02 ± 3.98 in LMW-APN-incubated cells) by LMW-APN. Lysophosphatidylcholine (LPC) species 

22:6 (0.12 ± 0.07 nmol/mg in control-, 0.10 ± 0.07 nmol/mg in HMW-APN- and 0.12 ± 0.10 nmol/mg 

in LMW-APN-incubated cells) is reduced by HMW-APN (Figure 4D). These data show that APN 

isoforms alter the level of individual PC and LPC species. The biological role of these individual  

lipids has not been evaluated to our knowledge, so far, thus hindering speculations about their  

physiological function. 

2.7. Effect of APN Isoforms on Phosphatidylethanolamine and Phosphatidylserine 

MUFA phosphatidylethanolamine (PE) (31.94 ± 18.86 nmol/mg in control-, 28.00 ± 25.26 nmol/mg 

in HMW-APN- and 35.44 ± 21.10 nmol/mg in LMW-APN-incubated cells) is higher in  

LMW-APN-incubated PHH, and PE 32:1 (0.06 ± 0.05 nmol/mg in control-, 0.07 ± 0.06 nmol/mg in 

HMW-APN- and 0.08 ± 0.05 nmol/mg in LMW-APN-incubated cells), PE 36:1 (1.06 ± 0.66 nmol/mg 

in control-, 0.88 ± 0.45 nmol/mg in HMW-APN- and 1.12 ± 0.64 nmol/mg in LMW-APN-incubated 

cells) and PE 42:7 (0.06 ± 0.02 nmol/mg in control-, 0.06 ± 0.02 nmol/mg in HMW-APN- and  

0.08 ± 0.01 nmol/mg in LMW-APN-incubated cells) are significantly increased. HMW-APN does not 

affect PE species levels (data not shown). MUFA PE species are even elevated in the liver of APN 

knockout mice [13], suggesting that metabolites, besides APN, have a more prominent physiological 

role in the regulation of hepatic MUFA PE levels. Regarding phosphatidylserine (PS) species, PS 38:1 

(0.03 ± 0.01 nmol/mg in control-, 0.03 ± 0.01 nmol/mg in HMW-APN- and 0.02 ± 0.01 nmol/mg in 

LMW-APN-incubated cells) is reduced by LMW-APN (Figure 4E). 

2.8. Effect of APN Isoforms on Plasmalogens 

Phosphatidylethanolamine-based plasmalogens (PE P) with 16:0, 18:0 and 18:1 vinyl ether bonds 

have been measured. PE P-16:0/20:3 (0.012 ± 0.003 nmol/mg in control-, 0.015 ± 0.005 nmol/mg in 

HMW-APN- and 0.015 ± 0.004 in LMW-APN-incubated cells) is raised by HMW-APN and PE  

P-18:1/22:4 (0.010 ± 0.007 nmol/mg in control-, 0.013 ± 0.003 nmol/mg in HMW-APN- and  

0.014 ± 0.002 nmol/mg in LMW-APN-incubated cells) by LMW-APN. PE P-16:0/22:3  

(0.021 ± 0.002 nmol/mg in control-, 0.023 ± 0.004 nmol/mg in HMW-APN- and 0.018 ± 0.002 nmol/mg 

in LMW-APN-incubated cells) is lower in LMW-APN-incubated PHH and increased by the HMW 

isoform (Figure 4F). PE P-18:0/22:4 (0.020 ± 0.006 nmol/mg in control-, 0.023 ± 0.007 nmol/mg  

in HMW-APN- and 0.023 ± 0.007 nmol/mg in LMW-APN-incubated cells) and 18:1/20:4  

(0.038 ± 0.021 nmol/mg in control-, 0.045 ± 0.033 nmol/mg in HMW-APN- and 0.048 ± 0.025 nmol/mg 
in LMW-APN-incubated cells) are induced by the LMW form. PE P-18:1/18:3 (0.011 ± 0.002 nmol/mg 

in control-, 0.012 ± 0.002 nmol/mg in HMW-APN- and 0.012 ± 0.001 nmol/mg in  

LMW-APN-incubated cells) is raised by both isoforms.  

Total PE P levels are not changed (data not shown). Plasmalogens protect from oxidative stress [32] 

and are mostly increased by APN. Whether this contributes to the beneficial effects of APN needs to 

be addressed by additional studies. 
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2.9. Effect of APN Isoforms on Sphingomyelin and Ceramides 

Total saturated, total MUFA and PUFA sphingomyelin (SM) species are neither affected  

by LMW-APN nor HMW-APN. Dihydrosphingomyelin (0.37 ± 0.22 nmol/mg in control-,  

0.30 ± 0.13 nmol/mg in HMW-APN- and 0.38 ± 0.22 nmol/mg in LMW-APN-incubated cells) is 

reduced in PHH incubated with HMW-APN (Figure 5A). Regarding individual SM species, SM 16:1 

(0.12 ± 0.05 nmol/mg in control-, 0.13 ± 0.05 nmol/mg in HMW-APN- and 0.13 ± 0.05 nmol/mg in 

LMW-APN-incubated cells) is increased by both isoforms (Figure 5B). Up to now, neither the 

pathways involved herein nor specific functions of these lipids have been described. 

Figure 5. The effect of adiponectin (APN) isoforms on cellular sphingomyelin (SM) and 

ceramide (Cer). (A) Dihydrosphingomyelin (dihydroSM) in cell lysates of PHH of four 

different donors, either cultivated in the presence of 10 µg/mL of HMW-APN or 2 µg/mL 

of LMW-APN for 24 h. (B) SM16:1 in these cell lysates. (C) Cer in these cell lysates. 

Values are given as % of control cultivated cells. Numbers within the graphs indicate p-values. 

 

HMW-APN induces ceramide (Cer) d18:1/24:1 (0.42 ± 0.09 nmol/mg in control-, 0.47 ± 0.10 nmol/mg 

in HMW-APN- and 0.44 ± 0.10 nmol/mg in LMW-APN-incubated cells), but total Cer levels are not 

altered (Figure 5C and data not shown). LMW-APN increases Cer d18:1/16:0 (0.28 ± 0.11 nmol/mg in 

control-, 0.30 ± 0.12 nmol/mg in HMW-APN- and 0.32 ± 0.13 nmol/mg in LMW-APN-incubated 

cells), Cer d18:1/24:0 (0.53 ± 0.11 nmol/mg in control-, 0.57 ± 0.14 nmol/mg in HMW-APN- and  

0.58 ± 0.15 nmol/mg in LMW-APN-incubated cells) and Cer d18:1/24:1 (0.42 ± 0.09 nmol/mg in 

control-, 0.44 ± 0.10 nmol/mg in HMW-APN- and 0.47 ± 0.10 nmol/mg in LMW-APN-incubated 

cells), and total Cer (2.25 ± 0.63 nmol/mg in control-, 2.36 ± 0.68 nmol/mg in HMW-APN- and  

2.47 ± 0.72 nmol/mg in LMW-APN-incubated cells) is elevated (Figure 5C and data not shown). 

Hexosyl Cer is not changed by the APN isoforms (data not shown).  

Ceramide is, however, not elevated in the liver of APN knock-out mice on a standard chow, and 

hexosyl Cer is even reduced [13]. Therefore, in vitro findings in PHH are not in accordance with the 

murine in vivo situation. This may be partly related to differences in human and murine cells. APN 

deficiency in mice does not only affect the liver, but also influences other tissues and cells, and this 

may be associated with alterations in liver lipids [33]. Nevertheless, current data obtained in vitro and 

experimental evidence from APN-deficient mice and lean mice injected with APN [12,13] indicate that 

adiponectin receptor-associated ceramidase is specifically activated in obesity.  
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3. Experimental Section  

3.1. Materials 

Dulbecco’s modified eagle medium (DMEM) was from PAA (Karlsruhe, Germany). The RNeasy Mini 

Kit was from Qiagen (Hilden, Germany), and oligonucleotides were synthesized by Metabion 

(Planegg-Martinsried, Germany). The LightCycler® 480 SYBR Green I Master was purchased from 

Roche (Mannheim, Germany). Triglyceride concentrations were measured using the Glycerol-3-phosphate 

oxidase Phenol 4-Aminoantipyrine Peroxidase (GPO-PAP) microtest (purchased from Roche, Mannheim, 

Germany), and total cholesterol was determined by using an assay from Diaglobal (Berlin, Germany). 

Flotillin-1 antibody was from BD Transduction Laboratories (Heidelberg, Germany); recombinant APN 

(HMW-APN) and APN antibody were ordered from R&D Systems (Wiesbaden-Nordenstadt, 

Germany). LMW-APN was produced in insect cells, as described [16]. The β-actin antibody was from 

New England Biolabs GmbH (Frankfurt, Germany). Hepatocyte cell lines HepG2, Hep3B and 

PLC/PRF/5 were obtained from the American Type Culture Collection (Wesel, Germany) and were 

cultivated in RPMI medium (GIBCO-BRL, Karlsruhe, Germany) supplemented with 10% FCS. 

Cultivation in the presence of APN was done in serum-free medium. 

3.2. Primary Human Cells 

Non-neoplastic tissue samples from liver resections were obtained from patients (male = 8,  

female = 7) undergoing surgical liver segment resection or partial hepatectomy for liver tumors or 

metastatic liver tumors of colorectal cancer (right lobe = 8, left lobe = 1, segment resection = 6). The 

mean age of the patients was 57.1 ± 18.0 years and the mean BMI was 25.7 ± 4.9 kg/m2. All tissue 

samples were examined by a pathologist, and only histologically non-tumorous tissue was used. 

Clinical patient documentation included age, sex, medical diagnosis, presurgical medication, liver 

function tests and alcohol and smoking habits. Patients with hepatitis, cirrhosis or chronic alcohol use 

were excluded. Experimental procedures were performed according to the guidelines of the charitable 

state-controlled foundation, Human Tissue and Cell Research (HTCR) [34], with the written informed 

patient consent approved by the local ethical committee of the University of Regensburg. 

PHHs were isolated using a modified two step EGTA/collagenase perfusion procedure, as described 

in detail previously [35,36]. The viability of isolated PHHs was determined by trypan blue exclusion, 

and cells with a viability of more than 85% were used for further work. 

Per well of collagen-coated 6-well plates, 106 primary human hepatocytes were cultivated in 2 mL 

DMEM supplemented with 4.5 g/L glucose, 4 ng/mL hydrocortisone, 1.67 mU insulin, 2 mM glutamine, 

1% penicillin/streptomycin and 5% fetal calf serum for 48 h. Thereafter, cells were cultivated in 

DMEM, 1% penicillin/streptomycin. Experiments were terminated by washing the cells with PBS and 

solubilization of the cells in radioimmunoprecipitation assay lysis buffer (50 mM Tris-HCl (pH 7.5), 

150 mM NaCl, 1% vol/vol Nonidet P-40, 0.5% vol/vol deoxycholic acid and 0.1% (vol/vol) sodium 

dodecyl sulfate). 
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3.3. Quantification of Lipids 

Lipids were quantified by direct flow injection electrospray ionization tandem mass spectrometry 

(ESI-MS/MS) in positive ion mode using the analytical setup and strategy described previously [37].  

A precursor ion of m/z 184 was used for phosphatidylcholine (PC) [37]. A neutral loss of 141 and 277 Da 

was used for phosphatidylethanolamine (PE) and phosphatidylinositol (PI) [38], respectively. 

Sphingosine-based ceramides (Cer) were analyzed using a fragment ion of m/z 264 [39]. Lipid species 

were annotated according to the recently published proposal for the shorthand notation of lipid 

structures that are derived from mass spectrometry [40]. Glycerophospholipid annotation is based on 

the assumption of even-numbered carbon chains only. SM species annotation is based on the 

assumption that a sphingoid base d18:1 is present. In case the fatty acid composition was not 

determined, annotation represents the total number of carbons and double bonds. For example, PC 36:4 

comprises species like PC 16:0/20:4 or 18:2/18:2. 

In total, 13 SM, 3 dihydrosphingomyelin (dihydroSM), 25 PC, 26 PE, 13 PE P-16:0, 13 PE P-18:1, 

12 PE P-18:0, 25 PS, 15 LPC, 8 Cer and 2 hexosylceramide (hexosylCer) species were analyzed. 

3.4. Monitoring of Gene Expression by Real-Time RT-PCR 

The mRNA expression was investigated by semiquantitative real-time PCR using SYBR Green. 

Real-time RT-PCR was performed using the LightCycler® 480 SYBR Green I Master (Roche, 

Mannheim, Germany), and the specificity of the PCRs was confirmed by sequencing of the amplified 

DNA fragments (Geneart, Regensburg, Germany). For quantification of the results, the RNA of 

respective PHH samples was reverse transcribed and cDNA was serially diluted and used to create a 

standard curve for each of the genes analyzed. The second derivative maximum method was used for 

quantification with the LightCycler software. Primers to amplify FGF21 were 5’ ACC AGA GCC 

CCG AAA GTC T 3’and 5’ CTT GAC TCC CAA GAT TTG AAT AAC TC 3’. Primers to amplify 

activin A, TIMP-1, MMP-9, ABCB4, GLUT2, ApoB and β-actin for normalization were used  

as described [5,7,8]. 

3.5. SDS-PAGE and Immunoblotting 

Proteins (20 µg) were separated by SDS-polyacrylamide gel electrophoresis and transferred to 

PVDF membranes (Bio-Rad, Munich, Germany). Incubations with antibodies were performed in 5% 

nonfat dry milk in Tris-buffered saline, 0.1% Tween. Detection of the immune complexes was carried 

out with the ECL western blot detection system (Amersham Pharmacia, Deisenhofen, Germany). 

3.6. ELISA 

ELISAs to measure activin A, follistatin and apolipoprotein B-100 in supernatants were performed 

as described [5,7]. 
  



Metabolites 2014, 4 404 

 

 

3.7. Statistical Analysis 

Data are presented as the mean ± standard deviation. Statistical differences were analyzed by a 

paired Student’s t-test (MS Excel), and a value of p ˂ 0.05 was regarded as significant. 

4. Conclusions 

APN isoform-specific effects have been demonstrated in monocytes, synovial fibroblasts and 

adipose tissue [16,17,41]. Current data show that HMW-APN and LMW-APN exert common, as well 

as distinct effects on hepatocytes. Importantly, even opposing activities of these isoforms have been 

identified. Therefore, beside absolute concentrations of this adipokine, the ratio of HMW-APN to 

LMW-APN may be important in liver physiology and should be kept in mind when evaluating 

clinically significant observations in patients. 
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