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Abstract: The generation of efficient production strains is essential for the use of 

eukaryotic microalgae for biofuel production. Systems biology approaches including 

metabolite profiling on promising microalgal strains, will provide a better understanding  

of their metabolic networks, which is crucial for metabolic engineering efforts. 

Chlamydomonas reinhardtii represents a suited model system for this purpose. We give  

an overview to genetically amenable microalgal strains with the potential for biofuel  

production and provide a critical review of currently used protocols for metabolite profiling  

on Chlamydomonas. We provide our own experimental data to underpin the validity of the 

conclusions drawn. 

Keywords: Chlamydomonas reinhardtii; metabolic engineering; biofuels; metabolite 

profiling; GC-MS; systems biology 

 

1. Introduction 

Fossil fuels are getting increasingly costly as their world-wide supply is declining, while global 

energy demands are steadily rising. Thus, extensive effort is currently being put into the development 

of renewable energy sources. In this context, microalgae receive significant attention as potential 
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―biofuel crops‖ [1]. The intense interest in microalgae for renewable energy production has several 

reasons: algae are photosynthetic organisms that turn solar energy into chemical energy and other 

valuable products, thereby capturing CO2. Microalgae can be grown in open ponds or closed systems 

situated on non-arable land, and some species can even grow on waste or salt water, thus reducing 

fresh water consumption. The photosynthetic yield of microalgae is considered to be higher than that 

of conventional land-grown biofuel crops [1,2]. Microalgal diversity provides species able to produce 

molecular hydrogen, ethanol or triacylglycerides, which are easily accessible as biofuels [3,4]. 

However, the large diversity of microalgae has not yet been exploited for the production of biofuels, 

nor has the possibility of improving potential production strains by means of molecular breeding [1,2]. 

In this article, we give a short overview of microalgal strains amenable to metabolic engineering 

and of promise for biofuel production. We discuss the importance of systems biology approaches for  

the identification of targets for metabolic engineering and, in this context, focus on GC-MS-based 

metabolite profiling for the analysis of algal metabolism. With a focus on the model alga, 

Chlamydomonas reinhardtii, we review published methods for cell harvest, metabolite extraction and 

data normalization and support conclusions by our own experimental data. 

2. Microalgae: Potential Candidate Species for Metabolic Engineering 

The term ―algae‖ denotes an artificial assemblage of diverse, photosynthetic eukaryotes that  

is polyphyletic and paraphyletic, including organisms that are evolutionary not of the same origin  

and excluding some of their relatives, such as land plants [5,6]. The prokaryotic, photosynthesizing 

cyanobacteria are sometimes also referred to as algae. According to their size, algae are classified as 

microalgae or macroalgae, with sizes of microalgae ranging from the 0.2–2 µm of single-celled  

picoplanktonic organisms up to 100 µm for filamentous algae. Algal habitats cover aquatic, subarial or 

benthic environments. Some aquatic algae are also tolerant of extreme environmental conditions of pH, 

temperature, salinity or heavy metal concentration [5,6]. 

Several microalgae are being used commercially in aquaculture for the production of carotenoids, 

polyunsaturated fatty acids, polysaccharides, animal feed and for health food [7]. Metabolic engineering 

has the potential to improve the quality and yield of these products and to generate strains capable of 

producing economically meaningful amounts of biofuels. As a basis for genetic engineering, many 

microalgal genomes have been sequenced recently, covering several taxonomic groups, like chlorophytes, 

eustigmatophytes, rhodophytes, coccolithophores, cryptomonads, prasinophytes, pelagophytes and diatoms. 

Many representatives of these taxonomic groups can be genetically manipulated and, therefore, are 

already amenable to metabolic engineering [8,9] (Table 1). Among these, we will highlight two 

species, Nannochloropsis sp. and Chlamydomonas reinhardtii; the former because of its high potential 

for genetic engineering and the latter because, on the molecular level, it is the best-characterized microalga. 

Nannochloropsis sp. grows to high cell densities while tolerating a wide range of conditions with 

regard to pH, temperature and salinity. Upon nitrogen depletion, Nannochloropsis can accumulate oil 

exceeding 60% of its dry weight, and therefore, is an excellent candidate for biodiesel production [10]. 

The genome of Nannochloropsis gaditana has been sequenced recently [11] and transfection by 

electroporation or via Agrobacterium is established [11–14]. If the selectable marker harbors the  

5′ promoter and 3′ UTR from different genes, integration into the genome occurs via nonhomologous 
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recombination [14]. Given that vegetative Nannochloropsis cells are haploid, such constructs can be 

used for insertional mutagenesis in forward genetics screens. Most strikingly, transgenes flanked by 

sequences from the same locus also integrate into the nuclear genome via homologous recombination 

and, therefore, allow for targeted gene disruptions/replacements [11,14] (Table 1). 

Table 1. Overview of genetically amenable microalgal species. 

Species (group) 
Transfection 

method 
a
 

Transgene 

integration 
b
 

Promoters 
c
 

Selection 

marker 
d
 

Reference 

Thalassiosira 

pseudonana 

(Diatoms) 

PB NHR 
LHCF9 

NR 
nat [15] 

Phaeodactylum 

tricornutum 

(Diatoms) 

PB NHR fcpA 

ble  

nat 

nptII 

sat-1 

cat 

[16–19] 

Nannochloropsis 

gaditana/oculata 

(Eustigmatophytes) 

EP 

AB 

NHR 

HR 

Transient 

VCP1 

VCP2 

UEP 

βTUB 

HSP70 

HSP70-RBCS2 

ble 

hygR 

bsr  

[11–14,20] 

Cyanidioschyzon 

merolae 

(Rhodophytes) 

EP 

PEG 

HR 

Transient 

URA3  

Catalase 

βTUB 

GFP 

URA3 
[21–23] 

Chlorella 

(Chlorophytes) 

PB 

PEG  

EP 

HR 

Transient 

CaMV-35S  

Chlorella virus 

Chlamydomonas 

RBCS2 

NR 

hpt 

nptII 

[24–26] 

Haematococcus 

pluvialis 

(Chlorophytes) 

PB  

EP 

NHR 

Transient 

SV40 

Phytoene 

desaturase 

Modified 

phytoene 

desaturase 

[27] 

Dunaliella salina 

(Chlorophytes) 

PB 

EP 

GB 

NHR 

Transient 

Maize ubiquitin 

CaMV-35S 

Chlamydomonas 

RBCS2 

Actin 

CA 

NR 

bar 

ble 

NR 

[28–30] 
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Table 1. Cont. 

Species (group) 
Transfection 

method 
a 

Transgene 

integration 
b 

Promoters 
c 

Selection 

marker 
d 

Reference 

Chlamydomonas 

reinhardtii 

(Chlorophytes) 

PB 

EP 

GB 

SCW 

AB 

NHR 

HR (chloroplast) 

 HSP70A-

RBCS2 

PSAD 

β2TUB 

NR  

CYC6 

ARG7  

NR (nit1) 

ble 

aphVIII 

aph7“  

aadA 

[31–41] 

Volvox carteri 

(Chlorophytes) 
PB NHR NR NR [42] 

a PB, particle bombardment; EP, electroporation; PEG, incubation of protoplasts with polyethylene glycol; 

AB, Agrobacterium-mediated transfection; GB, agitation with glass beads; SCW, agitation with silicon 

carbide whiskers; b NHR, stable integration via nonhomologous recombination; HR, stable integration via 

homologous recombination; c LHC, light harvesting complex; NR, nitrate reductase; fcp, fucoxanthin  

chl a/c-binding protein; VCP, violaxanthin/chlorophyll a binding protein; TUB, tubulin; HSP, heat shock 

protein; UEP, ubiquitin extension protein; RBCS, Rubisco small subunit; URA, uracil; CaMV, cauliflower mosaic 

virus; SV, simian virus; CA, carbonic anhydrase; CYC, cytochrome c; d nat, nourseothricin resistance; ble, 

resistance to phleomycin antibiotics; nptII, kanamycin resistance; sat-1, streptothricin resistance; cat, 

chloramphenicol resistance; HygR, resistance to hygromycin B; Bsr, resistance to blasticidin S; hpt, hygromycin 

resistance; bar, resistance to herbicide phosphinothricin; URA3, complementation of ura3 mutant with  

wild-type URA3 gene; GFP, screening for cells expressing green fluorescent protein; NR, complementation 

of nitrate reductase mutant with wild-type NR gene; arg7, complementation of argininosuccinate lyase 

mutant with wild-type ARG7 gene; aphVIII, resistance to paromomycin, kanamycin and neomycin; aph7―, 

resistance to hygromycin B; aadA, resistance to spectinomycin and streptomycin; modified phytoene 

desaturase, norflurazon resistance.  

Chlamydomonas reinhardtii is a unicellular green microalga living in freshwater environments.  

It is haploid during vegetative growth, and that can be interrupted by a sexual cycle, resulting  

in a single, diploid zygote that can resist adverse environmental conditions [43]. Chlamydomonas  

has emerged as a valuable model organism in research areas like photosynthesis and chloroplast 

biogenesis [44,45], the biology of flagella and basal bodies [46,47], cell-cell recognition [48] and 

circadian clock studies [49]. Moreover, Chlamydomonas has recently received much attention because 

of its elaborated fermentation pathways [50] and because of its ability to produce molecular  

hydrogen [51] and nonpolar lipids [3] that have promise as biofuels. With respect to lipids, 

Chlamydomonas starch accumulation mutants were shown to accumulate triacylglycerols to 46%–65% 

of dry weight under stress conditions, like nitrogen starvation [4].  

All three Chlamydomonas genomes are sequenced (nuclear, chloroplast and mitochondrial) and all 

three genomes may be genetically manipulated [52]. A large number of molecular tools have been 

established for Chlamydomonas, including selectable marker genes [37,53], strong promoters [41,54], 

codon-adapted reporter genes [55,56], insertional mutagenesis methods [57], gene-targeting  

methods [58] and vectors to induce RNAi [59] or to express artificial micro-RNAs [35,60,61] (Table 1). 

The disadvantages of Chlamydomonas are inefficient homologous recombination and problems with 

the high-level expression of nuclear transgenes that are caused by efficient gene silencing mechanisms 
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in this alga [38]. However, the available technical resources are by far the most advanced in Chlamydomonas 

when compared to other microalgae, and the knowledge gained from Chlamydomonas research can be 

transferred to promising, yet intractable, algal strains [2]. 

3. Systems Biology towards Microalgal Biotechnology 

Efficient breeding by means of molecular biotechnology will be essential for the prompt 

economical applicability of microalgae for biofuel production [1,2]. Microalgae possess several 

favorable characteristics for rapid breeding, such as short generation times, easy mutagenesis and 

screening and rapid identification of interesting mutants in strains with a haploid vegetative growth 

phase [2]. However, a thorough understanding of metabolic pathways is mandatory for their successful 

engineering. Thus, the characterization of algal metabolism has become a key task in order to select 

and engineer algae for industrial use [2,62]. 

For several reasons, Chlamydomonas reinhardtii is an ideally suitable organism for systems 

biology: its unicellularity and ability to grow photo-, mixo- and hetero-trophically offers the potential 

to grow cultures under various and controlled environmental conditions [43]. Further, Chlamydomonas 

can be grown in continuous cell cultures that avoid the problems arising from tissue heterogeneity or 

developmental stages present in multicellular organisms.  

Systems biology approaches in general follow ―bottom-up‖ or ―top-down‖ approaches. In bottom-up 

approaches, the system may be a confined subprocess, like a regulatory circuit or a metabolic pathway, 

which may be iteratively modeled mathematically to generate hypotheses that are experimentally testable. 

By contrast, top-down approaches are characterized by a more unbiased attempt to grasp the complexity of 

a biological phenomenon (e.g. acclimation to an environmental change) as completely as possible with 

complementary high-throughput technologies. The generated comprehensive data may subsequently  

be used for correlative networks at different cellular levels in order to uncover underlying principles  

of regulation [63]. 

For systems biology approaches, metabolic network reconstructions provide a framework to 

characterize cellular metabolism and allow for the identification of potential bottlenecks and key 

enzymes in metabolic pathways, which are promising targets for genetic engineering [62,64].  

Genome-scale models can be reconstructed based on the complement of metabolic enzymes using 

genome sequences, information on subcellular localization and thermodynamic and stoichiometric 

coefficients and, for this reason, are, in principle, also attainable for biochemically less well-studied 

organisms [65]. Once a stoichiometric model for an organism has been established and curated,  

in silico methods, like flux balance analysis (FBA), can be applied to predict metabolite fluxes under 

certain objective functions, such as maximum growth. 

Genome-scale metabolic network reconstructions have been performed for Chlamydomonas only 

recently [62,66–68]. FBA was applied to the Chlamydomonas metabolic models for auto-, mixo- and 

hetero-trophic growth [67] or for H2-producing conditions [68]. In particular, the analysis of FBA 

outcomes suggested increased H2 production by strains with inhibited cyclic electron flow and 

decreased TCA cycle activity, metabolic properties that are indeed effective in the H2-producer mutant, 

Stm6 [68,69]. In addition, this analysis could identify other potential targets for engineering to increase 

H2 production that deserve further experimental testing. Chang et al. (2011) included modes for 
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different light source usage in their Chlamydomonas metabolic model to predict the most efficient light 

source in terms of absorbed photons and biomass yield [62]. The results showed that the use of red 

LED light (674 nm LED with a minimum incident photon flux of 362 µE/m
2
/s) was already very close 

to the theoretically most efficient light source (677 nm peak light spectrum with a total incident photon 

flux of 360 µE/m
2
/s) for Chlamydomonas growth [62] that not surprisingly coincides with maximum 

chlorophyll absorbance. 

Finally, in addition to in silico predictions, the integration of multiple high throughput data sets into 

genome-scale models can lead to a refinement of the models that together can accelerate metabolic 

engineering processes [64]. However, successful prediction from metabolic models relies on precise 

parameters and, importantly, on a correct regulatory topology. Thus, the identification of unknown 

regulatory interactions represents a major future challenge for metabolic modeling and, hence, also for 

the metabolic engineering of microalgae. For a discussion of the current state on the modeling of 

metabolism, see [70]. 

4. Metabolite Profiling Using GC-MS 

The measurement of metabolites in a systems biology experimental setup is considered as one of 

the most significant contributions to understanding cellular processes [71]. Among mRNA and protein 

abundances, metabolite pool sizes aid in characterizing the observed molecular phenotype, but only 

their integration allows a proper interpretation of regulatory processes [72–74]. 

Metabolites from biological materials are most frequently analyzed by chromatographic separation 

combined with mass spectrometry (MS) or by nuclear resonance spectroscopy (NMR) [75–77]. The 

separation of pre-fractionated cellular extracts using capillary electrophoresis (CE), gas chromatography 

(GC) or liquid chromatography (LC) and the subsequent analysis by different MS types simplifies the 

accurate identification and quantification of small molecules from complex samples. An unbiased 

measurement of cellular metabolites, however, is challenging, mainly due to their huge chemical 

complexity [73]. More comprehensive metabolite coverage is thus reached when several platforms are 

applied to one sample in parallel, because different separation (LC, GC, CE) and MS ionization 

(electron ionization, electrospray ionization, etc.) techniques favor compounds of different sizes  

and polarity [77,78]. This can result in the detection of several hundred compounds from a single  

sample [79]. Furthermore, specialized MS-based methods have been developed for the analysis of 

particular, but not habitually, accessible metabolites [80,81]. 

GC-MS is a method that was already used for metabolite profiling in the 1970s [82,83]. More 

recently, this technique has been recognized in plant research as a highly valuable metabolic 

phenotyping approach [71,84]. GC-MS, or more specifically, gas chromatography, connected to 

electron-ionization- (EI-) time-of-flight- (TOF-) MS, is a combination of two powerful analytical 

methods: GC separates volatile compounds based on their size and polarity with high capacity. 

Thereafter, EI-TOF-MS ensures reproducible analyte fragmentation and mass spectra acquisition at 

high scan rates [76]. However, many of the compounds in classical methanol-water soluble cell 

extracts have to be chemically modified to enhance volatility and stability before they can be separated 

by GC [78,85]. One of the most commonly used derivatization methods in plant metabolite profiling 

applications is the two-step derivatization, including oximation of keto-groups followed by trimethylsilylation 
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of reactive functional groups [78,86]. GC-MS preferably detects less polar compounds, like hydrocarbons 

or fatty acid derivatives, and, due to the mass adducts produced by derivatization, smaller polar 

metabolites, such as sugars, sugar alcohols, amino acids, organic acids and polyamines [78,87]. 

The unambiguous identification of compounds measured with GC-EI-MS from complex biological 

extracts is only achieved by the combination of compound-specific retention time and mass spectrum, 

due to the existence of highly similar mass spectra retrieved from, e.g. conformational isomers [88,89]. The 

retention time of analytes can be standardized to units of highly reproducible retention indices (RI), 

such as the Kováts indices, by inclusion of retention time standards [87,88,90,91]. Publicly available 

retention-index/mass-spectral libraries as provided, e.g. by the Golm-Metabolome-Database [87,92,93], 

contain analyte-specific information on retention indices and mass spectra, which can be used for 

unambiguous annotation. In recent years, bioinformatics tools have been developed for the ease of 

handling, peak alignment and annotation and analysis of GC-MS-derived metabolite profiling data [94] 

(reviewed in Tohge and Fernie [95]). 

5. From Experiment to Data: Metabolite Profiling Workflow for Chlamydomonas 

Figure 1 shows a classical workflow of metabolite profiling on Chlamydomonas cells, including 

sampling, sample workup and, after GC-MS measurement, pre-treatment of the data. In the following 

section, we will discuss the important steps of this workflow and review the published protocols  

for Chlamydomonas. 

5.1. Cell Harvest 

The harvesting of biological material for the analysis of cellular metabolites is a challenging task. 

Sample handling during harvest will ultimately affect data quality and, hence, the conclusions drawn. 

This is particularly true for pools of metabolites with very short turnover times, like ATP/ADP or 

Calvin-Benson cycle intermediates, as was shown for Arabidopsis thaliana and Chlamydomonas [80,96]. 

Therefore, the harvesting method should arrest metabolism as quickly and entirely as possible (this 

process is often denoted as quenching) to ensure a true snapshot of the current metabolic state [97,98]. 

Quenching is normally achieved by an immediate decrease or increase in temperature or pH via 

subjecting the sample to suitable hot, cold, acidic or alkaline treatments [99]. 

Microalgal cultures are rather dilute (for instance, logarithmically growing Chlamydomonas cultures 

only contain up to 5 × 10
6
 cells/mL). Thus, ideally, the medium is removed during harvest to concentrate 

the cells and to remove medium salts that can interfere with analytical measurements. For example, 

remnants from Chlamydomonas growth media led to severe ion suppression in an LC-MS approach [96]. 

However, the process of separating cells from growth medium is time consuming and conflicts with a 

rapid arrest of metabolism. Therefore, the harvesting technique should be carefully adapted to the 

biological question asked and should be compatible with the following analytical platform. Major 

techniques used for the harvesting of microbes for metabolite analysis include methods that quench 

metabolism before (or without) the separation of cells from growth media and methods that quench 

after the separation of cells from growth media, like centrifugation or filtration. 
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Figure 1. Typical workflow for metabolic profiling experiments on microorganisms. 

Harvesting of microbes for metabolite profiling may involve a rapid quenching step. 

Frozen samples are extracted with organic solvents, optionally including a grinding step. 

For GC-MS analysis, extracts have to be chemically derivatized to enhance the thermal 

stability and volatility of the compounds. Most frequently, the first standardization steps 

involve normalization to labeled internal standard(s) and to a reference value for the 

analyzed biomass (e.g. culture optical density (OD)) for the comparison of data from 

different samples. Logarithmic transformation is commonly utilized to achieve a near 

normal distribution of the data. For further descriptions, see the text.  

 

5.1.1. Quenching before (or without) Separating Cells from Growth Medium 

In order to arrest metabolism immediately, the sampling of microorganisms for metabolite analysis 

is frequently done by injecting the sample instantly into liquids cooled to below −20°C, which contain 

a considerable fraction of organic solvent to maintain fluidity. This first quenching step is optionally 

followed by centrifugation to remove the medium and quenching solution. The most popular quenching 

method used to date is a methanol-water mix (60:40, v:v), cooled to −40 °C [100]. However, the high 
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methanol content has been shown to result in the significant leakage of metabolites from bacterial, 

yeast and animal cells [101–107]. 

Due to the problem of metabolite leakage during quenching, alternative quenching solutions have 

been proposed for some prokaryotic and eukaryotic species, including pure methanol [106], pH 

buffered or isotonic methanol-water [108–110] and glycerol-water supplemented with sodium  

chloride [101]. However, despite these improvements, no universal quenching solution that completely 

prevents leakage was shown to be applicable to a wide range of species [104]. 

To date, two studies have investigated the effect of quenching on metabolite leakage in 

Chlamydomonas. Bölling and Fiehn [111] showed that metabolite leakage from Chlamydomonas cells 

was occurring after quenching in methanol-water (−20 C, 32.5% methanol; final concentration  

of 24.4%), not surprisingly, leakage was found to be less from cells containing a cell wall than from 

cells lacking a cell wall. Using the walled strain, CC 125, quenching at lower temperatures and 

consequently higher methanol concentrations (−70 °C, 70% methanol; final concentration of 35%) was 

shown to reduce leakage for most metabolites to below 5% [112]. However, two other studies 

mentioned non-acceptable metabolite leakage following quenching in cold methanol-water using the 

wall-less strain, CC 503 (−20 °C; 100% methanol; final concentration of 30%; [113]), and the walled 

strain, CC 1690 (−70 °C; 70% methanol; final methanol concentration of 46.6%; [96]). This observation 

prompted these authors to measure cells with medium, thereby circumventing the metabolite leakage 

issue, while still benefiting from the rapid quenching of metabolism [96,113]. 

A more recent study investigated the metabolome of Chlamydomonas in response to CO2  

limitation [114]. The authors used a cell wall-less strain with a quenching protocol adopted from 

Bölling and Fiehn [114]. Although quenching a wall-less strain in methanol-water is likely to result in 

extensive metabolite leakage [111,113], the authors of this study did not mention any controls or 

problems related to metabolite leakage. 

5.1.2. Centrifugation 

Centrifugation is a common harvesting technique for microbes for all sorts of applications. However, 

due to the uncontrolled reaction of metabolism to darkness and centrifugal forces during centrifugation, 

this technique is not considered suitable for harvesting photosynthetic microbes for the analysis  

of metabolites. Two published studies used centrifugation to harvest Chlamydomonas cells  

during a time course of sulfur starvation to investigate the metabolome under H2 producing  

conditions [115,116] (Table 2). There was a remarkable difference in the amount of harvested cells 

between the two studies, yet the outcomes were comparable. For example, both studies revealed that 

the sulfur-starvation-induced anaerobiosis caused levels of TCA cycle intermediates to decrease and 

intermediates of glycolysis and the amino acids Ile, Leu and Tyr, to increase [115,116]. Hence, despite 

the problems mentioned, centrifugation in some cases might allow differences in levels of metabolites 

with large pool sizes and low turnover rates to be captured. 
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Table 2. Comparison of the methods for sampling, extraction and sample workup of GC-MS based metabolite profiling studies in Chlamydomonas. 

Study 
Strain 

used 

Harvesting 

method 
a
 

Harvesting conditions 
b
 Harvested cells 

c
 

Mechanical cell 

disruption 

Extraction 

buffer 
d
 

Cells/mL 

extraction 

buffer 

Extract equivalent  

to cells injected into 

GC-MS 

[111] CC 125 Q 32.5% MW; −25 °C; 4:1 × mortar and pestle MCW 10:3:1 1.20 × 106 × 

[112] CC 125 Q 70% MW; −70 °C; 1:1 2.50 × 106 5-mm steel ball MCW 5:2:1 1.92 × 106 1.68 × 104 

[113] 
CC 503  

cw92 mt+ 
Q broth 100% M; −20 °C; 0.43:1 × none MCW 1:1:0 × × 

[115] Stm6 C 3,000 g; 1 min; 4 °C 3.00 × 107 none MCW 1:0:0 6.00 × 107 1.00 × 107 

[116] 
CC 406 & 

Stm6Glc4 
C 3,000 g; 1 min 3.60 × 108 

homogenizer,  

0.1-mm silica beads 
MCW 4:0:1 3.60 × 108 2.52 × 106 

[114] cw 92 Q 32.5 MW; −25 °C; 4:1 1.50 × 106 none MCW 3:1:1 × × 

[117] 
CC 503 

cw92 mt+ 
Q broth 100% M; −20 °C; 1:1 6.00 × 106 none MCW 5:2:1 3.00 × 107 5.31 × 104 

[118] CC 125 Q 70% MW; −80 °C; 3:1 2.00 × 106 
sonicator  

(3 × 30 sec) 
MCW 10:3:1 2.00 × 106 2.00 × 104 

[119] CC 125 Q 70% MW; −70 °C; 1:1 5.00 × 106 5-mm steel ball MCW 5:2:2 6.67 × 106 8.97 × 104 

[120] cw 15 F × 3.50 × 107 none MCW 5:2:1 1.75 × 107 1.75 × 105 

[121] 
CC 503 

cw92 mt+ 
× × 

15–25 mg  

fresh weight 

Retsch mill,  

quartz sand 

MCW 5:2:1 

(1% acetic acid) 
× × 

[122] CC125 F 30–45 sec 2.00 × 107 mortar and pestle MCW 0:1:1 4.00 × 106 1.92 × 105 

[123] CC125 Q 70% MW; −70 °C; 1:1 7.00 × 106 5-mm steel ball MCW 5:2:2 9.33 × 106 6.53 × 104 

This publication (see 

Experimental section) 
CC 1690 F 10–20 sec 1.00 × 107 none MCW 7:3:0 1.39 × 107 1.50 × 105 

× , no information given in the study. a Q/C/F, quenched/centrifuged/filtered; Q broth, quenched cells including medium. b The parameters used at harvest for a given 

method. For quenching, the composition of the quenching solution, its temperature and the quenching buffer-to-sample ratio are given; for centrifugation, speed, time and 

temperature are given; for fast filtration, the filtration time is given. c The lowest sampled amount indicated in the respective study. d M/C/W, methanol/chloroform/water. 
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5.1.3. Fast Filtration 

As a quick method for separating cells from the medium of microbial cell cultures, fast filtration 

represents an alternative harvesting method to quenching and centrifugation. The process from 

harvesting to freezing may be accomplished within around 10 sec [124,125]. Moreover, the filtration 

process may be done close to the respective experimental conditions (light, temperature, etc.), thereby 

keeping the disturbing influences of the sampling process at a minimum. Filtration of microbial cell 

cultures further provides the possibility to easily retain the filtrate for the analysis of secreted metabolites. 

Fast filtration was successfully employed to harvest various organisms for metabolite analysis, which 

showed strong metabolite leakage when quenched in cold methanol-water, including Gram-positive 

and Gram-negative bacteria [105,126–128], yeast [129], animal cells [107] and cyanobacteria [124]. 

Fast filtration of Chlamydomonas cells was already applied in the 1960s for the analysis of 

glycolate pathway metabolites [130]. Recently, a metabolomics study investigating the effect on  

NaCl-mediated abiotic stress in Chlamydomonas used fast filtration for harvesting. In this case, 5 mL 

of culture were filtered with 50-mm diameter filters [120]. Unfortunately, the study provided neither 

filtration times nor harvested cell numbers. In another study using NMR for metabolite analysis,  

1 × 10
8
 Chlamydomonas cells were harvested per filter with diameters of 90 mm, which took between 

30 to 45 sec [122].  

Changes in cell size and shape influence the filtering speed and cell number capacity that can be 

captured on a filter. As the size of Chlamydomonas cells depends on environmental conditions, for 

instance in synchronized cultures [43], the amount of culture to be filtered needs to be adapted for each 

experiment to keep filtering times acceptably short.  

Other approaches than sampling microbes from liquid cultures for the analysis of metabolites have 

been demonstrated by transferring the cells (yeast or E. coli) from a liquid pre-culture to filter membranes 

briefly before the experiment. The filter discs with cells are then put on top of agar plates or constantly 

perfused with medium [98,131,132]. This setup was used to rapidly change the carbon source, for 

instance in the perfused medium, and allowed a fast quenching of the cellular metabolism by directly 

submerging the filter in hot extraction buffer [132]. However, these approaches may generate 

heterogeneity in the cells on the filter, as cells may be present in different layers that may suffer from 

shading or limited nutrient supply. Moreover, in cases where larger amounts of cells are required, 

scaling-up is difficult. 

5.1.4. Different Harvesting Methods Produce Distinct Metabolite Profiles of Chlamydomonas Cells 

We compared the harvesting methods discussed above for the analysis of Chlamydomonas 

metabolite profiles by collecting replicate samples from the same culture by quenching, centrifugation 

and fast filtration. Subsequent sample processing and metabolite analysis was identical. Some samples 

were analyzed together with the medium to reveal differences induced by the medium removal step. 

The resulting metabolite profiles were normalized to the internal standard, log2 transformed and 

subjected to principal component analysis (PCA). The results allowed the following conclusions 

(Figure 2). First, each harvesting method produced distinct, but consistent, data, as the different 

methods were separated while replicate samples clustered together. Second, four clusters of samples 
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were separated by Principal Component (PC) 1 and 2: quenched samples containing medium, centrifuged 

samples containing medium, quenched samples only containing cells and centrifuged or filtered samples 

only containing cells. Profiles generated from filtered samples clustered with those from centrifuged 

samples, but were distinct from the quenched samples. Third, PCA clearly separated samples containing 

medium from the cells-only samples, while samples containing the supernatant without cells separated 

only slightly from the supernatant plus cells. This already indicates a minor contribution of the 

intracellular metabolites to these profiles (as further discussed below). 

Figure 2. Principal component (PC) analysis of Chlamydomonas metabolite profiles 

obtained by different harvesting methods. Four replicates were harvested and processed 

from the same culture by each harvesting method and measured by GC-MS. The generated 

metabolite profiles were normalized to the internal standard and log2-transformed before 

being subjected to principal component analysis. C, centrifuged; F, filtered; Q, quenched; 

all, cells and medium. 

 

PC 1 separated mainly filtered and centrifuged samples from the medium-containing samples. The 

metabolites with the highest impact on PC 1 were found to be fatty acids, like linolenic acid,  

α-linolenic acid, palmitic acid, myristic acid and two unknown analytes (Golm Metabolome Database 

(GMD) identifiers A114002 and A361001), all of which had higher levels in centrifuged and filtered 

samples, while levels of erythronic acid, glycine and glycerol were decreased in these samples. PC 2 

separation was mainly driven by high loadings of phytol, putrescine, glycerol-3-phospate, as well as 

iminodiacetic acid and an unknown analyte (GMD identifier A190021), resulting in differences of the 

quenched pellet sample from all other samples. 

In summary, PCA demonstrates that each harvesting method seemed to produce distinct, but 

reproducible, data of an unperturbed Chlamydomonas culture, while centrifugation and filtration resulted in 

relatively similar metabolite profiles. The profiles of samples containing cells and medium together 

appeared to be majorly influenced by the medium part. Analogous results were obtained in a study  

of GC-MS-based metabolite profiling on cyanobacteria, where the same harvesting methods were 
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compared [124]. Furthermore, in this study, consistent, but distinguishable, data were obtained by each 

harvesting method. 

It has to be kept in mind that the data shown here were obtained by probing an unperturbed 

Chlamydomonas culture, thus underlining the reproducibility of each method. However, conditions 

inducing rapid changes in the levels of the analyzed metabolites might alter the outcome of this 

experiment. In this case, centrifugation likely would not be adequate to reliably capture these changes. 

5.2. Metabolite Extraction 

The ideal extraction method for metabolites acts as completely as possible and, at the same time, 

prevents the conversion or degradation of the extracted metabolites [133]. Most extraction methods 

exploit the effects of extreme pH, high temperature, organic solvents, mechanical stress or a combination 

thereof on the cell wall and cell membranes. Accordingly, metabolite extraction methods have been 

developed that utilize methanol or ethanol, hot or cold conditions and freeze/thaw cycles. A survey of 

extraction buffers revealed a trend towards more mild extraction solutions, like methanol and chloroform, 

in contrast to more harsh buffers containing strong acids or bases used in earlier times. This trend  

was driven by the need for extraction buffers that are compatible with today’s analytical methods, like  

LC- or GC-MS [133]. 

Buffers used for metabolite extraction from plant material frequently consist of methanol, 

chloroform and water (MCW) and are combined with milling [134]. While optimizing metabolite 

extraction from Chlamydomonas cells, Bölling and Fiehn (2005) obtained the best results with MCW 

at a ratio of 10:3:1 (v:v:v) [111]. When compared to the extraction buffer for Arabidopsis, the 

Chlamydomonas buffer contained a lower water content to account for water present in interstitial 

spaces in the cell pellet. More recently, [112] tested and compared the MCW (10:3:1) buffer from [111] 

with four different extraction buffers, including MCW (5:2:2), methanol-isopropanol-water (5:2:2), 

100% methanol and acetonitrile-isopropanol-water (5:2:2) [112]. Overall, quantitative differences were 

found to be marginal between the different extraction buffers tested, most likely due to the high buffer-

to-sample ratio. The authors finally concluded that MCW (5:2:2) performed best, because it provided 

the highest analytical precision. Extraction buffers containing chloroform were regarded as superior 

owing to the efficiency of chloroform to rapidly inactivate enzymatic activity during extraction [112]. 

As summarized in Table 2, the extraction buffers that were used for Chlamydomonas in different 

publications all consisted of very comparable solvent systems containing methanol, chloroform  

and water in combinations ranging from MCW 10:3:1 [111,135], MCW 5:2:2 [112,119,123],  

MCW 5:2:1 [96,120,121], MCW 3:1:1 [114], MCW 1:1:0 [113,136] to MCW 1:0:0 and  

MCW 4:0:1 [115,116] or MCW 0:1:1 [122]. 

The protocols mentioned above were mainly tailored for the extraction of polar and semi-polar 

metabolites for GC-MS analysis. However, including lipophilic metabolites in the analysis of cellular 

metabolites by LC-MS may provide valuable insights into another system level in top-down systems 

biology approaches. Especially under stress, the accumulation of TAGs in lipid bodies and the 

rearrangement and degradation of lipids represent major acclimation mechanisms (e.g. nitrogen or 

potassium starvation of Chlamydomonas or Arabidopsis) [4,137]. A universal extraction protocol for 

lipophilic, polar primary and secondary metabolites, as well as potentially proteins and starch from one 
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sample may reduce the working time and technical variance. Such an integrative extraction protocol 

has been successfully applied to Arabidopsis, resulting in the detection of more than one thousand 

distinct compounds from a single sample [79]. For the extraction of polar and lipophilic compounds 

from a single sample, MTBE (methyl-tert-butyl ether) replacing chloroform in the classical MCW 

buffer has been shown to largely facilitate sample handling. After phase separation, the MTBE phase 

containing lipophilic metabolites ended above the aqueous phase due to its lower density, while starch 

and protein got pelleted [79]. 

Whether a mechanic disruption of Chlamydomonas cells is required for the efficient extraction of 

metabolites in the presence of organic solvents remains unclear. While studies designed to optimize the 

extraction protocol [111,112] did not test the extraction efficiency of extraction buffer alone, another 

study [113] mentioned that there were no differences between ground and non-ground samples. In fact, 

the tendency of extensive metabolite leakage especially from wall-less strains in methanol-water 

quenching solutions [96,111–113] suggests that metabolite extraction is efficient with the frequently 

used solvent systems of methanol, chloroform and water. To date, approximately half of the published 

protocols for metabolite extraction applied a mechanical disruption step, like sonication or grinding 

with a mortar and pestle, steel balls or quartz sand [111,112,119–122,135] (Table 2). 

5.3. Sample Amounts, Matrix Effects and Extracellular Metabolites 

Regarding the employed derivatization methods, machine settings and reference libraries, GC-MS 

is well established for plant metabolite profiling [77,84,86]. However, the quality of GC-MS 

metabolite measurements with respect to reproducibility and dynamic range may be affected by the 

complexity of the sample. In this context, the term ―matrix effect‖ denotes all effects caused by 

constituents of an analytical sample affecting the quantitative result [138]. Matrix effects occurring in 

GC-MS measurements are often connected to limitations in derivatization capacity or efficiency in 

complex samples [139]. In addition, the analytical measurement can be affected by high sample 

complexity. In very complex samples, the probability of an analyte reacting with the surface of the GC 

is much smaller than in a less complex sample, which may, in turn, enhance the response of certain 

analytes in the complex sample [140]. Moreover, too high of a sample complexity can result in poor 

peak separation, as well as aberrant peaks or detector overloading, causing deconvolution problems 

and inaccurate quantification [138,141]. 

A comparison of published GC-MS protocols for Chlamydomonas revealed that the extract 

concentrations that were finally injected into the mass spectrometer differed considerably by two 

orders of magnitude (see Table 2). The above-mentioned problems with matrix effects are likely to 

occur at least for the highly abundant analytes when too concentrated extracts are measured. Therefore, 

the optimal amount of injected cells should carefully be determined to stay in the dynamic range of 

detection for most metabolites. 

5.3.1. The Linear Range of Biomass Concentration in Chlamydomonas Metabolite Extracts Is Limited 

An experiment analyzing different extract concentrations with GC-MS revealed limitations when 

samples with high complexity were analyzed. The total ion count (TIC) of the chromatograms began to 

saturate when extracts equivalent to more than 5 × 10
5
 cells were injected into the GC-MS. By contrast, the 
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intensity of the internal standard, 
13

C-sorbitol, already decreased between samples of 25 to five times 

lower extract concentration (Figure 3a). In addition, the responses of the retention time standards  

(n-alkanes), which do not get derivatized, decreased in the extracts of highest biomass concentration 

(Figure 3b). Consistently, the number of identified metabolites only increased marginally when 

extracts equivalent to more than 5.44 × 10
5
 cells were measured (Figure 3c; Figure 4, left heat map). 

Together these observations indicated that, already between samples with comparably low analyte 

concentration, quantitative performance may be disturbed, while in the samples with the highest 

analyte content, suppressing effects in GC-MS occurred. 

Figure 3. The effect of matrix complexity on metabolite profile properties. (a) Total ion 

count; (b) the response of the internal standard, 
13

C-sorbitol; and (c) the summed intensities 

of n-alkanes obtained by analyzing different amounts of cells. 

 

Analysis of the responses of single metabolites showed good linearity for most metabolites in 

measurements of extract aliquots corresponding to up to 5.44 × 10
5
 cells. However, at higher extract 

concentrations, in particular, abundant metabolites had a dramatically disturbed linear response  

(Figure 3C). By contrast, less abundant metabolites, which could only be measured in extract aliquots 

equivalent to more than 1.1 × 10
5
 cells, showed good linearity in all samples detected. Strikingly, mainly 

analytes containing primary amines (like amino acids or putrescine) had a drastically disturbed linear 

response at higher extract concentrations, maybe owing to the limitations of the silylation reagent  

(N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA)) in slowly reacting with primary amine 

groups [78,139]. 
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Figure 4. The effect of matrix complexity on the linearity of individual metabolite 

responses. (Left) Heat map of metabolites measured from differently concentrated extracts, 

the measured extract corresponding to the amount of cells is indicated at the top. (Middle) 

Heat map of the coefficients of determination (R
2
) values obtained by linear regression of 

the metabolite data from (left), including different samples as indicated at the top. Missing 

data are shown as grey boxes in the heat maps. (Right) The panel shows exemplarily the 

normalized abundance of four metabolites and the respective regression curves.  
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A quite narrow linear range of analyte concentrations for GC-MS-based metabolomics has also 

been shown for extracts from adherent mammalian cells, for which the best linear range was obtained 

for extracts from 1.0 × 10
6
 to 7.5 × 10

6
 cells [142]. The authors showed that statistic comparison of 

differently concentrated extracts produced false significant results, i.e. significant differences between 

two differently concentrated extracts of the same culture despite normalization to the used biomass. 

These results are in line with our observation of the perturbed linear responses of certain metabolites 

when samples that are too concentrated are measured by GC-MS. In conclusion, the measurement of 

extracts equivalent to roughly 1–5 × 10
5 
cells seems to provide reasonable coverage of the metabolites 

that can be identified, while still remaining in the linear range for most metabolites. 

5.3.2. Extracellular Metabolites and Growth Media Have Strong Impacts on the Sample Matrix in 

Chlamydomonas Metabolite Extracts 

Growth media for Chlamydomonas contain high concentrations of TRIS, HEPES or phosphate as 

major buffer components [143]. These buffer substances are present at millimolar concentrations and 

thereby have a major effect on the sample matrix in metabolite extracts when samples with culture 

medium are used (Figure 2). Accordingly, matrix effects in GC-MS and LC-MS approaches were 

successfully diminished via adjusting the composition of Chlamydomonas growth media by changing 

the buffer system or by reducing excess nutrient components [96,113,114]. However, not only buffer and 

mineral salts in the growth medium can affect the sample matrix, but also secreted metabolites, like 

lumichrome, and fermentation products, like ethanol, lactate, glycerol, glycerate, etc. [130,135,144]. 

In order to compare the levels of intracellular and extracellular metabolites, we grew a Chlamydomonas 

culture autotrophically in a semi-continuous bioreactor at low light intensity (200 µE/m
2
/sec) and at a 

constant optical density (OD) corresponding to approximately 3–4 × 10
6
 cells/mL. We harvested the 

cells by fast filtration and analyzed the cells and filtrate separately. Afterwards, we normalized the 

metabolite intensities to the corresponding volumes of cells and medium. Figure 5 illustrates that 

the intracellular concentration of virtually all measured metabolites was higher than it was in the 

medium (~10–1000 fold). However, the far excess of medium in a culture when measuring whole 

broth samples (2000 to 200 fold in a Chlamydomonas culture assuming 10
6
 to 10

7
 cells/mL, 10 µm 

cell size and spherical cell shapes) could cause a masking of the actual intracellular pool by 

extracellular metabolites (Figure 2) [104], besides strong matrix effects invalidating quantitative 

comparisons, as suggested by our experiments (Figures 3 and 4). Moreover, in our experiment, we 

used a semi-continuous bioreactor that diluted the culture upon growth. In a batch culture, dead 

and lysed cells or higher cell concentrations may contribute even more to the extracellular complexity of 

metabolites. Following this, in order to get a true image of the intracellular metabolism of Chlamydomonas 

by GC-MS analysis, a removal of the growth medium during harvest seems essential. 
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Figure 5. Ratios of intracellular to extracellular metabolite abundance. Measured metabolite 

responses that have been analyzed in both filtrate samples and cell samples were normalized to 

the extracted volumes (the total cellular volume was determined with a Coulter Counter), 

and the ratios of n = 36 samples were plotted as box plots. 

 

5.4. GC-MS Data Normalization 

A typical GC-MS-based metabolite profiling experiment consists of the comparative analysis of 

profiles from, e.g. different time points of a time series, different strains or wild-type versus mutant. 

The total variation observed in the experiment can be assigned to different sources, which are induced 

biological variance and uninduced variance, with the latter including uninduced biological variance 

and technical variance from sampling, sample workup and analytical measurement [145]. Normalizing 

metabolite profile data generally aims at reducing the uninduced variation without losing the intended 

biological variation and at preparing the data for subsequent statistical analyses. 

In order to reduce technical variance, internal standards that are not present in biological samples 

are commonly added to the sample upon extraction [84]. However, in highly complex extracts with 

many compounds of various classes, concentrations of individual metabolites may be reduced as a 

consequence of tube wall adhesion, conversion or degradation. Thus, a single internal standard can 

trace such effects only to some extent. Hence, multiple internal standards or extracts of fully  
13

C-labeled cultures have been used to overcome these problems [98,146,147]. Another possibility to 

account for technical variability arising, e.g. from GC-MS machine sensitivity between samples is to 

normalize each metabolite to its median intensity measured during one day [84]. A different approach 

aiming at adjusting for technical signal drifts in large-scale experiments uses quality-control (QC) 

samples, which are run every fourth to fifth measurement and are used for fitting a LOESS (locally 

estimated scatterplot smoothing) regression curve [148] to each analyte feature. Subsequently, the 
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analyte intensity in the experimental samples is corrected by interpolation of the regression curve [149]. 

This method, however, is relatively elaborate, due to the preparation of a universal QC sample 

containing all metabolites of interest, plus the frequent additional measurements of QC samples. 

A typical source of unintended biological variation between samples derives from different amounts 

of harvested biomass. When working with plant organs or fruits, the data is frequently normalized to 

fresh or dry weight, because they are easy to determine [84]. The problem with microorganisms is that 

sample material is often limited, and it is, therefore, difficult to accurately determine the sample 

weight. Accordingly, alternatives that can be used are other measures of the harvested material 

(culture-specific properties) or factors intrinsic to the metabolite profile of the measured sample 

(profile-intrinsic properties) [150]. 

A suitable culture-specific property for single-celled microorganisms is the cell count, because the 

number of cells can be determined easily and fast. Cell count was used for normalization in a  

GC-MS-based study in Chlamydomonas [120]. However, results might get biased under conditions, 

leading to changes in cell size and, thus, sampled biomass. Moreover, accurate cell counting is 

impossible under conditions causing Chlamydomonas cells to become palmelloid. Another frequently 

used measure for microbe biomass is the optical density (OD) of the culture. OD600 is commonly used 

for many heterotrophic, homogeneously growing organisms [105,151]. For photosynthetic organisms, 

however, an OD at 750 nm has to be used to avoid chlorophyll absorbance [113]. Although the OD of 

a culture integrates cell count and size, it is also influenced by other properties of the cells, such as 

cellular granularity, which, in turn, depends on cellular constituents, like the cell wall or starch  

content [152]. Normalization may also be based on the harvested cell volume. Cell volume can be 

determined using a Coulter Counter
®

 under the assumption that cells have spherical shapes, albeit this 

might not always hold true for Chlamydomonas (e.g. when cells become palmelloid, after cell release 

in synchronized cultures or in some mutants [153]). Yet, compared with optical density, cell volume 

might be less influenced by cellular constituents. Finally, GC-MS metabolite profile data may be 

normalized to major cellular components, like starch, chlorophyll or total protein [150,154]. However, 

these factors again might be affected by the experimental condition. Moreover, if these measurements 

are of low accuracy, they will downgrade the results through the propagation of errors [150]. 

Apart from the mentioned culture-specific properties to account for differences in harvested 

biomass, chromatogram intrinsic properties can be used for this purpose. Profile-intrinsic properties, in 

contrast to culture-specific properties, have the characteristic to additionally correct for technical 

variation arising from, e.g. sample workup or machine sensitivity. Normalization to profile-intrinsic 

properties include the most frequently used total ion count (TIC) [84,142] or modifications of it. The 

TIC, regularly used for normalizing Chlamydomonas data [119,123], represents the sum of all 

measured metabolite abundances in one sample, while modifications of the TIC, like the median of the 

TIC or the TIC excluding the 5% most abundant metabolites, are more robust against extreme changes 

by a small set of metabolites [150]. Somewhat similar, the probabilistic quotient normalization (PQN) 

uses the median of the ratios of all individual features in the chromatogram to a reference 

chromatogram. The PQN was originally developed to normalize NMR metabolomic data [155], but 

was recently applied also to GC-MS data [122,154]. In addition, many methods that have actually been 

developed in recent years for standardization in microarray data analysis also are applicable for 

metabolomics data normalization [156,157]. Methods, like quantile normalization [158], variance 



Metabolites 2014, 4 203 

 

 

stabilizing normalization [159] or cyclic locally weighted regression [148,160], have been compared 

on LC-MS and NMR metabolomics data [156,157] and have been used on GC-MS data [124]. 

After the successful reduction of technical and non-induced biological variance in GC-MS data, 

another important step of data pre-processing deals with the global data structure. GC-MS raw data 

often shows right-skewed distributions and is heteroscedastic, i.e. the data is not normally distributed, 

and the standard deviation of an analytical feature is proportional to its intensity [145,156,161]. A 

further property of metabolomics data is the potential huge difference in abundance between 

metabolites and the potential large fold change of the same metabolite between samples [145]. These 

properties are generally unfavorable for proper statistical evaluation of the data, and methods, like 

centering, scaling or transformation, are commonly applied for curing data from these factors [145,156]. 

Centering (subtraction of the mean over the samples from each respective metabolite value) 

positions the data around zero, while scaling alters data magnitudes and includes methods, like 

autoscaling (resulting in z-scores), range scaling, level scaling, etc. These treatments are mainly used 

to remove offsets in the data and to make each metabolite equally important [145]. Transformations, 

like the frequently applied logarithm or the square root (power transformation) are nonlinear 

conversions of the data. Transformations are generally used to make the data distribution (more) 

symmetric and are able to reduce heteroscedasticity [145,161]. The use of the most suitable transformation 

or scaling treatment depends on the data structure, data quality and biological question to be asked. 

They may have specific advantages and disadvantages, like suitability for biomarker identification or 

inflation of errors, etc. and, therefore, should be adapted to the individual experiment [145]. 

7. Experimental Section 

7.1. Harvesting Methods Comparison Experiment (Figure 2) 

For all experiments, Chlamydomonas reinhardtii strain CC 1690 was used. Cells were cultivated 

photoautotrophically in a semi-continuous bioreactor in H5AP medium [143,162] at a constant optical 

density corresponding to 3–4 × 10
6
 cells/mL at 200 µE/m

2
/sec. Quenching was performed by injection 

of 2 mL of culture in 2 mL of 100% methanol at −60 °C, centrifugation at 1,942 g, −10 °C for 5 min, 

separation of the supernatant and pellet and freezing in liquid nitrogen. For centrifugation, 2 mL of 

culture were centrifuged for 15 sec, 13,200 rpm at room temperature in a table-top centrifuge 

(Eppendorf AG, Hamburg, Germany). The supernatant was decanted, and samples were frozen in 

liquid nitrogen. Fast filtration was accomplished by filtering 2 mL of culture through polyvinylidene 

fluoride filters (47-mm diameter, 0.45-µm pore size, Merck Millipore, Merck KGaA, Darmstadt, 

Germany) with a suction flask connected to a vacuum pump (Vacuubrand GmbH + Co. KG, 

Wertheim, Germany). The filters were put in falcon tubes and frozen in liquid nitrogen. The whole 

filtration process took around 20 sec. All samples were stored at −80 °C until extraction. Extraction 

was started by adding 800 µL methanol:chloroform:water (MCW) (5:2:1, v:v) containing 4 µg/mL 
13

C-sorbitol cooled to −20 °C to the frozen sample followed by agitation for 5 min at 4 °C. A 5-min 

sonication bath treatment was followed by 1-h incubation on a rotor at 4 °C. After centrifugation for 10 

min at maximum speed and 4 °C, 750 µL of the extract were vacuum-dried at room temperature and 

stored at −80 °C. 
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7.2. Extract Concentration Experiment (Figures 3 and 4) 

Cells were cultivated in flasks on a rotary shaker in TAP medium [143,162] at 35 µE/m
2
/sec and 

harvested at a cell density of 1.53 × 10
6
 cells/mL. Two, 10, 50 and 100 mL culture were harvested by 

centrifugation for 30 sec (SLA-3000, 4,500 rpm, Sorvall, Thermo Fischer Scientific, Waltham, MA, 

USA). The supernatant was discarded, and cells were resuspended in cold extraction buffer  

methanol: chloroform (MC) (2.33:1, v:v), containing 4 µg/mL 
13

C-sorbitol, transferred to a new tube 

and flash frozen in liquid nitrogen. After thawing, samples were incubated at 4 °C on a rotor for 1 h. 

To achieve phase partitioning, 400 µL of cold double-distilled water were added, and samples were 

centrifuged for 15 min, 13,200 rpm at 4 °C in a table-top centrifuge (Eppendorf AG, Hamburg, Germany). 

700 µL of the upper, polar phase were vacuum-dried at room temperature and stored at −80 °C. 

7.3. Extracellular Metabolite Experiment (Figure 5) 

Cells were cultivated and harvested by fast filtration as described in the harvesting comparison 

experiment, except that 5 mL of culture were harvested per filter (filtration time ~30 sec). In parallel, 

100 µL of the filtrate were collected and frozen. Cells were washed off from the filters in 3 consecutive 

steps of 600 µL of cold extraction buffer (MC (7:3, v:v), 2 µg/mL 
13

C-sorbitol, 20 µg/mL d4-alanine) 

and combined in a new 2-mL tube. After 1-h incubation on a rotor at 4°C, the extraction mixture was 

split into two fresh tubes, and 400 µL of double-distilled water were added to each sample. Phase 

partitioning was achieved by centrifugation for 10 min, 13,200 rpm at 4 °C in a table-top centrifuge 

(Eppendorf AG, Hamburg, Germany). 700 µL of the upper, polar phase were vacuum-dried at room 

temperature and stored at −80 °C. The filtrate samples were extracted identically to the filter samples, 

except that only 300 µL of double-distilled water were added before phase partitioning. 

7.4. Metabolite Derivatization and Measurement 

Metabolites were methoxyaminated and trimethylsilylated manually prior to GC-EI/TOF-MS 

analysis [71,84,88,93,163]. Retention indices were calibrated by the addition of a C10, C12, C15, C18, 

C19, C22, C28, C32 and C36 n-alkane mixture to each sample [91]. 

Metabolite profiling was performed as detailed previously [88,93] by gas chromatography coupled 

to electron impact ionization/time-of-flight mass spectrometry (GC-EI/TOF-MS) using an Agilent 

6890N24 gas chromatograph (Agilent Technologies, Böblingen, Germany) with split and splitless 

injection onto a FactorFour VF-5ms capillary column, 30-m length, 0.25-mm inner diameter, 0.25-μm 

film thickness (Agilent Technologies, Böblingen, Germany), which was connected to a Pegasus III 

time-of-flight mass spectrometer (LECO Instrumente GmbH, Mönchengladbach, Germany).   

7.5. Data Pre-Processing and Peak Identification 

GC-EI/TOF-MS chromatograms were acquired, visually controlled, baseline corrected and exported 

in NetCDF file format using ChromaTOF software (Version 4.22; LECO Instrumente GmbH, 

Mönchengladbach, Germany). GC-MS data processing into a standardized numerical data matrix and 

compound identification were performed using the TagFinder software [86,94,164]. Compounds were 

identified by mass spectral and retention time index matching to the reference collection of the Golm 
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Metabolome Database (GMD, http://gmd.mpimp-golm.mpg.de/; [87,92,165]). Guidelines for manually 

supervised metabolite identification were the presence of at least 3 specific mass fragments per 

compound and a retention index deviation <1.0% [91]. Laboratory and reagent contaminations were 

evaluated by non-sample control experiments. 

7.6. Data Processing and Visualization 

Data processing, analysis and visualization were done with custom scripts in the F# programming 

language (Microsoft, Redmont, WA, USA). In detail, the maximum scaled numerical raw data matrix 

gained from the TagFinder software was imported into F# and normalized by the internal standard, 
13

C-sorbitol. Principal component and linear regression analysis were done on log2 transformed data by 

embedding the Accord.net framework [166]. Figures were drawn with the F# chart library [167] and 

reworked with Adobe Illustrator software (Adobe Systems, San José, CA, USA). 

8. Conclusions 

In this article, we have comprehensively reviewed the published protocols for GC-MS-based metabolite 

profiling on Chlamydomonas. Thereby, we focused, as far as accessible from the publications, on the 

employed harvesting methods of cells and extraction methods. In addition, we have presented data that 

encourage proper method establishment, and we have provided possibilities for normalizing GC-MS 

metabolite profiles from Chlamydomonas for subsequent reliable statistical analyses. 

Up to now and despite a dozen publications on this topic, the harvesting of Chlamydomonas cells for 

metabolic profiling has not yet reached a universally applied standard. The quenching method in cold 

methanol-water represents the most frequently used technique (Table 2). While, apparently, quenching 

seems to be applicable for some relatively leakage-resistant strains, it is not recommended for the 

frequently used wall-less strains. In this respect, fast filtration represents the best alternative to 

quenching for GC-MS-based approaches. With harvesting times in the lower seconds range [124,126], 

fast filtration is superior to centrifugation, but has not yet been frequently used for metabolomics 

studies on Chlamydomonas (Table 2). There still seems to be room for harvest method improvements, 

such as combinations of quenching and filtration [168], different quenching solutions [169] or 

switching experimental setups, such as experimentation with cells on filters, which, so far, has only 

been applied to yeast and E. coli [98,132]. As suggested by our data, measurements of quenched whole 

culture samples (including growth medium) are only recommended for targeted approaches with 

adapted growth media, where the analyzed intracellular metabolites are not masked by extracellular 

excess and where matrix effects can be largely excluded [96,104]. The buffer systems used for 

Chlamydomonas metabolite extraction were found to be basically very similar and consisted of 

methanol, chloroform and water in different combinations (Table 2). 

The analysis of different numbers of Chlamydomonas cells processed and measured by GC-MS 

revealed a limited linear range for biomass. This notion seems to be of importance for quantitative 

comparisons, because matrix effects in complex samples may strongly and differently affect the 

response of individual analytes. Therefore, biomass should be balanced between samples for crucial 

processing steps, like extraction, derivatization and GC-MS measurement. Hence, the amount of cells 

to be used is a trade-off: sufficient material to be above the detection limit for most metabolites, but as 
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little material as possible to avoid inhibitory effects by the sample matrix. Our results suggest that 

extracts from 1–5 × 10
5 
cells finally analyzed in the GC-MS seem to meet these requirements. 

A thorough assessment of cellular biomass is necessary to reliably compare cellular metabolite 

levels between different samples, experiments or laboratories. The OD750 is an easy estimate for the 

biomass of Chlamydomonas; alternatively, the total cellular volume may be less influenced by the 

cellular composition. Other intracellular parameters, like total protein, starch or chlorophyll contents, 

could be used, but bear the risk of being affected by the biological treatment. Other methods to 

decrease inter-sample variance rely on the properties of each chromatogram, like TIC normalization 

and probabilistic quotient normalization (PQN). TIC normalization and PQN, in addition to methods 

derived from the standardization of microarrays, may thus be more robust against biologically-induced 

variation of culture-specific factors, like e.g. cell count. Yet, irrespective of the applied normalization 

technique, the suitable scaling or transformation represents an additional prerequisite to allow for the 

proper statistical analysis of GC-MS metabolomic data. 

The use of systems biology to identify targets for the metabolic engineering of organisms is 

emerging [170,171] and attractive for the application to microalgae. Metabolomics and other  

high-throughput data can be used to screen microalgal strains and to refine or test predictions from 

genome-scale metabolic models [65]. Accordingly, GC-MS constitutes a valuable method for algal 

biofuel research. Nevertheless, to ensure that results are truly transferrable between experiments, 

organisms and laboratories, metabolomics methods, like GC-MS, should be reliably developed and 

should reach standards that go beyond the presently discussed issues [73]. 
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