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Abstract: The Critical Assessment of Small Molecule Identification (CASMI) contest was 

developed to provide a systematic comparative evaluation of strategies applied for the annotation 

and identification of small molecules. The authors participated in eleven challenges in both 

category 1 (to deduce a molecular formula) and category 2 (to deduce a molecular structure) 

related to high resolution LC-MS data. For category 1 challenges, the PUTMEDID_LCMS 

workflows provided the correct molecular formula in nine challenges; the two incorrect 

submissions were related to a larger mass error in experimental data than expected or the 

absence of the correct molecular formula in a reference file applied in the PUTMEDID_LCMS 

workflows. For category 2 challenges, MetFrag was applied to construct in silico fragmentation 

data and compare with experimentally-derived MS/MS data. The submissions for three 

challenges were correct, and for eight challenges, the submissions were not correct; some 

submissions showed similarity to the correct structures, while others showed no similarity. 

The low number of correct submissions for category 2 was a result of applying the assumption 

that all chemicals were derived from biological samples and highlights the importance of 

knowing the origin of biological or chemical samples studied and the metabolites expected 

to be present to define the correct chemical space to search in annotation processes. 
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1. Introduction 

Metabolites are the building blocks for a range of chemicals (for example, proteins and DNA) and 

cellular components (for example, cell walls) in biological systems and are involved in many 

biological processes, including metabolism and regulatory processes (for example, allosterism and 

riboswitches). The untargeted and holistic study of the metabolite composition of biological samples (for 

example, cells and tissues) is defined as metabolomics and is applied to provide a sensitive and dynamic 

measure of the phenotype [1,2].These phenotypic data provide insights in to biological mechanisms [3,4] 

and can also act to define biomarkers related to, among others, environmental stress [5,6], disease [7] and 

drug toxicology [8]. 

The workflow in untargeted metabolomic studies starts with experimental design, progresses 

through sample collection, sample preparation and data acquisition to the final processes of data 

analysis and biological interpretation [9]. In these studies, samples are prepared and analysed typically 

without the chemical identity of metabolites in the sample being known a priori. In studies applying 

chromatography-mass spectrometry as the analytical platform, hundreds to thousands of metabolite features 

are detected where a single metabolite is related to multiple metabolite features (i.e., multiple chemical 

derivatisation products in GC-MS [10] and different ion types in LC-MS [11]). Following univariate and 

multivariate data analysis, annotation or identification of metabolite features identified as biologically 

important is performed. This process is currently a large bottleneck in holistic metabolomics studies, and 

the capabilities have been reviewed (for example, see [12]). When applying chromatography-mass 

spectrometry studies, the first step of annotating metabolites is to apply the accurately measured  

mass-to-charge ratio (m/z) and match the feature to molecular formula(e) with the same m/z ratio (or 

associated mass of the non-charged metabolite) within a specified mass error (for example, see [13–16]). 

Where multiple molecular formulae are reported, further chemical rules can be applied (for example, 

the seven golden rules [17], which includes relative isotopic abundance calculations) to reduce the number 

of possible molecular formulae. These molecular formulae can be searched for in chemical (for example, 

ChemSpider [18] or PubChem [19]) or metabolite-specific (for example, KEGG [20], HMDB [21] or 

MetaCyc [22]) to report specific metabolites. The second step of annotation is to apply gas phase 

fragmentation (i.e., MS/MS [23] or MS
n
 [24]) of the molecular or related ion and to match experimental 

data to mass spectral libraries (for example, METLIN [25] or MassBank [26]) or to theoretical fragmentation 

patterns derived from open source software (for example, MetFrag [15]) or commercial software  

(e.g., Mass Frontier from HighChem [27]). 

Four levels of reporting metabolite annotation and identification are available as defined by the 

Metabolomics Standards Initiative in 2007 [28]. These levels include identification (level 1), where 

two orthogonal properties of the metabolite are matched to the same properties of an authentic 

chemical standard analysed, applying the same analytical method. Levels 2 and 3 provide annotation 

as metabolites (level 2) or metabolite classes (level 3) by matching to data present in chemical or 
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metabolite-specific databases and mass spectral libraries, but without comparison to authentic 

chemical standards analysed, applying the same analytical methods. Level 4 defines the metabolite  

as unidentified. 

Here, we report our submissions to the CASMI open contest, specifically, eleven challenges in category 1 

and in category 2 related to high resolution LC-MS data. We provide our final submissions, the workflow 

applied to arrive at our submissions and specific comments in relation to the contest. 

2. Results and Discussion 

2.1. Description of Methods Applied 

A research team from The University of Birmingham competed in the CASMI open challenge, 

specifically categories 1 and 2 related to liquid chromatography-mass spectrometry. All challenges were 

performed with the exception of challenges 11, 12 and 16; these challenges were assessed, though, 

because of complexity in the data, specifically, in-source fragmentation, so it was decided not to submit 

responses. No results were submitted for categories 3 and 4 related to gas chromatography-mass spectrometry. 

Workflows previously developed by one of the authors (W.D.) and colleagues were applied to 

compete in category 1. Workflows 1 and 2 of the PUTMEDID-LCMS workflow series [13] were 

applied to annotate different metabolite features as the [M+H]
+
 or [M−H]

−
 ions or as isotopic peaks 

(for example 
13

C and 
34

S), applying retention time (RT), correlation coefficient analysis, m/z differences 

and median peak areas. The molecular mass of the uncharged metabolite was calculated from these 

data and matched to a large reference file containing accurate molecular masses and their associated 

molecular formula (13,061 in total, derived from PubChem and containing the elements C, H, N, O, P, 

S, Br, Cl, F and Si). A mass tolerance range of 5 ppm was applied, unless stated otherwise. Where more 

than one molecular formula was reported, the relative isotopic abundances (RIA) for carbon and sulfur 

were calculated using response data and accurate mass differences to filter the number of molecular formulae. 

The authors have an interest in performing annotation of metabolites not present in mass spectral 

libraries. We applied MetFrag [15] to construct in silico fragmentation patterns and compare these data 

to experimental MS/MS data, because MetFrag software is freely available. Here, the molecular 

formula or formulae reported in category 1 of the same challenge were inputted on a single and manual 

basis in to the on-line MetFrag software, followed by searching for the molecular formula in the 

KEGG and/or ChemSpider databases and reporting of all molecular structures with the defined 

molecular formula. In the second stage, in silico fragmentation of each putative molecular structure 

was performed applying MetFrag and matched to the experimental MS/MS data provided. The match 

scores provided by MetFrag were applied to report putative molecular structures after manual 

assessment by the authors to ensure that the match scores reflected the different structures reported. 

2.2. Results 

The processes followed to construct the results submitted to the CASMI open contest, for each 

challenge in categories 1 and 2, are described below. We describe the data provided for challenge 1 to 

inform the readers of the typical data available. 
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2.2.1. Challenge 1 

For challenge 1, four data files were available; (i) the MS1 raw data (mzXML and netCDF formats), 

(ii) the MS1 peak list (txt format), (iii) MS2 raw data acquired at three different collision energies 

(mzXML format) and (iv) the MS2 peak lists for each collision energy at which MS/MS data were 

acquired/applied. Information on the instrument applied to acquire the data, the mass resolution and 

expected mass accuracy and retention time were also provided to assist the contestants. Similar data 

and further information were available for all other challenges. The three m/z values defined in the 

challenge as being detected in positive ion mode were analysed, applying workflows 1 and 2 of the 

PUTMEDID_LCMS collection of workflows with a mass accuracy of 5 ppm (as defined in the 

experimental summary). The results showed that the [M+H]
+
 ion was detected and reported a single 

molecular formula of C18H36N4O11, which was present in the trimMMD_sortAmass.txt file applied in 

workflow 2. The correct molecular formula was submitted. This molecular formula and the fragmentation 

mass spectrum acquired at 30eV were submitted to MetFrag applying KEGG as the chosen database. 

MS/MS data were provided at three different collision energies, and the data acquired at 30eV was 

chosen, as these MS/MS data provided the greatest number of product ions to allow structural 

information to be deduced most accurately. Two metabolites were reported, Kanamycin A and C, with 

in silico fragmentation data matching to 10 experimentally derived product ions for the former and 

eight for the latter metabolite. As a greater number of product ions were matched for Kanamycin A, 

this metabolite was submitted as the molecular structure. The correct molecular structure was submitted. 

2.2.2. Challenge 2 

The four m/z values defined in the challenge as being detected in negative ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as reported for the same instrument in challenge 1). The results showed that the [M-H]
−
 ion 

was detected and reported no matches to a molecular formula present in the trimMMD_sortAmass.txt 

file applied in workflow 2. The search was repeated with a mass accuracy of 10 ppm, but no matches 

were reported. The m/z of the uncharged metabolite (592.1969 Da) was manually calculated and 

submitted to MetFrag with a mass accuracy of 5 ppm, where applying the KEGG database provided no 

hits and where applying the ChemSpider database provided 193 hits related to twenty-nine possible 

molecular formula. When all molecular formula containing F, Cl, Si or Br were removed (as it was not 

expected that the correct metabolite would contain these elements), 12 molecular formula remained. 

The data showed no evidence for the presence of sulfur in the molecular formula (as defined by 

relative isotopic abundance), and eight molecular formula containing sulfur were removed to leave 

four molecular formulae. Applying the relative isotopic abundance for carbon showed that 29 carbons 

were present in the molecular formula and one molecular formula was removed (C21H32N6O14). Three 

molecular formula remained; C32H32O11, C33H28N4O7 and C38H28N2O5. The correct molecular formula 

was not submitted, as the experimentally derived mass error (>30 ppm) was greater than the mass error 

reported with the data and expected for the mass spectrometer applied. The CASMI organisers have 

now provided data following recalibration; this provides an accurate result as defined by them. 

Submitting the fragmentation mass spectrum acquired at 20eV (MS/MS data at one collision energy of 
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20eV were provided) to MetFrag and applying ChemSpider as the chosen database reported six 

metabolites, and these were submitted to the contest with the MetFrag reported scores. The correct 

molecular structure was not submitted, because the correct molecular formula was not applied. One 

important point was observed in this challenge; although the mass accuracy of a specific mass 

spectrometer can be reported as a specific ppm range (+/− × ppm), this may not always be true for a 

subset of metabolites (for example, with a low response or where ion statistics do not allow an accurate 

determination of peak shape and apex).  

2.2.3. Challenge 3 

The five m/z values defined in the challenge as being detected in negative ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as reported for the same instrument in challenge 1). The results showed that the [M-H]
−
 ion 

was detected and reported no matches to a molecular formula present in the trimMMD_sortAmass.txt 

file applied in workflow 2. The process was repeated with a mass accuracy of 10 ppm, and one molecular 

formula was reported, C13H19N7O7S2. On assessing the sulfur relative isotopic abundance, it was 

calculated that three sulfur atoms were present in the molecular formula and, therefore, that this molecular 

formula may be incorrect. The mass (or molecular weight) of the uncharged metabolite (449.0826 Da) was 

manually calculated, assuming a [M−H]
−
 ion was detected (448.0754 + 1.0077 − 0.00055) and submitted 

to MetFrag with a mass accuracy of 5 ppm, where applying the KEGG database provide one molecular 

formula, C14H27N1O9S3. This molecular formula matched to the experimental relative isotopic 

abundance for sulfur and was submitted. The correct molecular formula was submitted. Submitting the 

fragmentation mass spectrum acquired at 20eV (chosen from data acquired at four collision energies, 

as these MS/MS data provided the greatest number of product ions to allow structural information to 

be deduced most accurately) to MetFrag, applying KEGG as the chosen database and performing  

in silico fragmentation, reported a single metabolite, glucolesquerellin (6-methylthiohexyl glucosinolate), 

with three product ions being matched to in silico-derived fragmentation ions. This single metabolite 

was submitted to the contest. The InChI submitted to the contest did not match the correct InChI 

provided by the organisers. However, the InChI submitted to the contest almost matched the correct 

structure, differing only in the structural configuration of the hexose substructure. 

2.2.4. Challenge 4 

The three m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as defined in the Experimental Summary). The results showed that the [M+H]
+
 ion was detected 

and reported a single molecular formula of C16H21NO4S. However, the relative isotopic abundance 

observed in the data showed no evidence of a sulfur-containing molecular formula. The experimental 

information provided defined that mass accuracy ―should be below 5 ppm‖, though did not guarantee 

this mass accuracy in the view of the authors. Therefore, the workflows were operated with a mass 

accuracy of 10 ppm and produced a second molecular formula (C19H17NO4), which was present in the 

trimMMD_sortAmass.txt file applied in workflow 2. This molecular formula was submitted. The 

correct molecular formula was submitted. The fragmentation mass spectrum acquired at 30eV was 
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submitted to MetFrag, applying KEGG as the chosen database. MS/MS data at three collision energies 

were provided, data acquired at 30eV was chosen, as they provided the greatest number of product ions 

to most accurately define the structure of the metabolite. Two metabolites were reported, rutacridone 

epoxide and stylopine, with in silico fragmentation data matching to 20 experimentally-derived 

product ions for the former and 10 for the latter metabolite. Both of these metabolites were submitted 

to the challenge with scores of 1.0 and 0.5, respectively. The correct molecular structure was not submitted. 

2.2.5. Challenge 5 

The four m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 10 ppm (the experimental notes defined a mass accuracy of 5 ppm, though the results from 

challenge 4 showed a mass accuracy of 10 ppm was appropriate). The results showed that the [M+H]
+
 

ion was detected and reported two molecular formula of C19H23NO4 and C16H27NO4S, which were 

present in the trimMMD_sortAmass.txt file applied in workflow 2. However, the relative isotopic 

abundance data showed no evidence of a sulfur-containing molecular formula; so, C16H27NO4S was 

removed, and C19H23NO4 was submitted to the contest. The correct molecular formula was submitted. This 

molecular formula and the fragmentation mass spectrum acquired at 10 eV were submitted to MetFrag, 

applying KEGG as the chosen database. MS/MS data were acquired at two collision energies; the data 

acquired at 20eV appeared to be inaccurate, as the highest m/z reported was greater than the molecular 

weight of the metabolite, and therefore, the data acquired at 10 eV data was applied. Five metabolites 

were reported; four metabolites matched two experimentally-derived product ions (of a possible 16) to 

in silico-derived product ions, and the one metabolite reported one product ion match. The latter 

metabolite was removed, because of the lower number of matches, and the four metabolites were 

submitted to the contest. As confidence in these four metabolites was not high, because only two of 16 

product ions were matched, all were reported with the same score, as no discrimination in confidence 

could be obtained. The correct molecular structure was submitted. 

2.2.6. Challenge 6 

The four m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 10 ppm (the experimental notes defined a mass accuracy of 5 ppm, though the results from 

challenge 4 showed a mass accuracy of 10 ppm was appropriate). The results showed that the [M+H]
+
 

ion was detected and reported two molecular formula of C21H21NO6 and C14H25NO11, which were 

present in the trimMMD_sortAmass.txt file applied in workflow 2. An error by our team was not to 

assess the carbon relative isotopic abundance, as had been performed in other challenges and which 

would have removed the C14H25NO11 option. Instead, C21H21NO6 and C14H25NO11 were submitted to 

the contest with scores of 0.5 and 1.0. The correct molecular formula was submitted as the second 

ranked possible molecular formula. These molecular formulae and the fragmentation mass spectrum 

acquired at 20 eV were submitted to MetFrag, applying KEGG as the chosen database. MS/MS data 

for three collision energies were available; data acquired at 20 eV data was chosen, as this included a 

m/z peak representing the molecular ion and which the authors prefer to observe in MS/MS data. Seven 
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metabolites were reported; four metabolites were reported with a molecular formula of C21H21NO6, 

and three metabolites were reported with a molecular formula of C14H25NO11. The three latter 

metabolites matched a greater number of experimentally-derived product ions to in silico-derived product 

ions. These three metabolites were submitted to the contest with the MetFrag calculated scores. The 

correct molecular structure was not submitted. 

2.2.7. Challenge 10 

The three m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as would be expected with a hybrid LTQ-Orbitrap mass spectrometer). The results showed 

that the [M+H]
+
 ion was detected and reported a single molecular formula of C14H9NO2, which was 

present in the trimMMD_sortAmass.txt file applied in workflow 2. The correct molecular formula was 

submitted. This molecular formula and the fragmentation mass spectrum (MS/MS data were only 

acquired at one collision energy of 10eV data) were submitted to MetFrag, applying KEGG as the 

chosen database. Three metabolites were reported; one metabolite matched in silico fragmentation data 

to two experimentally-derived product ions, whereas two metabolites matched one product ion. As the 

number of matches was low and none were conclusive, all three metabolites were submitted to the 

contest. The correct molecular structure was not submitted. 

2.2.8. Challenge 13 

The three m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as would be expected with a hybrid Orbitrap mass spectrometer). The results showed that 

the [M+H]
+
 ion was detected and reported a single molecular formula of C9H16N4O7, which was 

present in the trimMMD_sortAmass.txt file applied in workflow 2. The correct molecular formula was 

not submitted. Further research after the results were released shows that the correct molecular formula 

(C19H17OP) is not present in the reference file applied in workflow 2. The molecular formula 

C9H16N4O7 and the fragmentation mass spectrum collected applying collision-induced dissociation 

(CID) at a normalized collision energy (NCE) of 45% were submitted to MetFrag, applying KEGG as 

the chosen database. Four MS/MS datasets were available, CID at 45 and 75% and higher-energy  

C-trap dissociation (HCD) at 45 and 75%. CID at 45% was chosen, as it provided as many product 

ions as the other data provided, though HCD at 45% provided the same number of product ions. No 

matches were reported, and the process was repeated applying ChemSpider. Three metabolites were 

reported; one metabolite matched in silico fragmentation data to five experimentally-derived product 

ions, whereas two metabolites matched two product ions. The former metabolite (N-hydroxy-6-

(hydroxyamino)-5,6-dihydrocytidine) was submitted to the contest, as this showed a significantly 

better score in MetFrag. The correct molecular structure was not submitted, because the correct 

molecular formula was not applied. 
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2.2.9. Challenge 14 

The two m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as would be expected with a hybrid Orbitrap mass spectrometer). The results showed that 

the [M+H]
+
 ion was detected and reported a single molecular formula of C12H9N, which was present in 

the trimMMD_sortAmass.txt file applied in workflow 2. The correct molecular formula was submitted. 

To the team, this appeared to be related to a chemical rather than a metabolite, and therefore, 

ChemSpider, and not KEGG, was applied in MetFrag. This molecular formula and the fragmentation 

mass spectrum collected applying HCD at 180V were submitted to MetFrag applying ChemSpider as 

the chosen database. MS/MS data were provided at two different collision energies, and the data 

acquired at 120 V was chosen, as these MS/MS data provided the greatest number of product ions to 

allow structural information to be deduced most accurately. Sixty-five chemicals were reported; many 

of these were defined as chemically unusual, as they contained C-N triple covalent bonds or C-C triple 

covalent bonds or three fused benzene rings or two fused C-C double bonds. These chemicals were 

removed to leave 23 possible molecular structures. The 23 molecular structures were submitted to the 

contest with MetFrag scores. The correct molecular structure was submitted and was ranked as 12
th

 in 

possible molecular structures. 

2.2.10. Challenge 15 

The two m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as would be expected with a hybrid Orbitrap mass spectrometer). The results showed that 

the [M+H]
+
 ion was detected and reported a single molecular formula of C12H13NO2, which was 

present in the trimMMD_sortAmass.txt file applied in workflow 2. The correct molecular formula was 

submitted. This molecular formula and the fragmentation mass spectrum collected, applying HCD at a 

120V, were submitted to MetFrag, applying KEGG as the chosen database. MS/MS data were acquired 

at two different collision energies; both provided the same number of product ions, and the data 

acquired at 120V was chosen. Three metabolites were reported; one metabolite matched in silico 

fragmentation data to 10 experimentally derived product ions, whereas the other two metabolites 

matched one and no product ions. The former metabolite (indole-3-butyric acid) was submitted to the 

contest, as this showed a significantly higher score in MetFrag. The correct molecular structure was 

not submitted. The submitted and correct structure had the same sub-structure (indole), the additional 

substructures were different for the correct and submitted structures. 

2.2.11. Challenge 17 

The three m/z values defined in the challenge as being detected in positive ion mode were analysed 

applying workflows 1 and 2 of the PUTMEDID_LCMS collection of workflows with a mass accuracy 

of 5 ppm (as would be expected with a hybrid Orbitrap mass spectrometer). The results showed that 

the [M+H]
+
 ion was detected and reported a single molecular formula of C13H13N3, which was present 

in the trimMMD_sortAmass.txt file applied in workflow 2. The correct molecular formula was 
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submitted. This molecular formula and the fragmentation mass spectrum collected applying HCD 90V 

(CID and HCD data were provided; HCD data provided more product ions) were submitted to 

MetFrag, applying KEGG as the chosen database. MS/MS data were provided applying two different 

fragmentation techniques (CID and HCD); the data acquired applying HCD was chosen, as these 

MS/MS data provided the greatest number of product ions to allow structural information to be deduced 

most accurately. Three metabolites were reported; only one metabolite matched in silico fragmentation 

data to experimentally-derived product ions, whereas the other two metabolites matched no product 

ions. The former metabolite (3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole) was submitted to the 

contest. The correct molecular structure was not submitted. The correct structure was similar to the 

submitted structure, as both contained two sub-structures that were identical (benzene and aniline), though 

the difference between both structures was the chemical sub-structure connecting these two sub-structures.  

2.3. Discussion 

Applying two separate workflows to putatively annotate metabolites was an enjoyable process and 

tested the authors’ knowledge of chemistry, metabolites and metabolite annotation applying automated 

workflows and manual interpretation. The results presented here were acquired, applying one 

workflow for each challenge. However, different workflows were also assessed, but were not 

submitted to the CASMI contest, because of the opportunity to submit only one result for each 

challenge. Other workflows investigated included MI-Pack [14] and Mass Frontier [27], both showed 

good results, but will not be discussed further here. The authors were ranked as first in the contest for 

category 1; they submitted results to 11 challenges, of which their highest probability match was 

correct in eight challenges, their second highest probability match was correct in one challenge and 

their submission was not correct in two challenges. Of these two challenges providing incorrect 

submissions, the mass error of the metabolite was higher than reported in the contest information for 

challenge two (>30 ppm compared to an expected mass accuracy of 5 ppm). This highlights an 

important point that the mass accuracy of any mass spectrometer does not always meet the 

specifications provided by instrument companies, caused by either analyst error (including mass 

calibration errors) or inadequate ion populations to provide accurate determination of the ion peak 

shape and apex. For challenge 13, the molecular formula of the correct metabolite was not present in 

the trimMMD_sortAmass.txt file applied in workflow 2 of PUTMEDID_LCMS. The authors did not 

submit entries for three challenges (11, 12 and 16), as in-source fragmentation was present, and it is 

known that PUTMEDID_LCMS does not report accurate molecular formula for metabolites 

undergoing uncommon in-source fragmentation (though it operates well for loss of H2O, HCO2H and 

NH3). The results submitted to category 1 have shown that the PUTMEDID_LCMS operates very well 

in defining the molecular formula; in only two of thirteen submissions were the results not correct, one 

due to a limitation of the reported data and one due to a limitation of a reference file applied in 

PUTMEDID_LCMS. 

The authors’ accuracy in defining chemical structures in category 2 was significantly lower than for 

category 1; they submitted results to 11 challenges, of which their highest probability match was 

correct in one challenge (challenge 1), their submission was not correct in eight challenges and, in two 

challenges, the correct structure was ranked by the authors as fourth (challenge 5) and 12th (challenge 14). 
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All challenges were performed, with the belief that all chemicals were endogenous or exogenous metabolites, 

and this logic was applied in the processes employed to define molecular structure. In the eight challenges 

where the submission was not correct, the authors applied only a metabolite-specific database (KEGG) 

or in challenges where there were no matches to KEGG, ChemSpider was applied, but results were 

filtered to remove chemicals (by a single author, W.B.D.) not believed to be derived from endogenous 

and exogenous metabolism. This logic is applied in all metabolomics studies by the authors, though the 

contest does not state anywhere that chemicals are endogenous or exogenous metabolites, and so, applying 

this logic was not appropriate. Here, the application of chemical rather than metabolite-specific 

libraries when integrated with the application of MetFrag would be expected to provide greater 

accuracy in the annotation of metabolites, though this has not been experimentally assessed by the authors. 

This observation highlights an important aspect of the annotation process. The search space for 

chemicals is very large; PubChem contains more than 31 million entries [19]. The metabolite search is 

a sub-component of the chemical search space and is smaller than the chemical search space, though, 

depending on the biological sample, it can be comprised of thousands of unique metabolite structures. 

For example, yeast, plant and human metabolic reconstructions contain only hundreds or thousands of 

metabolites [29–31], whereas some other databases contain over 40,000 metabolites (e.g., HMDB [21]). 

Some metabolites are not specific to a single organism or biological sample, whereas other metabolites 

can be specific to a single organism or biological sample. Some databases are specific to chemicals and 

are large (for example, PubChem [19]), whereas some databases are metabolite-specific (for example, 

KEGG [20,32]). To provide accuracy in the annotation process, applying information on the organism 

and environment will always be beneficial. For example, when performing a metabolite search in 

human biofluids, you would include drugs and their metabolites in the search space, whereas in plants 

and microbes, you would not, unless they were specifically added to the environment. Following on 

from the previous discussion, the choice of database or databases to apply is important. Again, this 

should be organism-specific if the organism or biological sample is known, so as to reduce the search 

space and number of returned hits, and a greater number of organism-specific databases are being 

constructed. However, when information is limited and the complexity of samples is high, then 

chemical rather than metabolite databases should be applied, reducing the specificity of the search by 

increasing the number of possible matches. This was the case for the CASMI challenge, as no 

information was provided on the origin of the biological sample, or for challenges based on single 

authentic chemical standards; no information was provided on the biological sample type where the 

chemical is expected to be observed. This logic can also be applied for mass spectral library searches, 

specifically the decision of whether to apply metabolite-specific (for example, METLIN [25] HMDB [21] 

and MassBank [26]) or chemical-specific mass spectral libraries (for example, the NIST12 MS/MS database [33]). 

The authors choose to apply in silico fragmentation to aid in their putative annotation process, as 

they are interested in this process for the annotation of metabolites not present in mass spectral 

libraries and the appropriateness of applying this process. MetFrag was chosen to perform in silico 

fragmentation, as it was freely available to the academic research community. The authors also applied 

Mass Frontier, a commercial software package available from HighChem, though did not submit any 

results from these data, as only single submissions were available for each challenge. A second 

process, which the authors apply, is to submit experimentally-derived MS/MS data to freely available 

mass spectral MS/MS libraries, including METLIN [25], MassBank [26] and HMDB [21]. However, 
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because of the interests of the authors, we decided to submit the in silico-derived data from MetFrag 

only for this contest. 

The authors would like to emphasise that all data presented here for unknowns (but not challenges 

based on chemical standards) are provided as putative annotations (level 2, according to the MSI [34]). 

To provide level 1 identifications, authentic chemical standards would need to be purchased and data 

acquired applying the same analytical methods. 

3. Experimental Section  

3.1. Derivation of Molecular Formulae from Experimentally Determined m/z 

PUTMEDID_LCMS [13] was applied as the first process to derive single or multiple molecular 

formulae, which exhibited a match to the experimentally determined m/z and associated mass accuracy 

(applied as +/− mass accuracy, ppm). The data provided in the challenge included data on 

experimentally determined m/z values, retention times and responses. These data were inserted in to a 

Microsoft Excel worksheet as follows; m/z values for each metabolite feature were inserted in to 

column 1, the experimentally determined retention time was inserted in to column 2 (or a value of 100 

was inserted for direct infusion studies) for each metabolite feature and the response data was inserted 

in to columns three to twelve. The insertion of multiple columns related to response allowed 

correlation analysis to be performed in workflow 1, below. 

Workflow 1 and workflow 2 of the three available workflows in the PUTMEDID_LCMS package 

were applied, as defined in the standard operation procedure (SOP), available at [35]. Workflow 1 

provided an output file, which defines pairwise correlation coefficients between different metabolite 

features. The output file was imported in to workflow 2, which applies correlation coefficient results, 

ion mode, m/z differences calculated between metabolite features, retention time and median peak area 

to group together and annotate metabolite features (adducts, dimers, isotopes) derived from the same 

metabolite. From these data, the molecular weight of the non-charged metabolite was calculated and 

matched to the molecular weight of single or multiple molecular formulae present in a reference file 

(trimMMD_sortAmass.txt). The mass accuracy defined in the contest or a mass accuracy defined by 

the author (W.B.D.) was applied in workflow 2 to limit the search space. Where multiple molecular 

formulae were present, the different options were normally (but not always) assessed, applying relative 

isotope abundance calculations for carbon and/or sulfur, and inaccurate molecular formulae were 

removed. Where molecular formula contained sulfur atoms, relative isotopic abundances were assessed 

to determine whether these data indicated the presence of sulfur atoms and the number of sulfur atoms 

present; if their presence was not supported by these isotopic data, then further work was performed, as 

defined for each challenge. 

In challenges where the process above applying PUTMEDID_LCMS provided no molecular 

formula matches, one of two processes was performed, as chosen by the authors. The first process 

assessed the experimental information provided and reduced the mass accuracy applied in workflow 2 

of the PUTMEDID_LCMS process. The second process applied MetFrag (v 0.9, [15,36]) to perform a 

molecular formula search applying the neutral mass of the metabolite, as calculated by PUTMEDID_LCMS, 

KEGG as the chosen database, and a mass accuracy defined in the results section. 
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The molecular formula or formulae chosen by the authors were manually copied to a .txt file, and a 

score was applied, ranging from 0.0 to 1.0, with values of 1.0 describing the highest probability of 

reporting an accurate putative annotation. 

3.2. Derivation of Chemical Structure from Gas-Phase Fragmentation Mass Spectra and MetFrag 

MetFrag (v0.9, [15,36]) was applied to derive putative molecular structures, specifically by 

searching two databases (KEGG [20] and ChemSpider [18]), applying the single or multiple molecular 

formulae to identify putative molecular structures, followed by in silico fragmentation of these 

molecular structures and matching of these in silico data to experimentally-derived gas-phase 

fragmentation mass spectra provided in the contest. KEGG was applied as the only database in cases 

where matches to the inputted molecular formula were observed and biologically-related metabolites 

were suspected to be present. ChemSpider was applied in challenges where no matches were observed 

to the KEGG database or where chemicals, which were not biologically-related, were suspected to be 

present. Search ppm was set at 5 ppm, unless stated otherwise; the ―Only biological compound‖ option 

was applied; the ―Limit # of structures‖ was set at 2,000; and m/z ppm was set at 10 ppm, unless stated 

otherwise. Experimentally-derived MS/MS data was manually copied into MetFrag; where multiple 

sets of MS/MS data were available, one was chosen as optimal, based on providing a range of product 

ions, but not greater than 30 product ions. The reported metabolites and the number of product ions 

matched were manually assessed to determine whether all were potential molecular structures 

matching to the data; structures were removed, which the authors defined as not being biologically-

related or where structures showed lower numbers of matches to fragment ions compared to other 

molecular structures. 

The InChI for each molecular structure was manually acquired from one of two databases 

(ChemSpider [18] and PubChem [19]) and were manually copied to a .txt file. A confidence score was 

applied (taken from the MetFrag result or defined manually), ranging from 0.0 to 1.0, with values of 

1.0 describing the highest probability of reporting an accurate molecular structure. 

4. Conclusions  

Researchers at The University of Birmingham took part in the CASMI open contest and submitted 

responses to 11 challenges, each in category 1 and 2. When applying the PUTMEDID_LCMS workflows 

to category 1 challenges, a high level of accuracy was observed, with nine of eleven submissions correct; 

the two incorrect submissions being related to a significantly lower mass accuracy being observed 

experimentally than was expected and reported and being related to the absence of the correct 

molecular formula in the molecular formula reference file applied in the workflows. When employing 

processes applied by the authors in metabolomic studies to eleven category 2 challenges, a low level of 

accuracy was reported, with eight challenges not submitting the correct structure and three challenges 

submitting the correct structure ranked by the authors as first, fourth and twelfth. The results for 

category 2 highlight the importance of knowing the organism or biological sample from which data has 

been acquired; this aids in focusing the chemical or metabolite search space applied; the authors here 

assumed all metabolites were of a biological origin, which was not the case. 
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