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Abstract: The suggested approach makes it feasible to screen large metabolomics data, 
sample sets with retained data quality or to retrieve significant metabolic information from 
small sample sets that can be verified over multiple studies. Hierarchical multivariate curve 
resolution (H-MCR), followed by orthogonal partial least squares discriminant analysis 
(OPLS-DA) was used for processing and classification of gas chromatography/time of 
flight mass spectrometry (GC/TOFMS) data characterizing human serum samples collected 
in a study of strenuous physical exercise. The efficiency of predictive H-MCR processing 
of representative sample subsets, selected by chemometric approaches, for generating high 
quality data was proven. Extensive model validation by means of cross-validation and 
external predictions verified the robustness of the extracted metabolite patterns in the data. 
Comparisons of extracted metabolite patterns between models emphasized the reliability of 
the methodology in a biological information context. Furthermore, the high predictive 
power in longitudinal data provided proof for the potential use in clinical diagnosis. 
Finally, the predictive metabolite pattern was interpreted physiologically, highlighting the 
biological relevance of the diagnostic pattern.  
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Abbreviations: 

CV  Cross validation or Cross validated 
GC/TOFMS  Gas chromatography time of flight mass spectrometry  
H-MCR   Hierarchical multivariate curve resolution 
MCR   Multivariate curve resolution  
OPLS   Orthogonal projections to latent structures 
OPLS-DA  Orthogonal projections to latent structures discriminant analysis 
OSC   Orthogonal signal correction 
PCA   Principal component analysis  
PLS   Partial least squares projections to latent structures 
UPLC/MS  Ultra performance liquid chromatography mass spectrometry  
 

1. Introduction 

One issue of major concern for the progression of metabolomics [1,2] is efficient screening of large 
sample sets or sample banks for patterns of co-regulated entities (metabolites) associated with some 
defined physiological status [3–6]. With the main aims of improving statistical power and being able to 
carry out metabolomics-based epidemiological studies, it is seen today as a key objective in analyzing 
data sets composed of thousands of samples. Nevertheless, this will require reproducible analyses over 
long time scales, as well as sophisticated and efficient strategies for processing the acquired data to be 
able to retrieve relevant metabolite information. So far, promising results have been presented using 
NMR in metabolome-wide associations (MWAS)[7,8] and mass spectrometry in large-scale,  
non-targeted studies using quality control samples as a means for generating reference tables of 
putative metabolites, as well as correcting for analytical drifts in the data [9,10]. Another interesting 
approach that has attracted great interest recently in mass spectrometry-based metabolomics is the use 
of array-based detection and quantification of pre-defined sets of metabolites. This has been shown to 
work well in large-scale association studies and is definitely providing a useful complement to  
non-targeted approaches [11–13]. However, despite being of high importance for the progress of the 
metabolomics field, the main objective of these studies has not been the data processing part with the 
aim of generating a pipeline for retrieving high quality data. 

Mining of sample banks is becoming increasingly important in trying to understand the complex 
biological interactions behind, or finding diagnostic or prognostic biomarkers for, various disease 
states. Usually, these sample banks contain a large number of human samples collected continuously 
over a long period of time, often extremely well-characterized in terms of property data (metadata). 
Samples of this type are very attractive for research purposes. However, a problem is that regulations 
regarding availability, for obvious and valid reasons, are very strict, and also, sample volumes might 
be limited for specific applications. For this reason, it will be of high relevance to be able to select a 
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representative subset of samples for analysis and method development. A way to address this would be 
to select samples based on the metadata characterization to make sure to create a sample set consisting 
of samples relevant for the question. The selected sample set could then be characterized using an 
appropriate analytical technique, and the acquired data processed to obtain a reliable quantification and 
identification of detected metabolites, i.e., a reference table of putative metabolites in the analyzed 
samples. In that way, multiple sample comparisons and biomarker or biomarker pattern extraction can 
be efficiently carried out by means of multivariate data analysis. Verification of the findings in 
independent sample sets, in the case of one or a few detected selective biomarkers, could be carried out 
by setting up biological assays for the detected metabolites. However, in the case of using a metabolite 
pattern or profile as the indicator of a specific physiological state, the data processing and analysis 
must work in a predictive way so that this pattern or profile can be verified in new samples, and thus 
work as a diagnostic tool. ‘Predictive’ in this case means a processing algorithm that can efficiently 
detect and quantify metabolites in the generated reference table in independently analyzed samples.  

To obtain an efficient screening of large sample sets where the aim is to acquire data for all 
samples, the key issue will be the data processing step. A sophisticated processing of GC/MS data, 
such as curve resolution, [14–16] is time-consuming, which makes it not feasible to process large 
sample sets. However, the benefits of such a data processing that can provide a reliable metabolite 
quantification and identification for further sample comparison and biological interpretation do present 
an incentive to solve this problem. One way of doing this could be to use a fast and crude data 
processing technique that still retains the variation in the data and then based on that data, select a 
representative subset of samples for the more sophisticated processing, i.e., generation of a reference 
table of putative metabolites. Again, a key here is for the sophisticated processing to work predictively 
for new samples. If this is the case, then the samples not selected for processing, as well as additional 
samples measured at a later point in time, can be predictively processed to detect and quantify the 
metabolites in the reference table. GC/MS has proven to be a valuable tool for the global detection of 
metabolites in biofluids and tissues [17–20]. This is mainly due to the combination of high sensitivity 
and reproducibility, but is also due to the fact that identification of detected compounds is relatively 
straightforward. Metabolomic GC/MS data usually requires some type of pre-processing before 
multiple sample comparisons and compound identifications can be carried out. This can be achieved 
by applying a methodology called curve resolution, or deconvolution, to the data. By the introduction 
of multivariate curve resolution (MCR)[16], multiple samples could be resolved to generate a common 
set of descriptors suitable for comparison using, for example, multivariate data analysis. A further 
development of MCR, done in our lab, named hierarchical-MCR (H-MCR)[21], allows complex 
GC/MS data, as generated within metabolomics, to be resolved into its pure components. An extension 
to the H-MCR method made it possible to perform the curve resolution predictively [22]. By 
combining the H-MCR processing with multivariate data analysis, a strategy is obtained for 
multivariate data processing and analysis, which is efficient for highlighting patterns of resolved and 
identified metabolites systematically co-varying over multiple samples [23–25]. This strategy is 
predictive in both the processing and modeling part, which makes it interesting for the development of 
high-throughput metabolomic screening, diagnostic systems, metabolite pattern verification over 
multiple studies or even for clinical use. In contrast to other processing methods, such as AMDIS [26], 
ChromaTOF (LECO, St. Joseph, MI), Tagfinder [27], and ADAP [28], H-MCR processes all or a 
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subset of all samples together, while the other methods process one sample at the time, or in some 
cases simultaneously—although independently—using parallel computing. We believe that by 
processing all samples together, the outcome of the processing will be more suitable for multivariate 
sample comparison, since a) all metabolites are quantified in the same way, b) no missing values will 
appear and c) there is no need for matching of resolved/deconvoluted peaks. However, possible 
disadvantages can be that a) strongly deviating samples can degrade the processing outcome (can be 
solved by thoroughly selecting samples to base processing upon; samples that deviate due to analytical 
error should be excluded), b) metabolites that are present only in a single or a small portion of the 
samples might not be detected, especially if they are in low concentration and c) the data processing is 
memory-demanding in case of many samples. This is true if all samples are processed instead of using 
a representative subset. 

In this paper, we show that by selecting representative sample subsets to generate a reference table 
with reliably quantified and identified metabolites, by means of H-MCR, and performing multivariate 
regression analysis, using orthogonal projections to latent structures discriminant analysis  
(OPLS-DA)[29,30], an efficient metabolomic analysis is attained for GC/TOFMS data on human 
blood serum samples. The samples were collected in a study of the effect of strenuous physical 
exercise in humans; 24 healthy and regularly training male subjects participated in four identical 90 
minutes tests of strenuous ergometer cycling exercise. Blood samples were taken before and directly 
after each exercise session to generate insights into human metabolism in relation to acute physical 
exercise. We investigated how the suggested method can be used to address the issues of performing a 
reliable screening by selecting samples according to two different strategies, one based on metadata 
variables and the other based on already acquired GC/TOFMS data processed using a fast and crude 
processing method. These two strategies were developed to be applicable for sample bank mining and 
efficient screening of large sample sets. Both strategies were also used to exemplify the usefulness of 
the method as a diagnostic tool by predictively verifying a pattern of identified or identifiable 
metabolites in a set of human blood samples analytically characterized by GC/TOFMS eight months 
later than the model samples. 

2. Results  

GC/TOFMS was used to metabolically characterize 96 plasma samples taken pre- and post- 
exercise from two separate test occasions (referred to as test occasions one and two). The resulting data 
were subjected to H-MCR processing to obtain a reliable quantification and identification of detected 
metabolites, i.e., generation of a reference table of putative metabolites in the analyzed samples. The 
generated reference table was used for OPLS-DA classification modeling of the systematic metabolic 
variation related to the acute effect of strenuous exercise. Three samples were excluded prior to data 
processing and analysis due to insufficient derivatization, giving a total of 93 samples for further 
investigations. The H-MCR processing of the 93 samples resulted in reference table containing 167 
resolved metabolites. The area under the resolved chromatographic profiles was used as sample 
descriptors in multiple sample comparison between samples taken pre- and post- exercise. The cross 
validated OPLS-DA score plot revealing the separation between pre- and post- exercise samples is 
shown in Figure 1a, and the resolved metabolite profiles responsible for the separation are shown in 
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the corresponding covariance loading plot (Figure 1b). A general interpretation of the model loadings 
show a decrease of some amino acids in combination with elevated levels of fatty acids in the blood 
during exercise. These results can also be verified physiologically as amino acids enter pathways to 
sustain blood glucose homeostasis as a substrate to gluconeogenesis in the liver and kidneys, as well as 
oxidation in skeletal muscle. During exercise, fatty acids are released into circulation from adipose 
tissue and utilized as an energy substrate in working skeletal muscle, particularly during submaximal 
and prolonged exercise [31]. Identified metabolites in the study are listed in the supporting table S1, 
and the model parameters for the multivariate sample comparisons are listed in supporting table S2. 

Figure 1. a) Classification model of the acute effect of strenuous exercise. Cross validated 
OPLS-DA score plot for the 93 model samples from exercise occasions one and two 
showing separation between pre- exercise (black circles) and post- exercise (gray circles) 
serum samples with a classification accuracy of 97.9% (class prediction (CV)).  
b) OPLS-DA covariance loading plot showing the variable (metabolite) contribution to the 
separation in the model scores. A selection of identified amino and fatty acids is named in 
the plot. 

 

2.1. Subset Selection 1 — Metadata  

A total of 34 metadata variables characterizing the 24 male subjects included in the study were 
subjected to PCA analysis. Two principal components were extracted describing 78.8% of the 
variation in the data (R2X = 0.788), and the resulting score vectors were used for a diversity-based 
selection of a representative sample subset. Six subjects were selected creating a subset of twelve 
samples (six subjects, pre- and post- exercise) that spanned the score space maximally. The acquired 
GC/TOFMS data for the selected subset was subjected to H-MCR processing resulting in a reference 
table containing 233 resolved putative metabolites. The area under the resolved chromatographic 
profiles were used as sample descriptors in OPLS-DA analysis for multiple sample comparison that 
revealed a clear separation between pre- and post- exercise samples in relation to metabolic 
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composition. The metabolic information content in the subset was compared to the information content 
in the total dataset (obtained when applying H-MCR processing to all samples from exercise occasion 
one and two). The percentage of shared spectral metabolite profiles in the two reference tables was 
87.4% (146/167). The percentage of shared metabolite profiles significantly separating pre- and post- 
exercise samples between the subset and the total data set, identified by a permutation test, was 94.1% 
(32/34). In addition, the remaining samples from test occasions one and two were predictively 
processed to detect and quantify the metabolites in the reference table, followed by predictive 
classification into the OPLS-DA model. This resulted in a cross-validated classification accuracy for 
the model samples (n = 24) of 100% (Class prediction (CV)) and a predictive classification accuracy of 
97.1% (Class prediction (Test Set)) for the test samples (n = 69). The representative subset selection 
was evaluated by repeating the procedure above for three additional selections, where each subject was 
included in one subset only. The results are presented in the supporting information (Figure S1 and 
Tables S2, S3 and S4).  

2.2. Subset Selection 2 — Analytical Data  

Human serum GC/TOFMS data of the 93 samples from exercise occasions one and two were 
processed using a fast processing method called hierarchical data compression [32]. The 230 resulting 
intensity vectors were used as descriptors in a PCA analysis of the pre- exercise samples. Three 
principal components were extracted describing 72.4% of the variation in the data (R2X = 0.724). A 
subject-wise subset selection was performed using a space-filling design in the PCA score space. Eight 
subjects were selected creating a set of 16 model samples, including pre- and post- exercise samples. 
The model samples were subjected to H-MCR processing, resulting in a reference table containing 168 
resolved putative metabolites that were used as descriptors in the following multiple sample 
comparisons by means of OPLS-DA. The calculated OPLS-DA model revealed an evident separation 
between pre- and post- exercise samples in terms of metabolic composition (Figure 2).  

The metabolic information content in the model samples was compared to the information in the 
total dataset (obtained when applying H-MCR processing to all samples from exercise occasion one 
and two). The percentage of shared spectral metabolite profiles was 82.6% (138/167). The percentage 
of shared mass spectral metabolite profiles significantly separating pre- and post- exercise samples 
between the subset and the total data set, identified by the permutation test, was 88.2% (30/34). In 
addition, the remaining samples from test occasions one and two were predictively processed to detect 
and quantify the metabolites in the reference table, followed by predictive classification into the 
OPLS-DA model. This resulted in a cross-validated classification accuracy for the model samples 
(n=16) of 93.8% (Class prediction (CV)) and a predictive classification accuracy of 96.1% (Class 
prediction (Test Set)) for the test samples (n=77) (Figure 2). The time for H-MCR processing of the 16 
selected samples was 6 h and 29 min, while predictive H-MCR processing of the remaining 77 test 
samples took only 10 min (<10sec/sample). 
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Figure 2. Classification model of the subset selected based on analytical data, including 
sample predictions. OPLS-DA predictive score plot showing separation between pre- 
exercise (black circles) and post- exercise (gray circles) serum samples with a  
cross-validated classification accuracy of 93.8% (Class prediction (CV)). Predictively 
classified test samples (remaining samples from test occasion one and two), marked as 
open circles, display high predictive classification accuracy (Class Prediction (Test set): 
96.1%) for pre- exercise samples (black open circles) and post- exercise samples (gray  
open circles). 

 

Figure 3. Comparison of prediction similarity for models based on the two subset selection 
strategies. The prediction values from the two models show a strong correlation, R=0.96 
(Pearson correlation). This implies that both models did find the same or a similar 
metabolic pattern, differentiating the two study groups. All samples except one were 
classified equally by the two different models in terms of class belonging. One of the 
samples in the pre- exercise group were wrongly predicted by both models (marked a), 
while one of the post- exercise samples were predicted correctly by the subset selection 2, 
but wrongly by the subset selection 1(marked b).  
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2.3. Comparison of Prediction Similarity of Models Based on Subset Selections 

In order to compare the predictive ability of the models generated by the two subset selection 
strategies, we formed a test set including the samples that were outside both selections. The test set, 
including 57 samples (29 pre- exercise (0) and 28 post- exercise (1)), were used to show the 
differences/similarities in prediction power for the two different models (subset selection 1-meta data 
and subset selection 2-analytical data) (Figure3).  

2.4. Longitudinal Sample Predictions 

Samples from two additional exercise sessions (referred to as exercise occasions three and four) that 
were analytically characterized eight months later compared to the model samples were predictively 
processed to detect and quantify the metabolites in the reference tables. The updated OPLS-DA models 
based on significantly separating metabolic marker patterns, extracted using permutation tests, showed 
an evident separation between the samples taken pre- and post- exercise, in addition to a high 
predictive ability of the longitudinal samples (n = 64). This is shown for the OPLS-DA model based on 
the subset selected from metadata (Figure 4), the subset selected from acquired analytical data (Figure 
5) and the model of the 93 samples from exercise occasions one and two (Figure 6). The prediction 
results for the subsets, as well as the results from the processing and modeling of all 93 samples 
concurrently, are listed in supporting table S4. 

Figure 4. Longitudinal sample predictions in the classification model for subset selection 
1- metadata. OPLS-DA predictive score plot of the model updated with the remaining 
samples from exercise occasion one and two showing separation between pre- exercise 
(black circles) and post- exercise (gray circles) serum samples (Class prediction (CV): 
97.8%). Predicted test samples from exercise occasions three and four marked as open 
circles display high predictive classification accuracy (Class prediction (Test set): 96.9%) 
for pre- exercise samples (black open circles) and post- exercise samples (gray open circles). 
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Figure 5. Longitudinal sample predictions in the classification model of subset selection 2 
-analytical data. OPLS-DA predictive score plot of the model updated with the remaining 
samples from exercise occasion one and two showing separation between pre- exercise 
(black circles) and post- exercise (gray circles) serum samples (Class prediction (CV): 
93.5%). Predicted test samples from exercise occasion three and four marked as open 
circles display high predictive classification accuracy (Class prediction (Test set): 92.2%) 
for pre- exercise samples (black open circles) and post- exercise samples (gray open circles). 

 

Figure 6. Longitudinal sample predictions in the classification model for the entire sample 
set. OPLS-DA predictive score plot for the model based on the 93 samples from exercise 
occasions one and two showing separation between pre- exercise (black circles) and post- 
exercise (gray circles) serum samples (Class prediction (CV): 97.8%). Predicted test 
samples from exercise occasions three and four marked as open circles display high 
predictive classification accuracy (Class prediction (Test set): 92.2%) for pre- exercise 
samples (black open circles) and post- exercise samples (gray open circles). 
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3. Discussion 

3.1. Data Processing and Analysis 

The results highlight that, by selecting a representative subset of samples, the metabolic information 
from, for example, a sample bank can be extracted and evaluated in a reliable fashion. Also, the 
predictive features of the strategy made it possible to process and classify new samples based on the 
information extracted from the selected subsets. This was shown by the fact that the H-MCR 
processing resolved a similar number of profiles (n = 206–233) for each of the four subsets selected 
based on the variation in metadata. OPLS-DA models based on each individual subset gave similar 
classification results, both in terms of cross validation (91.3%–100%) and predictive classification of 
the samples from the other three subsets (93%–97.1%). In addition, comparison of the results for the 
subset models to the results from when all samples were processed and modeled together showed that 
the subset models contained the same metabolic information as the model based on all samples 

The method’s ability for efficient processing and classification of large data sets by selecting 
representative subsets was exemplified by the results based on the 16 samples selected from already 
acquired GC/MS data. In this case the predictive H-MCR processing and OPLS-DA classification was 
applied to the remaining samples in order to allow a high-throughput processing of many samples with 
retained data quality for interpretation and biomarker pattern identification. By using the selected 
subset to create a reference table of metabolites and predictively processed remaining samples to detect 
and quantify the metabolites in the reference table, an efficient strategy for screening of large data sets 
for producing representative and high quality data was offered. The proof for this was given by the 
prediction results for the OPLS model based on the subset, which correctly classified 96.1% of the 
remaining samples. Investigation of the metabolic information content revealed that 138 out of 167 
metabolite profiles and 30 out of 34 metabolite profiles significantly discriminating the sample was 
detected in the reference table as compared to the data where all samples were resolved. This indicates 
that a small subset selected based on acquired GC/MS data, if done in a systematic fashion, will 
efficiently retain the variation in the original data. Here, the importance of a feasible sample selection 
approach that retains the systematic variation in the data must be highlighted. In high complexity data, 
such as the data presented here, this can be achieved by chemometric approaches, where selections are 
made in the compressed multivariate space, as offered by PCA for example. These results also 
highlight an interesting and important issue, namely that by selecting a representative subset of 
samples, significant metabolic information can be retrieved from a small number of samples, 
information by the presented method that can be predictively verified  in follow up studies. This is 
important since it is not reasonable to believe that all future studies of value should include thousands 
of samples. Instead, there could be value in detecting potentially relevant information in small, well 
designed studies. The benefits of this will be many, including an efficient use of biobank samples, as 
well as better possibilities for maintaining a high analytical data quality, which is a major problem 
when analyzing large sample sets over longer times with mass spectrometry. 

It is also worth noting that the same strategy as above, namely selecting representative sample 
subsets from acquired GC/MS data and utilizing the predictive feature of the H-MCR method, was 
used as an internal cross-validation procedure for the H-MCR curve resolution as a means to obtain a 
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robust and reliable metabolite pattern on which to base further modeling and interpretations. Thus, the 
whole chain of events, including multivariate curve resolution and sample classification, is subject to 
an internal cross-validation procedure, as well as providing the possibility for prediction of new 
independent samples, which to our knowledge makes the proposed strategy unique. 

Of high importance for an efficient screening of large sample sets is the time and feasibility for 
producing representative data. Curve resolution methods are, in general, very time-consuming and 
demanding in terms of computer capacity, which limits the number of samples that can actually be 
processed. However, the predictive feature of the H-MCR method can resolve this issue. In the given 
example, H-MCR processing of the 16 samples took 6h and 29 min to resolve, while predictive 
processing of the remaining 77 samples took <10sec/sample. This indicates that as long as the selected 
subset is representative in terms, retained variation large sample quantities can be efficiently 
processed, providing data of high quality for sample comparisons, biomarker detection and 
identification, and predictions. It should be pointed out that the number of samples used in this 
example cannot be considered as a particularly large sample or data set. However, the point was 
proven that samples could be efficiently processed, with retained data quality, based on a selected set 
of representative samples, and as far as the method goes, there is no limitation to the number of 
samples that can be predictively processed in the same way as shown here. This high-throughput 
property of the methodology makes it interesting as a contribution to the recently presented 
metabolome-wide association studies (MWAS), where the aim is to analyze several thousands of 
samples in the search for metabolic phenotypes that can aid in, for example, disease treatment or 
prevention [33,34]. MWAS have so far mainly been carried out with nuclear magnetic spectroscopy 
(NMR) as the analytical platform, mainly due to the high robustness, the simplicity in terms of sample 
handling and the speed of data processing in comparison to mass-spectrometry-based methods. 
However, the rapid development of instrumentation and automated sample preparation equipment for 
mass spectrometry have made it feasible to utilize the higher sensitivity and information content of 
mass spectrometry data for MWAS. In this, we see our presented data processing as a key component 
for efficiently generating high quality data for metabolic phenotyping in such large sample sets. 

The ultimate goal for an efficient screening method in terms of a diagnostic is to perform in a robust 
and reliable fashion over time. We believe that the presented approach has the ability do so, however 
this is still something that needs to, and will be, evaluated in much more detail. As proof of the 
capability of the method in terms of providing correct classifications over time, predictions were made 
of samples from two exercise sessions that were analytically characterized eight months later 
compared to the model samples. Predictive processing and classification was carried out using all 
subset models, as well as all model samples. The results showed that, irrespective of subset model, a 
high classification accuracy was obtained for the new samples, and this accuracy was comparable to 
the one obtained when using all model samples for carrying out the predictions. The interpretation of 
this is that the method is efficient in carrying out longitudinal predictions based on a biomarker pattern 
extracted eight months earlier in time. Hence, we can conclude that the proposed method is showing 
promising results as a means for predictive screening in terms of biomarker pattern verification and 
diagnosis. 

Although the presented strategy is promising, there are still challenges ahead in order to reach the 
stage where a complete and robust method for screening and predictions over time is in place. For 
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instance, to further evaluate the strategy, it would be of value to perform a separate study applying the 
same test to a completely independent study population and make predictions for these subjects into 
the existing model. Also, this study was carried out on a homogenous human population, which is not 
representative for the whole human population, which is obviously something that needs to be 
considered, for example, in disease diagnosis modeling. One extremely important factor for these types 
of approaches to be successful will always be properly designed studies carried out according to a 
standardized protocol under as standardized conditions as possible, which is the case for the presented 
study. Dealing with human subjects, and that is eventually where many research projects are aiming 
today, there is a need to minimize confounding variation, or at least to be able to detect and handle this 
variation. In this, the chemometric methodology in terms of design of experiments and multivariate 
projections can bring a valuable contribution together with experience and knowledge related to the 
study itself [35]. Other issues that constantly need to be considered and optimized are standardization 
and quality control of sample handling and analytical characterization, as well as strategies for 
continuous updating of models to assure robust and reliable end results [20,36–39].  

3.2. Biological Relevance 

Interpreting the metabolite pattern reveals that the apparent increase in fatty acids in blood serum 
following exercise could be expected and does reflect an increased lipolysis and release of fatty acids 
from the adipose tissue. This is stimulated by catecholamines and other stress-induced hormones 
during exercise [40,41]. It is known that fatty acid metabolism increases in working muscle fibers and 
that this is related to the intensity and duration of exercise [42] together with training and muscle 
glycogen state [43,44]. Of the detected amino acids, aspargine, lysine, serine, phenylalanine, 
methionine, arginine, ornithine, proline, histidine, allothreonine, tryptophan, as well as the branched 
chain amino acids (BCAAs) valine and isoleucine, all decreased significantly (Figure 2) from pre- to 
post- exercise, while an increase in the level of alanine was seen at the same time. Many of these 
amino acids, particularly alanine, play a glucogenic role in hepatic glucose production, which does 
increase during exercise[45]. Thus, the release of alanine from skeletal muscle into blood may have 
exceeded uptake to the liver. Conversely, the decreased level of the other detected amino acids may be 
related to greater uptake and utilization in hepatic gluconeogenesis. As the utilization of amino acids, 
predominantly glutamate and the BCAAs, increases in muscle during prolonged exercise to support the 
muscle ATP-synthesis, a release of glucogenic amino acids from working muscles may be less than the 
hepatic uptake [46,47]. In addition, the increased level of inosine detected does reflect the well 
characterized adenine-nucleotide catabolism (ATP→ADP→AMP→IMP→inosine) that occurs in 
working muscle during strenuous exercise [48,49], and, consequently, an increased release of inosine 
from muscle to blood[50]. In summary, this proves that the generated models based on the detected 
and resolved metabolites do provide biologically relevant information, which of course is key to 
further application of the methodology in research, as well as for clinical applications. 
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4. Experimental Section  

4.1. Dataset 

24 healthy and regularly training male subjects (age: 25.7 ± 2.7 yr; height: 182.5 ± 7.6cm; 
bodyweight: 77.4 ± 8.8kg; VO2peak at 59.1 ± 7.3mL kg−1min −1) volunteered to participate in the study. 
The study was approved by the regional ethical committee (Dnr 05–069M). Each subject participated 
in a pre-experimental VO2peak test and four identical experimental tests performed one week apart. 
Samples from two test occasions were used in the primary analysis, while samples from the remaining 
two test occasions were used for longitudinal predictions and for that reason, characterized analytically 
by GC/TOFMS eight months later. The dataset included in total 160 samples, i.e., 96 samples used in 
the primary analysis (24 subjects at two occasions and two time points) and 64 additional samples 
characterized eight months later (12 subjects at two additional occasions and two time-points along 
with 16 analytical replicates). The data have been previously used for evaluating physiological 
variation related to the acute effect of strenuous exercise [51]. Raw data is available upon request. 

4.1.1. Pre-Experimental Procedures 

The included subjects performed a pre-experiment incremental test on an ergometer cycle  
(Monark 839E) to exhaustion in order to determine the maximum oxygen uptake as a mean of 60 
seconds (VO2peak) [52]. At the morning of the experimental test a standardized breakfast in amount 
related to bodyweight was ingested at 7.30 am, one hour prior to the test. Subjects were instructed to 
maintain food diaries prior to exercise occasion one and then repeat the same diet prior to exercise 
occasions two, three and four. Subjects were also instructed not to perform any exercise or consume 
alcohol the day before each exercise occasion and to avoid stress in the morning of the test day. 

4.1.2. Experimental Procedure 

Venous blood samples were taken after 15 min of bed rest by using a vacutainer system (Becton 
Dickinson, UK). Thereafter, subjects were equipped with an intravenous catheter (Optiva®2, Medex) 
in a forearm vein, a transmitter belt (Polar WearLinkTM31) and a heart frequency monitor  
Polar S610iTM). Subjects then performed 90 min of ergometer cycling, using an electronically braked 
bicycle (RodbyTM, RE 829, Enhörna, Sweden). Each 90 min test session consisted of nine equal 10 
minutes sections. The workloads during the sections were loads that corresponded to 40% (2 min), 
60% (6 min) and 85% (2 min) of the VO2peak value from the pre-experimental test. 100ml of water was 
ingested after every 10 min of cycling. Immediately after 90 min completed cycling, blood was 
collected from the vein catheter into vacutainer tubes. Serum was extracted from the collected blood 
samples following 8 min centrifugation (+4 °C at 3000g) and immediately frozen and stored in -80 °C. 
Prior to GC/TOFMS analysis, the serum samples were extracted and derivatized according to  
A et al.[53] The samples were injected in splitless mode by an Agilent 7683 autosampler  
(Agilent, Atlanta, GA) into an Agilent 6890 gas chromatograph equipped with a 10 m x 0.18 mm i.d. 
fused silica capillary column with a chemically bonded 0.18 µm DB 5-MS stationary phase (J&W 
Scientific, Folsom, CA). The column effluent was introduced into the ion source of a Pegasus III time-
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of-flight mass spectrometer, GC/TOFMS (Leco Corp., St Joseph, MI). Detailed description of the  
pre-experimental procedures, blood sampling, sample preparation, derivatization and GC/TOFMS 
protocol are found in the supporting text. 

4.2. Selection of Representative Samples 

Two alternatives for the selection of representative sample subsets for data processing were 
investigated; (1) to base the selection on metadata and (2) to base the selection on already acquired 
analytical data (GC/TOFMS). The selection was based on the systematic variation captured in the 
meta- or analytical data by principal component analysis (PCA). Each sample subsets was selected so 
that the systematic variation in the original set was maintained in the best possible way [54–56]. 

4.2.1. Subset Selection 1— Metadata 

 The included human subjects were characterized by 34 metadata variables including age, weight, 
maximum pulse at pre-test, VO2peak, load at different percentage of VO2peak, serum glucose and 
hemoglobin levels (supporting table S5). The metadata variables were subjected to PCA and the  
inter-sample relationship was investigated for deviating observations before diversity-based selections 
were carried out. A subset was selected mimicking a representative selection of samples from a sample 
bank. The subset was separately analyzed by GC/TOFMS, resolved by means of H-MCR to obtain a 
reliable quantification and identification of detected metabolites, i.e., a reference table of putative 
metabolites in the analyzed samples. The quantified metabolites in the reference table were analyzed 
by multivariate OPLS-DA classification modeling. The reference table based on the selected subset 
was then used to detect and quantify the metabolites in the in the remaining independently analyzed 
samples, i.e., predictive processing. 

4.2.2. Subset Selection 2—Analytical data 

Acquired GC/TOFMS data for all samples from test occasion one and two were subjected to 
hierarchical multivariate data compression[32], providing a fast and crude description of the 
compositional differences among the samples while retaining the systematic variation in the data. PCA 
was applied to the resulting intensity vector data. The inter-sample relationship was investigated for 
deviating observations before diversity-based selections were carried out. The selection was performed 
using a space-filling design which maximizes the minimum Euclidean distance between the nearest 
neighbors of the selected observations [57], thus maximizing the variation in all properties in the 
original space. Pre- and post- exercise samples corresponding to the selected subset were then resolved 
to create a metabolite reference table by means of H-MCR and multivariately classified using  
OPLS-DA. The reference table based on the selected subset was then used to detect and quantify the 
metabolites in the in the remaining samples, i.e., predictive processing. 
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4.3. Generation, Processing and Modeling of Representative Data  

4.3.1. Data Processing and Analysis 

GC/TOFMS data files were exported to MATLAB software (Mathworks, Natick, MA), where all 
data processing procedures and the space-filling design were performed using in-house scripts. The 
multivariate analysis was carried out in the SIMCA-P+ software (MKS Umetrics AB, Umeå, Sweden). 
NIST MS Search 2.0 (NIST, Gaithersburg, MD) was used for compound identification based on  
comparison between resolved spectra and standard spectra from NIST 08 mass spectra library,  
in-house mass spectra library or the MaxPlanck Institute mass spectra library 
(http://csbdb.mpimpgolm.mpg.de/csbdb/gmd/gmd.html). 

4.3.2. Hierarchical Multivariate Curve Resolution (H-MCR) 

Multivariate Curve Resolution (MCR)[16] is a method for simultaneous resolving multiple GC/MS 
samples (X) into chromatographic (C) and spectral (S) profiles. MCR calculates a common spectral 
profile (S) (a mass spectrum) for each resolved profile and for each sample a corresponding 
chromatographic profile (C) is obtained and (E) is the residual consisting of instrumental noise and 
possible also unresolved components, see eqv 1.  

X(X1; X2; X3; … ;Xn)= C(C1; C2; C3, … ;Cn)*ST+ E(E1; E2; E3, … ;En)  (1)  

Due to the size and complexity of metabolic data, MCR decomposition of data into spectral and 
chromatographic profiles cannot be done for the complete data set simultaneously. To cope with this 
the data is divided into smaller parts. This is done in by splitting the data in the chromatographic 
dimension into a set of time window. Prior to this division, the samples are aligned in the 
chromatographic dimension. Each time window is then resolved separately using MCR. This 
procedure is called H-MCR[21]. For new independent samples chromatographic profiles (C) can be 
calculated using the common spectral profiles (S) using Equation (2). In this way, a new set of samples 
can be resolved predictively, meaning that the same set of profiles are obtained (the same metabolites 
are resolved)[22]. The collection of all spectral profiles from all time windows can be seen as a 
reference table of putative metabolites.  

C(Cnew_1; C new_2; C new_3; … ;C new_m)= X(Xnew_1; Xnew_2; Xnew_3; … ;Xnew_m)*S*(ST*S)−1 (2)  

This predictive feature of MCR also made it possible to integrate an internal validation step in the 
processing. By dividing the samples to be resolved into two sets and performing independent 
resolution of the two sets, interchanging SsetA, CsetA, SsetB and CsetB are obtained. Samples in set 1 are 
then predicatively resolved using SsetB to get CsetA_pred and set 2 are then predictively resolved using 
SsetA to get CsetB_pred. By comparing the similarity between SsetA and SsetB, CsetA and CsetA_pred and CsetB 
and CsetB_pred, respectively, it is possible to identify the profiles that are stable across samples. Here we 
use Pearson correlation above 0.95 as the criterion for stability. Only profiles that meet this criterion 
for all comparisons are used. In this way a reference table consisting of verified and stable spectral 
profiles is created. To ensure that the reference list is created using representative samples, the 
selection of “set A” and “set B” are made independently for each time window using principal 
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component analysis (PCA) and space-filling design [57], where each sample is characterized by a total 
mass spectrum (sum of all mass spectrum (scans) in a time window). This dynamic selection of 
samples will enhance the metabolite coverage in each time window.  

4.3.3. Multivariate Classification and Prediction 

Prior to multivariate analysis, the data of all putative metabolites (integrated areas under the 
metabolites chromatographic profiles) were normalized using the weighted sum of the concentrations 
of 11 labeled internal standards (listed in supporting text) eluting over the whole chromatographic time 
range. OPLS-DA [29, 30] was used to highlight patterns of metabolites that were systematically  
co-varying over multiple samples in relation to the acute effect of strenuous exercise and to investigate 
the robustness of these patterns. This was done by correlating the resolved metabolic information 
against the exercise phase (pre- vs. post- exercise) and predicting independent samples with known 
phase into existing models. Data were mean-centered and scaled to unit variance prior to modeling, 
and the number of significant OPLS-DA components was decided by seven-fold full cross validation 
[58]. OPLS is a PLS algorithm [59] with an integrated orthogonal signal correction (OSC) filter [60], 
which allows the systematic variation correlated to the response, in this case exercise phase, to be 
modeled in one predictive component and the systematic variation not related to the response in 
orthogonal components. In this way, the prediction results could be visualized in the predictive OPLS-
DA score vector (t1[p]) and a facilitated interpretation of the metabolic patterns related to exercise 
phase was obtained in the corresponding OPLS-DA covariance loading vector (w*1[p]). This is crucial 
for the understanding of complex biological data and in particular for human data, where the inter-
person variability can be extensive, and hence is likely to confound the interpretation if not separated 
from the information of interest.  

4.4. Evaluation of Data Processing and Modeling 

The strategy of processing large sample sets by selecting representative subsets that capture the 
metabolic variation in the entire sample set was evaluated by comparing parameters descriptive for the 
multiple sample comparisons, metabolic information content and sample predictions. The results 
obtained for the two selected representative sample subsets were compared to the results obtained 
when processing and modeling all samples concurrently. 

4.4.1. Multiple Sample Comparisons 

The similarity between the OPLS-DA models in terms of described metabolic variation was 
evaluated by the calculated model parameters R2X, R2Y and Q2, where R2X and R2Y correspond to 
the fraction of the variation in the resolved GC/TOFMS data (X) and the binary class identity variable 
(y; 0 = pre-exercise and 1 = post-exercise), respectively, explained by the extracted OPLS-DA 
components and Q2 corresponds to the fraction of the total variation in y predicted by the model, 
according to 7-fold full cross-validation [58]. 
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4.4.2. Metabolic information content  

The metabolic information in the sample subsets was compared to the information present in the 
entire sample set by matching of resolved metabolite profiles. The reference table from the H-MCR 
processing of the entire sample set was compared to the attained reference table for the subsets and the 
spectral similarity was decided by comparing retention time and the match factor obtained in  
NIST MS Search 2.0 (NIST, Gaithersburg, MD). The factors range from 999 for a perfect match to 
zero for spectra having no peaks in common. Resolved mass spectral profiles were considered to be 
equivalent if the match factor was above 700 and the retention times differed less then ± 1 second. 
Subsequently, the percentage of the overall shared resolved spectral profiles in the reference tables was 
calculated. The metabolic information in the processed data was further assessed by extracting 
metabolite profiles that significantly separated the two exercise states (pre- or post- exercise) by a 
permutation test. In the permutation test, the y-vector (in this case a vector containing information 
about class identity (pre- or post- exercise)) was permuted randomly 10 000 times, and for every 
permutation, a OPLS model [59] was created between the resolved GC/TOFMS data and the 
permutated y-vector. Metabolites showing a stronger correlation to the y-vector in the original model, 
i.e., variables with elevated OPLS weight values (w1-values), compared to the permuted y models 
were extracted, and the percentage of significantly separating metabolite profiles shared between the 
entire dataset and each subset was calculated.  

4.4.3. Sample Predictions 

The predictive ability of the multivariate models was investigated by the number of model samples 
that was correctly classified according to seven-fold cross validation (CV) (Class Prediction (CV)), as 
well as the number of independent samples (Test Set) predicted into the right class by the OPLS-DA 
model (Class Prediction (Test Set)). Samples in the Test Set are predictive both in the case of the 
resolving of metabolites H-MCR and the OPLS-DA classification. 

4.4.4. Longitudinal Sample Predictions 

Additional samples from exercise occasions three and four (n = 64) were used to investigate the 
methods ability as a means for predictively verifying a detected metabolic marker pattern in 
longitudinal studies, i.e., its potential as a diagnostic tool. Exercise occasions three and four were 
performed by the same male subjects in conjunction with the other tests, but the samples were 
characterized analytically by GC/TOFMS eight months later. The idea here was to use each subset to 
extract a significantly separating metabolic marker pattern using the previously described permutation 
test and verify the pattern by means of classification of the samples from the additional exercise 
occasions. This was done by first assigning a predicted class membership (pre- or post- exercise) to 
each sample from exercise occasions one and two, which was used to update the existing models. The 
samples from exercise occasions three and four were then predictively resolved, using the reference 
table for the model samples, and classified by prediction into the new OPLS-DA models based on the 
significantly separating metabolic marker patterns.  
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5. Conclusions 

We show that by using chemometric strategies for selecting representative sample subsets, H-MCR 
curve resolution and multivariate classification can be used to efficiently screen large metabolomics 
data or sample sets with retained data quality, or to retrieve significant metabolic information from 
smaller sample sets that can be verified over multiple studies.  
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