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Abstract: ATP delivery and its usage are achieved by cycling of respective intermediates 

through interconnected coupled reactions. At steady state, cycling between coupled 

reactions always occurs at zero resistance of the whole cycle without dissipation of free 

energy. The cross-bridge cycle can also be described by a system of coupled reactions: one 

energising reaction, which energises myosin heads by coupled ATP splitting, and one de-

energising reaction, which transduces free energy from myosin heads to coupled actin 

movement. The whole cycle of myosin heads via cross-bridge formation and dissociation 

proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs 

whenever the input potential overcomes the counteracting output potential. In addition, 

dissipation is produced by uncoupling. This is brought about by a load dependent 

shortening of the cross-bridge stroke to zero, which allows isometric force generation 

without mechanical power output. The occurrence of maximal efficiency is caused by 

uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is 

fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular 

fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the 

substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and 

ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially 

harmful, persistent low energy state of the cell can be avoided.  

Keywords: energetic coupling; zero resistance; cross-bridge cycle; muscular efficiency; 

muscular fatigue 
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1. Introduction 

In cellular metabolism, energy transductions are brought about by coupled reactions. The network 

of energy metabolism is organised in such a way that cycling of respective intermediates, like protons 

in oxidative phosphorylation (OP), or [Pi], [ADP], and [ATP] in the ATP cycle, is ensured. As was 

shown previously [1], entropy production during steady state cycling must be zero. This follows from 

the fact that the line integral taken around a closed path is zero if the integrand is an exact differential. 

This latter constraint is always fulfilled for potential functions like electro-chemical potentials or 

affinities. It will be shown that this steady state cycling between coupled reactions is associated with 

the occurrence of negative resistances.  

In a muscle fiber, mechanical power output is coupled to ATP splitting. How this is achieved is not 

fully understood, although there has been great success in many field endeavours in muscular research 

such as the structure of the contractile apparatus and its functional correlates [2–6]. Since Huxley’s 

widely accepted sliding filament theory [7,8], the cross-bridge cycle is of central importance, 

especially in the functional aspects of contraction. This cycle must contain the reactions of free energy 

transduction from chemical (ATP splitting reaction) to mechanical energy (actin movement against a 

load force). From the overall reaction, contractile efficiency can be obtained by relating mechanical 

power output to the dissipation function of ATP splitting, where the mechanical power is given by the 

product of the force exerted by the load and the shortening velocity. Experimental results show [9–12], 

that when efficiency is expressed as a function of v, a curved line with a maximum is obtained. From 

non-equilibrium thermodynamics (NET, [13]), it is well known that uncoupling is necessary to 

generate a maximum in efficiency plots (efficiency against reduced force ratio). Thus, to yield such a 

maximal efficiency, any description of the cross-bridge cycle on a thermodynamic basis must contain an 

uncoupling mechanism, which uncouples the transduction of free energy from ATP splitting to  

actin movement.  

To describe the cross-bridge cycle in terms of the new flux equations published recently [1], the 

cross-bridge cycle has to be formulated in relation to this formalism, which combines the basics of 

NET [13–16] with Michaelis-Menten-like kinetics of enzyme-catalysed reactions [17]. It will be 

shown that Hill’s equation describing muscular performance [18,19] can be easily deduced by 

applying the new flux equation.  

When compared with other approaches to the energetics of the cross-bridge cycle, the main 

particularity of the present work may be the fact that this cycle is connected here to energy metabolism 

of the muscle fiber, i.e., to ATP producing and consuming reactions. The generation of mechanical 

energy from the free energy of ATP splitting is treated here as one of the parallel reactions of the 

sarcosol consuming ATP delivered in fast fibers, mainly from glycogenolysis or glycolysis, 

respectively. This integration into the cell’s energy metabolism makes it possible to inspect some 

variables like ATP and its reaction products and species at high mechanical power output. In addition, 

concentration changes in metabolites and ions like creatine phosphate, lactate, H+, and Mg2+, are of 

interest under these conditions. This is achieved by formulating, in particular, the ATP splitting 

reaction according to Alberty [20] as a function of both [H+] and [Mg2+].  

It is the aim of this study to elucidate cycling between coupled reactions, and if such cycling is also 

involved with the cross-bridge cycle and force generation. In addition, the consequences of uncoupling 
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on power output and efficiency will be shown. For this, a formulation of the cycle in terms of the 

above mentioned new flux equation had to be derived.  

The phenomenon of muscular fatigue at the cellular level occurs when ATP consumption exceeds 

ATP delivery [21–25]. Under such conditions drastic changes in many metabolite and ion 

concentrations can be expected. The results of simulations will show to what extent these changes may 

contribute to fatigue, and if this phenomenon can be explained by such changes alone.  

2. Results and Discussion  

2.1. How Negative Conductances Are Generated 

In a previous article [1] it was shown that at steady state all affinities and dissipation functions of 

closed pathways associated with coupled in series reactions must vanish. In the following, it will be 

demonstrated that the overall resistance (=1/conductance) of such cycles must also be zero. As a 

consequence, the existence of negative conductances (or resistances) has to be called for.  

According to [1] a coupled two-flux-system can be described as:  

, and  (1)

J1 and J2 designate fluxes through affinities A1 and A2, respectively, and Lc represents the coupling 

conductance. Under totally coupled conditions ( 1 2  = 0) both fluxes are equal. The dissipation 

function,  , of a coupled process is composed of two parts, 1  for the output, and 2  for the input 

reaction, with: 

 (2a)
, and  (2b)

, and  (total coupling). (2c)

because A1 usually is negative, 1  must also be negative. Expanding the right hand terms yields: 

, and  (2d)

The term:  

 (2e)

represents that partial conductance of Lc, which is associated with A1, while  

 (2f)

belongs to A2. They relate to the usual different forms of energy being processed through the coupling 

reaction. Obviously, when A1 is negative, Lc1 must also be negative to yield a negative 1 .  
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The same result can also be derived by starting from flux equations, yielding:  

, and  (3)

So, to yield a positive J1, Lc1 has to be negative for a negative A1.  

A1 and A2 are in series, hence, Lc can be regarded as the equivalent conductance of both in series 

conductances Lc1 and Lc2, yielding:  

 
(4)

These theoretical results are confirmed by simulations.  

2.2. Conductances in Cycles between Coupled Reactions 

In a reaction sequence in which two coupled reactions in series are involved, the output force of the 

first reaction, I
1A , may be used by the second reaction as an input force II

2A ( I
2A  is the input affinity, 

II
1A  denotes the load affinity). In such a cycle between two coupled reactions, both forces must be 

equal but of opposite sign. The output power of the first reaction delivers the input power for the 

second reaction by flowing through 1
IA , and 2 1

II IA A  , and back to 1
IA  (at zero power). At steady 

state, fluxes through 1
IA  and 1

IIA  are equal, and hence, both dissipation functions of the cycle, I
1  and 

II
2 , must vanish. From 1 2

I II   , and    2 2

1 2
I I II II
c1 c2L A L A  , I II

c1 c2L L   is obtained. That is, the 

partial conductances of two coupled reactions in series are opposite and equal, if under conditions of 

steady state cycling the magnitudes of the output force of reaction I and the input force of reaction II 

are equal.  

I II
1 2    can also be expressed in terms of the steady state flux of cycling and of resistances 

1I I
c1 c1R L , and 1II II

c2 c2R L , yielding 2 2 0I II
c1 c2R J R J  . It follows that at steady state cycling between 

two coupled reactions, the sum of the resistances in that cycle must vanish, i.e., that the steady state 

flux through a cycle between two coupled reactions always occurs at zero overall resistance. Cycling is 

driven solely by I II
2 1A A  ( II

1A  negative). Because both reactions are coupled, the conductance 

(resistance) of the whole cycling process is brought about by both partial (in series) conductances 

associated with the input and load affinity, respectively. 

In oxidative phosphorylation (OP), as described in detail in [1], a proton cycle is generated over the 

inner mitochondrial membrane. At steady state, coupled outward proton pumping by redox (NADred 

and FADred) reactions of the respiratory chain (JNA and JFA) equals the back flow of a given fraction 

1 2
1 c 1

1

A A
J L A

A

 
  

 
1 2

2 c 2
2

A A
J L A

A

 
  

 

1 1
1 1c c

1 2

c1 c2 1 2 1 2

L L
A A

L L A A A A

 
 

 



Metabolites 2012, 2                            

 

 

671

(QH) of protons through ATP synthase (JSY) and ATP/ADP exchange (JAE) plus H/Pi symport (JPi). 

Both partial conductances,  

, and  (5)

are opposite and equal. For the first reaction (index R) 1
I

R HA    , and for the second 

2
II

s+1 HA     , with R s+1   (total coupling; o
RA  = affinity of JNA plus JFA; 4R s+1    

protons/extent of reaction). 

The remaining fraction of protons (QrH) flows back (driven by ) through several parallel 

conductances given by the proton leak flux, JPL, mitochondrial Na+/Ca2+ exchange (with Na+/H+ 

contracted to H+/Ca2+ exchange), 2JHCE, and the malate-aspartate shuttle, JMS. The partial conductance 

of this residual proton efflux and the sum of conductances of back flowing fluxes, are also of opposite 

equality. 

Analogously, partial conductances of ATP cycling through the potentials of mitochondrial ATP 

(ATPm) production plus ATP transport (contracted to 1
IA ), and of cytosolic ATP splitting ( 2

IIA ) can be 

formulated. Opposite equality of partial conductances is also fulfilled for this cycle (the above results 

were obtained by using the simulation SIMGlOx from reference [1]). 

For a further illustration, an analytically solvable example is given in the Appendix section. Simple 

electric circuits consisting of one battery connected to an outer conductance, or of two batteries in 

series, are analysed. These examples show very clearly the behavior of coupled in series reactions.  

Further evidence of such an equality of conductances comes from the known fact that for a coupled 

reaction with an attached load, conductance matching (LLd = Lc) is needed to achieve a maximal power 

output [1]. At total coupling, the output power is given by: 

 (6)

The maximal Pout is found by differentiation with respect to the variable A1, while A2 remains 

constant, and by setting the derivative equal to zero: 
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leads to  (6b)

Inserting A1max into equation (2e) yields c1 cL L   and because c1 LdL L  , it follows Ld cL L . 

In addition to cycling at the inner mitochondrial membrane, other types of cycles occur in 

metabolism. Especially in skeletal muscle cells, the phosphofructokinase (PFK) reaction in conjunction 

with the fructose-1,6-biphosphatase (FBPase) operating anti-parallel represent a substrate cycle, which 

may control the pathway of glycolysis (GLY) more sensitively than would be possible by PFK alone. 
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In this cycle, fructose-1,6-biphosphate (FBP), which is produced by ATP-coupled formation from 

fructose-6-phosphate (F6P), is cycled back via FBPase to F6P. However, usually both fluxes are not 

equal. Also to demonstrate the opposite equality of partial conductances for this kind of cycle, only 

equal fluxes can be used for this purpose.  

As a further example, the phosphocreatine shuttle will be considered. The creatine kinase (CK) 

reaction can also be regarded as a coupled reaction. Here, ATP splitting powers phosphocreatine (PCr) 

formation from creatine (Cr), which may proceed near equilibrium. As described in detail in reference [1], 

ATP is shuttled between locations of ATP formation (for instance in the inter-membrane space in 

mitochondria) and locations of high ATP demand like myofibrils. By analogy to an electric circuit 

built by two in series batteries with an outer circuit conductance (see Appendix (A4)), the output 

affinity of PCr formation in the inter-membrane space of mitochondria corresponds to I
1A  with 

associated I
c1L , whereas the affinity of the reverse reaction in myofibrils corresponds to II

2A  (with II
c2L ). 

To ensure diffusional flow of PCr and Cr between both locations, an additional driving force 

(corresponding to Ue; see (A4)) with associated conductance must be present. Under such conditions 

partial conductances do not match. Only when the additional conductance corresponding to the 

diffusional process (Le) is added to I
c1L  does this sum become opposite and equal to II

c2L , as is shown in 

(A4). Le depends greatly on structural features. So, to achieve a high diffusional conductance, 

diffusional paths must be as short as possible, which in turn requires a high grade of structural 

organization [26–28].  

It seems worth mentioning that coupled systems like pump and leak cycles are often not in a steady 

state. For instance, steady state cycling through sarco/endoplasmatic reticulum Ca2+ ATPases 

(SERCA) and Ca2+ release channels of the sarcoplasmatic reticulum (SR) breaks off during activation 

of contraction. There is an enormous Ca2+ efflux through release channels; meanwhile the pumping 

rate of SERCAs may be low. Under these conditions, respective conductances may greatly differ; 

however, when a new steady state cycling is reached, the partial conductance of SERCA must be 

opposite and equal to the conductance of the Ca2+ release channels. The opposite has to be expected, 

when release channels close again, and the Ca2+ pumping rate exceeds the release rate. 

2.3. From Chemical Potentials to Mechanical Force Generation 

In striated muscle cells like ventricular muscle cells (VMs) or skeletal muscle fibers (SMFs), force 

generation as well as shortening is brought about by the cyclic action of cross bridges. It is a known 

fact that this process is powered by ATP splitting. The underlying mechanism of the energy 

transduction process, however, is not completely understood. Here, a thermodynamic description of 

the cycle is derived using a formalism recently published [1]. It takes into account the basic energetics 

of enzyme-catalysed reactions, which states that the overall affinity of the catalysed and non-catalysed 

processes must be equal. For an enzyme-catalysed reaction like:  
S E SE SP S P     
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(S = substrate, E = enzyme, ES = enzyme-substrate complex, P = product), this means that at steady 

state the sum of the affinities of substrate binding, transition, and product release must yield the 

affinity of the non-catalysed reaction, which is given by the reaction affinity of all involved 

compounds in the bulk solution:  

 (7a)

or, after contraction of the first two terms: 

 (7b)

yielding, 

 (7c)

With r B T RK K K K       ( BK  , TK  , and RK   are equilibrium constants of the binding, transition, and 

release reaction, respectively, whereas rK   denotes that of the non-catalysed reaction).  

An analogous reaction sequence is used here to describe the cross-bridge cycle. The following cycle 

is given in chemical notation, i.e., the charges of involved species are taken into account. The cycle 

begins with the splitting reaction of the de-energised actomyosin complex (A-M) by MgATP2- in the 

diffusional space of myofibrils:  

2 2 2+ 2-A- M MgATP A M MgATP                                                                                               R1 

This first reaction yields dissociated actomyosin with MgATP2- bound to myosin (the bold point 

denotes binding to myosin). Two negative charges develop on the dissociated actin, which are 

neutralised by potassium ions, K , stemming from free MgATP2−, which is now bound to myosin 

heads. On the dissociated myosin heads, it neutralises both emerging positive charges. This first 

actomyosin dissociation and binding of MgATP2− to myosin is followed by ATP splitting on the 

myosin heads. This transition reaction is described by 

2
2

4
2 2M MgADP H PM MgATP O                                                                                                  R2 

It is coupled to the formation of energised myosin ( 2+M ), which is characterised by a tilting of the 

myosin head from a more bent arms position by an angle of about 60° towards the respective Z disc, so 

that now the myosin head builds a right angle with the opposing actin filament. 2+M  contains free 

energy from reaction R2 as conformational energy.  

The force generating stroke of the myosin head is triggered by the association reaction to form the 

energised actomyosin complex (cross-bridge): 
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 2
2 4

22
2 4M M MgADP H PA MgADP H PO A O

                                                                    R3  

Because of uncompensated charges, the resulting intermediate in curly brackets lacks firmness. A 

more stable conformation is obtained by the last reaction of the cycle, which restores the electro-

neutrality of the cross-bridges:  

 2

2 2 44A A M MgADP HM MgA P H P OD O P
                                                                      R4 

The existence of a less stable interaction of myosin with actin has been shown previously [29–31].  

In a coupled reaction, de-energised actomyosin is restored by dissociating first MgADP  and 

2 4H PO   from cross-bridges and then by releasing the stored conformational energy. During this 

reaction the cross-bridge tilts back by 60° towards the sarcomere centre, whereby free energy is 

transferred to the actin filament as mechanical energy.  

From the above scheme (R1 to R4) two fluxes can be obtained, which are responsible on the one 

hand for the production of dissociated and energised myosin heads ( EnJ ), and on the other hand for the 

formation of cross-bridges and subsequent mechanical force generation by stroking ( StrJ ). At steady 

state, a certain fraction of myosin heads of a half-sarcomere exists in a dissociated and energised state 

2 n
2

4 EMgADP H PO ([MH ])M     , while the residual fraction interacts as cross-bridges with actin. The 

resulting fluxes are given by: 

, with (8a)

, and (8b)

, with (8c)

 (8e)

(For a more complete description and definition of reference constants (Kref) see (A5); complete 

conductances ( EnL  and StrL , respectively) are given in (A14) and (A15).) 
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K K K
B R ATP

 is fulfilled, contraction of the affinities of both fluxes yields the 

overall affinity as required ( Ld
Str ATPA A ). Here Ld

EnA  (stored as conformational energy) denotes the 

affinity coupled to binding of MgATP2− to myosin heads ( P
EnA ), and Ld

StrA  the affinity which is coupled 

to the power stroke potential ( P
StrA ). Ld

StrA  represents the mechanical work per mole of cross-bridges 
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which has to be overcome during stroking. The quantity Ld
Str StrJ A  is directly related to mechanical 

power output Str LdP F v   (FLd = load force in Newton (N) of all stroking cross-bridges of a given 

cross sectional area; v = velocity of shortening in m/s related to a given fiber length), which as such is 

conveyed to the surroundings.  

In the present model of the cross-bridge cycle, ATPA  is used at two mechanistically and temporally 

separated steps. They are given on the one hand by binding of MgATP2− and on the other hand by the 

release of MgADP− and H2PO4
−. Here, most of the free energy of ATP splitting is associated with P

EnA , 

which by the coupling process on myosin heads is transformed first into Ld
EnA , and then is delivered as 

P
StrA  to the power stroke after cross-bridge formation. Therefore, the stroke potential in mechanical 

units (cross-bridge force × stroke length × NA; NA = Avogadro’s number) must be equal to P
StrA (see below).  

Because ionic species are involved, the reaction sequence of the cycle should be markedly enforced 

by electrostatic interactions. So MgATP2− binding can proceed only if actomyosin dissociates, whereas 

release of products becomes possible only when at the same time cross-bridge formation occurs. 

Moreover, the conformational change in the myosin head forces it into a new position, which favours 

an interaction with actin at a new actin binding site displaced a certain distance towards the Z-disc. 

During stroking, binding of a new MgATP2− molecule and detaching of cross-bridges may 

preferentially occur at the end of the power stroke, when cross-bridges form an angle of about 60° with 

the actin filament (see below for uncoupling by stroke shortening).  

The contractile performance of whole muscle and of SMFs is exceptionally well reproduced by 

Hill’s equation [19]. This equation relates the shortening velocity v to the mechanical load force LdF  

which has to be overcome during shortening.  

 (9a)

The above function represents a hyperbola, which fits remarkably well with experimental data 

obtained under isotonic conditions.  

To obtain an equivalent expression from the flux equation StrJ , the flux given in mM/s has to be 

converted into velocity with units of m/s. This is achieved by calculating the stroke frequency for a 

given concentration of stroking cross-bridges ([CB] = [CB]tot – [MHEn], in mM) and by multiplying 

with the stroke length Strl  (in m) and the number of in series half-sarcomeres Nhs. The result is: 

 (9b)
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The above expression describes the shortening velocity as a function of Ld
StrA  at constant P

StrA . It 

represents a straight line (Figure 1A). Introducing a Michaelis-Menten like inhibition factor associated 

with StrL  yields the desired hyperbolic dependency:  

, or (9c)

 (9d)

Comparing equations 9a and 9d shows that the constant b of Hill’s equation is given by:  

(in m/s)                 (9e)

As required, the quotient by which b is multiplied is dimensionless. To yield the shortening velocity 

as a function of force,  Ldv F , affinities and LdKm  (both in J/mol) have to be converted into units of 

force. This is achieved by dividing by Strl  and by multiplying by the molar number of cross-bridges.  

Figure 1. Flux as a function of load potential at 10.8 µM [Ca2+]. A: (grey dots) according 

to equation 9b; (light grey dots) according to equation 9c or 9d; (red line) according to 

equation 11a; (green line) according to equation 11b. B: (light grey dots) according to 

equation 9c or 9d; (red squares) results from simulation SIMGLYgen. 

 

Ld
StrA  being negative, LdF  must also be ≤ 0. Expressing shortening velocity as a function of a 

positive variable yields with LdF  = LdF    

 (10a)

Setting LdKfm a  , and b b  , gives (Figure 2.) 
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 (10b)

Figure 2. Shortening velocity as a function of load force at two different Ca2+ 

concentrations A:[Ca2+] = 1.08 µM; (light grey dots) according to equation 10b; (red line) 

equation 10b plus uncoupling; (red circles) results from SIMGLYgen versus load force; (blue 

squares) results from SIMGLYgen versus load force as sensed by cross-bridges; B: as in A, 

but at [Ca2+] = 0.36µM. 

The latter equation formally represents Hill’s equation. In that equation F0 denotes the maximal 

force obtained under isometric conditions, whereas FP in the latter equation is obtained from the input 

affinity ( P
StrA ) of StrJ  by converting it into units of force (see below for a derivation of P 0F F ).  

 When efficiency is represented as a function of shortening velocity, the experimental data follow a 

curved line with a maximal efficiency at 0.18 max  [12]. From NET it is known that such a maximum 

is produced by uncoupling. To create such a maximal efficiency, uncoupling terms have to be 

incorporated into StrJ . Variable, load dependent   values ( ( )Ld
StrA  instead of constant s ) are 

defined, to preserve the hyperbolic nature of the function. In this way, uncoupling becomes operative 

only when Ld
StrA  exceeds a certain value (Figure 1A). Both flux equations are given by: 

 (11a)

 (11b)

These latter equations (for a complete description, especially of conductances, see (A15)) appear in 

simulations.   values are given as functions of Ld
StrA , e.g., 

 
(12)

  P Ld
Ld

Ld

F F
v F b

a F
 





 



0 4 10
4 8 10

4
0

1 10
3

2 10
3

A

Force [N]

S
ho

rt
en

in
g 

ve
lo

ci
ty

 [m
/s

]

0 6 10
5 1.2 10

4
0

1 10
3

2 10
3

B

Force [N]

S
ho

rt
en

in
g 

ve
lo

ci
ty

 [
m

/s
]

  ( ) 1Ld Ld Ld Ld P
Str Str Str Str Str StrJ L A A A  

  ( ) 1P Ld P Ld P
Str Str Str Str Str StrJ L A A A  

 
1 exp 1 exp

P P
StrfP Ld Strs

Str Str Ld f Ld s
Str Ld Str Ld

f s
Ld Ld

A
A A A A

S S

   
    

    
   



Metabolites 2012, 2                            

 

 

678

(see below for a mechanistic interpretation of uncoupling and   values). Conversion to mechanical 

units can then be done in the same way as shown above.  

In Figure 1 the effects of uncoupling are shown. At a load of about −3.0×104  J/mol, deviations from the 

hyperbolic (coupled) curve begin to arise. From the plots it can be seen that uncoupling leads to a shift of 

the intersection with the abscissa to less negative values of Ld
StrA , whereas P

StrJ  is still maintained, even at 

Ld
StrA  = 

P
StrA , where the coupled flux must be zero and only uncoupled fluxes are possible.  

In the following, an attempt has been made to interpret the above results, which were gained from a 

phenomenological approach, mechanistically by relating coupled and uncoupled fluxes to possible 

cross-bridge actions.  

At Ld
StrA  = 

P
StrA , coupled reactions with associated actin filament movement come to a halt, 

because the driving force has vanished. As already mentioned above, now only uncoupled fluxes can 

occur. Such a situation may also be realised with isometric contraction, which is known to be 

associated with ATP splitting and heat production, but without power output. That is, a mechanism has 

to be found which explains the identity of the isometric force F0 with FP, which was merely formally 

derived from the input affinity P
StrA by a conversion factor. This is achieved by defining the uncoupling 

mechanism by a shortening of the stroke length Strl  of the power stroke. Total uncoupling is reached 

when 0Strl  . This may be realised under isometric conditions. Free energy corresponding to 

P
Str ATPA A  is delivered to actin filaments as mechanical work, i. e., P

0 Str A StrF l N A   . Shortening 

may be brought about through splitting of actomyosin bonds before the whole stroke length is 

transferred to an actin filament. When Ld P
Str StrA A  , as is realised under isometric conditions, 

actomyosin splitting already occurs at zero stroke length, so that no energy can be delivered to the 

actin filaments. Only force development by cross-bridges during the time interval between bond 

formation and bond splitting is possible under these conditions. This may be achieved by the torque 

every myosin head exerts on an actin filament after bond formation and release of H2PO4
− and 

MgADP−. The associated force then acts on these filaments, but without being able to bring about 

filament movement, since this is hindered by the equal and opposite load force. Therefore, if the force 

remains constant over the whole stroke length, then FP is equal to the isometric force F0.  

When compared with a cross-bridge cycle during contractions, the cross-bridge cycle under 

isometric conditions becomes altered insofar as coupled stroking is impossible; the power stroke 

occurs completely uncoupled, so that all free energy associated with P
StrA  becomes dissipated as heat. 

Moreover, dissipative stroking under these conditions may occur in the presence of bound MgATP2−. 

The following derivation shows how stroke shortening may be involved with uncoupling. 

Stroke shortening is given by:  
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(negative) (13a)

this leads to, 

(at constant force) (13b)

Under totally coupled conditions, the input flux is given by:  

 (13c)

Uncoupling by stroke shortening dissipates free energy, which can be expressed by a leak 

dissipation function: 

 (13d)

The leak conductance P
StrLL  can be replaced by StrL , because this latter conductance may depend 

mainly on the formation mechanism of the actomyosin bond. The stroke reaction associated with 

conformational changes of the myosin head is assumed to proceed at a high conductance, since the 

energising reaction ( EnJ ), which is coupled to the same conformational change in the reverse direction, 

also proceeds at a very high conductance. So an increase by stroke shortening of a high conductance 

(stroking) in series with a low conductance (bond formation) may be negligible, so that P
StrL  can be 

expressed as: 

 
(13e) 

Comparing this latter equation with that used in the simulation,  

 2
( )P P P P

StrL Str Str Str StrL A A  , yields: 

 (13f)

The input flux then is given by: 

 (13g)

The output flux is reduced by stroke shortening as if it were uncoupled. The same dissipation 

function  2P
Str StrL A  is associated with output reactions, yielding:  

 (13h)
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and the output flux:  

 (13i)

It follows,  

 (13j)

For l  = 0, identical coupled fluxes arise, and for Ld P
Str StrA A  , both   values are equal. Moreover, 

if 1Ld P
Str Str   ,  2

Strl l  is also equal to 1.0, which means that now isometric conditions do exist.  

From equation (13i) it can be taken that uncoupling by stroke shortening reduces Ld
StrJ  as if there were 

a leak flux through Ld
StrA . On the other hand, P

StrJ  increases (equation (13g)) as if there were an 

additional leak flux through P
StrA . The above derivations demonstrate that stroke shortening obviously 

leads to the same effects as uncoupling by leak fluxes. It seems justified, therefore, to also describe 

uncoupling by stroke shortening by lambda values, as was done previously mainly in the context of 

oxidative phosphorylation. 

The degree of coupling is given by, 

[1] (14a)

with above results this yields: 

. 

(14b)

Under the limiting conditions of isometric contraction ( Ld P
Str StrA A  ;  2

Strl l  = 1.0), Strq  is given by: 

 (14c)
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hyperbolic and fulfils Hill’s formalism. Between the intersection ( Ld
StrA  = −4.756×104) and Ld P

Str StrA A 

, Ld
StrJ  formally could be negative, which would mean that actin filaments were moving in the direction 

of stretching. This is, however, impossible, because actomyosin bonds would have to be broken by a 

load force, which is smaller than F0. Therefore, in this region of loads, Ld
StrJ  cannot be negative; it must 

remain zero.  

2.4. Power Output and Efficiency 

In experiments, mechanical power output is often represented in relation to shortening velocity. In 

Figure 3, power and efficiency plots at two different [Ca2+]s (1.08 and 0.34 µM, respectively) are 

shown. Respective curves have similar shapes; however, F0 and vmax, and therefore power output 

values, are markedly increased at high [Ca2+].  

Efficiency curves at both [Ca2+]s are nearly identical (Figure 3D). In panel B, efficiency of a totally 

coupled cross-bridge cycle is shown. Under these conditions the curve has no maximum.  

Partial conductances can be calculated from EnL , Ld
EnA , and P

EnA , as well as from StrL , Ld
StrA , and P

StrA

. All results derived in the above sections could be verified by the simulation (SIMGLYgen). So, 

, and . 
(15)

also, En1 Str2L L   is fulfilled, and therefore, cross-bridge cycling at zero resistance. 

In addition, the equality of  

, 
(16)

which describes the conductance of the whole cycle including coupled inputs and outputs is nearly 

exactly obeyed. 

The overall efficiency of the cross-bridge cycle is obeyed:  

 (17)

as is the overall dissipation function given by: 

                (18) 

Figure 3D shows efficiency curves at 1.08 and 0.36 µM [Ca2+]. They are very similar; their 

maximum lies at about 0.18 vmax. Because the appearance of the maximum is caused by uncoupling, 

the coordinates of max  are highly dependent on uncoupling parameters.  
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Figure 3. Power output and efficiency at two different Ca2+ concentrations. (A) and (C) 

[Ca2+] = 1.06 µM; (B) [Ca2+] = 0.36 µM; C: under totally coupled conditions; (D) (red 

squares) efficiency at 1.06 µM [Ca2+], (blue circles) efficiency at 0.36 µM [Ca2+]. All plots 

are results from SIMGLYge. 

  

  

Calcium Ions and Force Development 

In the previous section it was shown, how shortening velocity depends on Ld
StrA  at a given [Ca2+]. 

On the one hand, the driving force is changed by the load potential (see Figure 1, linear dependence), 

and on the other hand the conductance StrL  depends on Ld
StrA  through the hyperbolic inhibition factor. 

At a given [Ca2+], both effects are responsible for the characteristic appearance of the performance 

curve under coupled conditions.  

In the present model of the cross-bridge cycle, interference of [Ca2+] with P
EnA  as well as with StrL  is 

necessary. In the latter case, [Ca2+] can activate StrJ  through a sigmoid activation factor (A15). This 

takes into account the fact that Ca2+ binding to troponin C removes the inhibition of cross-bridge 

cycling, so that binding of myosin heads to actin binding sites becomes possible [32,33]. On the other 

hand, [Ca2+] is known to strongly activate force development. Here it is assumed that this may be 
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caused by an increase in cross-bridge concentration  CB . By introducing a [Ca2+] dependent ref
BK  

(see (A14)), a sigmoid variation in both  CB  and force F by [Ca2+] can be obtained (Figure 4.).  

Figure 4. Developed force and cross-bridge concentration [CB] and their dependence  

on [Ca2+]. (red squares) force; (blue circles) [CB]. Notice that at the given dimensioning of 

the right ordinate a matching of results is obtained. 

 

At steady state, a certain  CB  is produced by [Ca2+] activated StrJ , and in addition by [Ca2+] 

inhibited EnJ  (see (A14)). The inhibition of EnJ  by [Ca2+] is brought about by a decrease of P
EnA  with 

increasing [Ca2+]. This is possible because this reaction proceeds at a very high conductance and 

therefore, is close to equilibrium. So already a small variation of the driving force can produce a large 

change in the reaction velocity. In this way, a sensible, [Ca2+] dependent adjustment of  CB  and force can 

be achieved. An elevation of [Ca2+] thus increases both shortening velocity as well as force development.  

The total myosin head concentration ([MHEn] + [CB]) of a half-sarcomere amounts to 656 µM (see 

Methods). At a saturating [Ca2+] of 1.08 µM, fluxes EnJ  and StrJ  are so adjusted as to yield a 

concentration of [CB] = 0.25 ([MHEn] + [CB]), i.e., at this [Ca2+], 25% of myosin heads form cross-

bridges and thus are involved with cycling and force generation. At [Ca2+] = 0.36 µM, only about 3% 

of cross-bridges are engaged, and at 0.09µM [Ca2+], [CB] is further markedly reduced, which means 

that now near resting conditions are reached. 

It seems plausible to suggest that during shortening it is not always the same group of cross-bridges 

that is active, but that, e.g., at 1.08 µM [Ca2+], four different groups may alternately be involved with 

contraction. The cycling frequency of an individual cross-bridge would then be much lower than the 

frequency of ATP splitting, which might be advantageous, especially at high velocities. Furthermore, 

an alternating involvement of groups may be absolutely necessary for a smooth shortening. How this 

might be accomplished is so far not known. An involvement of special filaments of the sarcomere 
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cytoskeleton [34–36], which may be responsible for a subtle sensing of load forces and an undisturbed 

takeover of a given load by a new fraction of cross-bridges during synchronous stroking,  

seems indispensable.  

The values of maximal tension (=force/unit area in N/m2 = Pa, Pa = Pasqual) obtained from 

SIMGLYgen (A16) in the present study are comparable to experimental values. For instance, a value of 

372 kPa (from F0 = 7.756 × 10−4 N, [Ca2+] = 1.06 µM, 37°C) found here, seems to be in reasonable 

agreement with about 320 kPa resulting from measurements with a fast-twitch mouse fiber at 25°C [37]. 

The extrapolated value of maximal shortening velocity, HS
maxv  = 1.95 µm × HS−1 × s−1 ([Ca2+]= 1.06 

µM, AL = 0 J/mol, HS = half-sarcomere) compares to 1.6 µm × HS−1 × s−1 of frog fibers at 0°C [12]. A 

value of max  of about 50% at about 0.18 vmax ([Ca2+] = 1.06µM) results from adjustment. It compares 

to the experimental values of 35–45 % for the same value of v for frog muscles at 0 °C [12].  

All these parameters of contractile performance may, however, be reduced to a certain extent by 

dissipative frictional processes associated with v which are not addressed in the present simulation. 

Such dissipation during fiber shortening may be produced mainly by viscous deformations of 

membranes and the filament lattice. 

2.6. [H+], [Mg2+], and Fatigue  

Enzyme-catalysed ATP splitting by myosin heads is formulated here with respect to the ATP 

species MgATP2−. By using a reference constant and binding polynomials, an [H+] and [Mg2+] 

dependent ATPK   of this reaction can be formulated (see A6 and A7). In simulations of fatigue, in 

addition to [H+], [Mg2+] has also been included as a variable, especially because this ion may interfere with 

ATP species and so may influence EnJ through a change in [MgATP2−], which in turn would alter [CB].  

Changes in [H+] in the sarcosol are brought about mainly by two different mechanisms, which are 

both related to metabolic activity. One source of protons is manifest when metabolism is switched 

from rest to high power output. Fluxes in ATP consumption and production, Con
ATPJ  and Pro

ATPJ , 

respectively, must then both increase to the same extent to reach a new steady state. During the 

adjustment, a phase of disturbed steady state occurs, during which both fluxes do not match. When 

power output increases, Con
ATPJ  always leads Pro

ATPJ , i.e., there is an uncompensated ATP splitting until a 

new steady state is reached, at which point ATP production again equals ATP consumption.  

According to Alberty [20], this reaction is associated with proton production in dependence of [H+] 

and [Mg2+] (see (A6) and (A7)) for derivation of [H+] changes and pH buffering). In addition, the CK 

and adenylate kinase (AK) reactions are involved, because these equilibria are also changed under 

these conditions and, as with ATP splitting, H+ and Mg2+ binding species are involved. Buffering of 

both ion concentrations is brought about mainly by sites intrinsic to the sarcosol. For Mg2+ binding 

sites, an additional release of Mg2+ by interfering [H+] has to be expected.  
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Figure 5A shows the time courses of rates of [H+] changes. Interestingly, [H+] production by ATP 

splitting is practically compensated by [H+] consumption by the CK reaction. The contribution by the 

AK reaction is negligible. A similar behavior is found for Mg2+ (Figure 5B). A concentration increase 

in this ion is mainly brought about by acidification. 

Figure 5. Time courses of [H+] and [Mg2+] during extreme power output. A: [H+] fluxes; 

(brown) mainly LDH reaction and lactate transport; (red) ATP splitting; (blue) JAK; 

(yellow) JCK; (black line) resultant [H+] flux; B: [Mg2+] fluxes of the same reactions. 

 

A second source of protons is given by the disturbance of lactate production by glycogenolysis (or 

glycolysis) and lactate efflux via lactate/H symport at the sarcolemma. Especially when lactate and H+ 

accumulate in the glycocalyx (the outer aspect of the sarcolemma), the concentrations of these 

compounds also increase drastically in the sarcosol. This seems to be the main mechanism of 

sarcosolic acidification.  

Muscular fatigue at the cellular level can be defined as a phase of markedly reduced contractile 

performance, which largely recovers after a period of rest [38]. Because metabolites like creatine, 

ADP, Pi, H+, and lactate accumulate during conditions of fatigue in a similar way as can be observed 
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energy metabolism of the muscle fibers. Whenever ATP delivery does not match ATP consumption, 

such a situation may arise.  
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113, [Pi] = 8.32 × 103, phosphocreatine concentration [PCr] = 9.7 × 103, lactate concentration [Lac] = 3.0 × 

103, [Mg2+] = 832, and pH = 7.09).  

However, when a back pressure on glycogenolysis (or glycolysis) is produced by accumulated 

extracellular [Lac]e and [H+]e, the flux through this pathway may become reduced. In addition, 

efficiency has been reduced by switching from glycogenolysis to glycolysis. The power output of ATP 

production is markedly reduced by these combined effects. As a result, the power of ATP production 

begins to fall, so that ATP consumption may overcome ATP production. Steady state cycling through 

ATP consuming and producing pathways can now no longer be maintained.  

Figure 6 shows that a first phase of slowly falling [MgATP2−] is followed by a phase of 

continuously enhanced reduction of this ATP species to low values ([MgATP2−] = 230.0 µM;  

[PCr] = 1.6 µM). Immediately after reaching a minimum, a rapid recovery of [ATP] (up to starting 

values) begins. [Mg2+] shows a corresponding behavior. During the first phase it increases because of 

acidification, and then a sharp peak is produced by the onset of an extreme uncompensated ATP 

splitting (Figure 6). An increased [Mg2+] may counteract the switch off of cross-bridge cycling and 

may aid recovery by increasing [MgATP2−]. 

Figure 6. Time courses of [MgATP2−] and [Mg2+] during development of fatigue. (red 

line) [MgATP2−]; (green points) [Mg2+]. 

 

Other parameters such as [PCr], [Pi], [Lac], and pH only partially recover under these conditions of 

extreme power output. An almost complete recovery, however, is possible under conditions of 

markedly reduced power output near resting [Ca2+].  

How this switch back to normal [ATP] is brought about can be seen from Figure 7. Not only have 

fluxes of ATP consumption and production, Con
ATPJ  and Pro

ATPJ , become different now ( con
ATPJ  > pro

ATPJ ; 

Figure 7A), both fluxes of the cross-bridge cycle, EnJ  and StrJ , have also changed. These fluxes 

determine concentrations of [MHEn] and [CB], respectively. An increase in EnJ  and a decrease in StrJ  

would lower [MHEn] (whereby [CB] would be increased). Both concentrations always change 

reciprocally (Figure 7B). P
StrA  and Ld

StrA  are also affected. P
StrA  in particular is rapidly reduced until it is 
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equal to − Ld
StrA . Now all fluxes of the cycle must vanish, because the driving force of StrJ  has become 

zero. As a result, ATP consumption by cross-bridge cycling is switched off. 

Figure 7. Time courses of  and , of [CB] and [MHEn], and potentials of the cross-

bridge cycle during fatigue development. (A) (red) ; (blue) ; (B) (black) [CB]; 

(blue) [MHEn]; (C) (red points) AATP; (brown line) ; (blue line) ; notice that after 

7.5 s  and  become  opposite and equal. 

 

Under these conditions all myosin heads form cross-bridges, which however are unable to perform 

the power stroke, since the input force is equal to the opposed load force. In such a situation myosin 

heads may be bound to actin and may have dissociated H2PO4
− and MgADP− similar to an isometric 

contraction, but in contrast to those latter conditions, equilibrium of forces is now brought about at a 

much lower load force ( P
StrA  = − Ld

StrA  = 0.375 × 104 J/mol at 1.08 µM [Ca2+]). A load-dependent 

actomyosin splitting by MgATP2− at the beginning of the stroke, that is uncoupling, is impossible 

under these conditions. So cross-bridge cycling with concomitant ATP consumption may be 

completely prevented. [ATP], therefore, can recover rapidly, even if the conditions leading to fatigue 

first remain unchanged. 

By this mechanism the fatigued skeletal muscle fiber is capable of protecting itself from the 

dangerous risk of irreversible cell damage. This seems to be necessary, since this cell type is 

voluntarily controlled without any protecting mechanism against an unbridled consumption of ATP, as 

is known to occur with other ATP coupled reactions such as, for instance, ion pumps. These are 

controlled mainly by the ion concentration that they are transporting. For example, when [Na+] in the 

sarcosol is lowered by the Na/K pump to values below 10.0 mM, the reaction rate of this transport 

process is increasingly deactivated by the decreasing [Na+], so that ATP consumption also is reduced. 

Such a protective mechanism is not known, however, for the cross-bridge cycle. Contractions with 

concomitant ATP splitting would be incessantly initiated, as long as firing of nervous impulses 

persisted. The voluntary muscle fiber would obey this parent command up to exhaustion or even up to 

cell death, if the fatigue producing mechanism were absent. Obviously it represents that special control 

mechanism which is necessary to protect voluntary muscle from dangerous ATP depletion during 

phases of high energetic demands.  
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The above results are obtained from a simulation, in which ATP production is confined solely to 

glycolysis. A whole muscle, however, is constructed from many types of functionally different fibers, 

with slow fibers having densely packed mitochondria, and fast fibers in which mitochondrial density 

can be very low. It is a known fact that especially fast fibers with a very low content of mitochondria 

and, therefore, a mainly anaerobic ATP production, are much more liable to be affected by 

overpowering than slow fibers. This may be brought about primarily by the preconditioning effects 

especially associated with this fiber type. At very high energetic demands, fast fibers produce much 

more lactate and protons through glycolysis than slow fibers, which can oxidise pyruvate by 

mitochondria. That is, the glycolytic ATP production rate of fast fibers may be decelerated by a back 

pressure, which may be generated by accumulating lactate and protons during high power output. In 

slow fibers with a high rate of oxidative glucose metabolism, such a back pressure cannot be produced 

as easily. Therefore, the metabolic changes leading to fatigue are simulated here with respect to fast 

fibers with a low resistance to fatigue. This weakness may be best demonstrated with an extreme fiber 

type, which can produce ATP solely by GLY. However, fibers completely devoid of mitochondria may 

not exist in vertebrate muscle. The results of this fatigue model, therefore, can only be taken as an 

approximation of real fast muscle fibers. Muscular contraction on the basis of NET has been treated 

theoretically by Caplan and Essig [13]. These authors explained the curvature of Hill’s equation by an 

uncoupling. They defined the degree of coupling by 1 1q    with 0 maxa F b v    (  between 

0.2 and 0.3). This latter equality is also fulfilled by the present model (  = 0.309). However, in 

contrast to the approach of the above authors, the hyperbolic form of Hill’s equation is produced here 

by introducing a Michaelis-Menten-like inhibition factor into the respective conductance, as already 

mentioned above. Moreover, uncoupling in the present model is produced through a load-dependent 

stroke shortening, which generates the maximum obtained with power plots.  

3. Methods 

Here the energy metabolism of a fast twitch muscle fiber is treated. That is, ATP production by this 

fiber type is solely brought about by metabolism of glycogen and/or glucose. Mitochondria are absent. 

Glycolytically produced [NADred] has to be reoxidised by the lactate dehydrogenase (LDH) reaction, 

and the lactate plus proton formed thereby is released to the extracellular space via Lac/H symport. 

Electrophysiological reactions at the cell membrane (sarcolemma) are omitted. Also, most reactions of 

the sarcoplasmatic reticulum (SR) are not addressed. Only Ca2+ pumping by the sarco/endoplasmatic 

reticulum Ca2+ ATPase (SERCA) as an ATP consuming reaction is included in simulations besides 

several other reactions of ADP production (see SIMGLYgen (A16)) taken over from reference [1]. 

Therefore, [Ca2+] is treated as an adjustable constant.  

To determine the fractional fiber volume VCell, a cylindrical geometry of the muscle cell is assumed. 

With radius RCell = 25.76 µm, and a length L = 103 µm (fraction of whole fiber length), VCell = 2.0847 × 106 

µm3 or 2.0847 nL, and ACell = 2.0847 × 103 µm2. From data of Aliev et al. [39] for the heart, the 

volume of the sarcosol, Vc, can be determined by adding the mitochondrial to the fibrillar volume, 
yielding Vc/VCell = (321 + 195 + 55)/758.5 = 0.7528 or Vc ≈ 1.57 nL. Then c  can be obtained using  

c  = 10−12/(F×Vc) = 6.6024×10−9 µM/C (F = Faraday’s constant, C = Coulomb). That is, to yield the 



Metabolites 2012, 2                            

 

 

689

corresponding flux in µM/ms from an electric current entering the sarcosol, this current in  
fA (= pS×mV = 10−18 C/ms; pS = pico Siemens) has to be multiplied by c .  

For calculation of force and velocity, the dimensions of the force generating cross-sectional area 

and the number of half-sarcomeres (HS) of the fibrils must be known. The contractile machinery of 

skeletal muscle fibers is organised in fibrils having diameters between 1.0 and 2.0 µm, which are built 

up from in series sarcomeres connected by Z-discs over the whole length of a fibril, i.e., from end to 

end of the fiber. The functional unit is given by the HS. The principal filaments of an HS are the thick 

myosin and the thin actin filaments. In cross-sections, myosin filaments show hexagonal geometry. 

From this symmetry the fibrillar volume VFibr can be obtained. One hexagon is composed of six 

equilateral triangles of side length lTri = 41.0 nm [12] and equal angles of 60°. The area of a hexagonal 

fibril (or HS) of radius RFibr = 18.0 × 41.0 = 738 nm is given by:  

, and (19a)

(=1.415027×10−15 m3 or 1415.027 pL) (19b)

The total volume of fibrils is given by 0.866×VCell (see reference [39]). The number NFibr is then given by:  

               (19c) 

For the determination of the total number of myosin heads of an HS, the number of myosin filaments 

of an HS must be known. The above hexagonal area of an HS can be constructed from equilateral 

triangles of lTri = 41.0 nm. A large triangle of the hexagonal HS with n-fold side length contains:  

 (20a)

corner points representing myosin filaments. All points of the HS hexagon are given by:  

 (20b)

For an 18-fold increase of lTri from 41.0 nm to 738 nm (n = 18), the resulting HS hexagon contains, 

with MFTri = 190, MFHex = 1027 myosin filaments per fibril.  

Myosin filaments contain 294 myosin heads per half filament. In an HS, thus 294 × MFHex, and in 

the whole fiber: 
 (20c)

myosin heads are contained.  

Their concentration is obtained by dividing by NA (= 6.022142 × 1023 particles per mol), and by the 

volume of the water diffusible space in the filament lattice containing myosin heads of all HSs of the 

cross-sectional area of a fiber, VLat. This volume is given by:  

or 0.972453 pL (20d)

(lHS = HS length at rest = 1.1 µm, fMH = length fraction of myosin filament containing myosin heads in 

terms of HS ([12]) = 0.62364, fWDS = volume fraction of water-diffusible space in the filament lattice 

volume = 0.7852).  
The myosin head concentration is given by: 
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. (20e)

At steady state, the concentration of stroking cross-bridges, [CB] = [MH]tot – [MH] ([MH] = the 

remaining myosin head concentration given by the simulation) is determined by two fluxes (see 

Results). It is adjusted to about 25% of [MH]tot at [Ca2+] = 1.08 µM and a load potential AL = 3.0×104 

J/mol. The force generated by [CB] is given by: 

 (21a)

FCB is the force of one single cross-bridge. It is obtained here from the stroke input potential AP (see 

Results) under these conditions, by assuming that the stroke length lStr = 12.0 nm. Then FCB is given by:  

 (21b)

per cross-bridge, yielding F = 0.7735 mN per fiber, and a tension of 3.71 × 105 Pa (related to ACell,  

Pa = Pasqual). The force is generated at 1.08 µM [Ca2+] by about 25% of myosin heads ([CB] = 164 

µM). All force-generating cross-bridges are contained in the parallel HSs of the cross-sectional area of 

1027 fibrils of one muscle fiber.  

Simulations were solved using Mathcad® 14.0 or 15.0 M011 solver AdamsBDF. The programs were 

run under Microsoft® Windows 7 and XP Professional.  

4. Conclusions 

Cycling between coupled reactions occurs, especially in energy metabolism. It is shown that the 

overall resistance of such cycles must vanish, and that the resistance or conductance associated with 

the negative output affinity of a coupled reaction also has to be negative. The following may be 
illuminating: The entropy change of a spontaneously proceeding reaction ( r iS ) is always positive. 

When a reaction is forced against spontaneity, r iS  must become negative. All reaction parameters 

associated with entropy changes, like affinities and conductances, must inevitably follow a sign change 
of r iS  whenever such a change occurs. This is not a contradiction to Ohm’s law, but a consequence 

of the phenomenological definition of a conductance through L J A   . It can be concluded that the 

occurrence of negative conductances is realised not only with biochemical reactions in living cells, but 

represents a fundamental concept of coupled processes. 

This concept is realised here for the cross-bridge cycle. The reactions of the cycle are described on a 

thermodynamic basis using the kinetic approach of enzyme-catalysed reactions. Hill’s equation for 

muscular performance can be derived on this basis. However, uncoupling has to be introduced to yield 

a maximal efficiency of power output. Here the uncoupling mechanism is not an accidental process 

during energy transduction, but a necessary interference during force generation, which ultimately 

produces an isometric contraction.  

Although mechanical acceleration may also be possible on a cellular basis by changes in sarcosolic 

[Ca2+], it seems highly unlikely, however, that this may be sufficient to allow normal locomotion of a 

subject. Only the control by the nervous system can bring about coordinated actions of several muscle 
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fibers, groups of fibers, or even several different muscles. In this way, accelerated and decelerated 

motion becomes possible. To achieve this, the number of force generating cross-bridges is varied by a 

change in cross-sectional area, that is, by altering the number of fibers recruited for contraction. 

Thereby the locomotion at high efficiency or maximal power output can be controlled by will. Also, 

isometric contractions are indispensible for coordinated actions. They are produced by reducing the 

cross-sectional area to such an extent that a load dependent uncoupling is initiated to stop  

fiber shortening.  

In many species nervous control of muscles is not a capability which is present from birth on. To 

reach a certain level of adroitness an individual has to learn—often during a long lasting phase of 

exercise—to control muscle action by coordination.  

Appendix  

Negative Resistances in Simple Electric Circuits  

Reactions occurring in a common car battery can be considered as coupled. A redox reaction is 

started by introducing a catalyst (the electrodes), which couples the affinity AR of the redox reaction to 
the formation of an electrical potential difference   at the electrodes. Under open circuit conditions 

the reaction proceeds rapidly to equilibrium, at which AR+   = 0. Taking AR as the positive input 

force, then   must be negative. AR can be expressed in electrical units using E = AR/zF (E = 

electromotive force in Volt V, z = charge number, F = Faraday constant in Coulombs/Volt,   in V). 

The coupled flow of charges (electrical current in ampere A) is then given by:  

 (A1)

E and   correspond to the input force A2 and output force A1, respectively. Lc is the coupling 

conductance, and Ri = 1/Lc represents the inner resistance of the battery (R’s are given in Ω, L’s in 

1/Ω). The partial conductances Lc1 and Lc2 (see equations 2e and 2f) are given by:  

, and  (A2)

In a simple electric circuit consisting of a battery (E = 12 V), an inner resistance Ri (0.2 Ω) and an 
outer resistance Re (0.4 Ω), the current I is given by   0i eE I R R   , yielding:  
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The outgoing voltage delivered to the outer circuit is then given by Ue = −   = +8 V. 

Lc1 and Lc2 are given by –5/2 and 5/3 Ω−1, respectively, or Ri1 = −0.4, and Ri2 = 0.6 Ω, which fulfils 

Ri1 + Ri2 = Ri = 0.2 Ω. Setting Re = 4.0 Ω yields Ri1 = −4.0, Ri2 = 4.2 Ω, and again Ri = 0.2 Ω. 

Moreover, in the electric circuit the overall resistance Ri1 + Re vanishes. It should be noticed that 

partial resistances are not constant, although Ri is a constant. They depend both on Re and Le, 

respectively.  

The total dissipation function of reactions in the battery and of the outer circuit is given by: 
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,  (240 J/s or 0.24 kW), or (A3a)

(1/0.6×144 = 0.24 kW) (A3b)

This latter result means that the total entropy production of the circuit is given by that of the redox 

reaction. This is also valid with respect to heat production. 

Power output as a function of Re is given by: 

 (A4a)

, or  

 

 

Maximal power output is reached at Re = Ri = 0.2 Ω, max
outP  = 0.18 kW. Because Pout can also be 

expressed as 2
out c1P L    , this yields with Le = 1/0.2 1/Ω, max

outP  = −(−5.0)( −6)2 = 0.18 kW.  

When a second battery is added to the circuit in such a way that EII is directed against  
EI (EII = −10.9 V, II

iR  = 0.5 Ω), II  is now positive and EII negative. The outer resistance Re stands 

for the resistance of the wires connecting both batteries. In this constellation, − I  is no longer equal 

to Ue. Now − ( I  + Ue)= − Ie  = II  is valid. Consequently, Re also has to be added to I
iR  

yielding Ie
iR  = I

iR  + Re.  

= 1.0 A,  = 0.4 V (A4b)

from:  

, and  (A4c)

Ie  = −11.4 V, and II  = 11.4 V is obtained.  

Partial conductances are given by:  

= − 0.0877 1/Ω, and  = 0.0877 1/Ω. (A4d)

Again, the overall resistance of the electric path in the circuit is zero. The total resistance 
I II
i e iR R R   = 1.1 Ω, therefore, is also given by I II

i2 i1R R  = 12 + (–10.9) = 1.1 Ω.  

ATP, ADP, and Pi Species as Functions of [H+] and [Mg2+]  

ATP species, including MgATP2−, are calculated according to the methods of Alberty [20]. When 

respective constants are known, which are dependent on temperature and ionic strength, so-called 

polynomials can be formulated, from which several parameters like species concentration, K   
(biochemical equilibrium constant), or [H+] and [Mg2+] binding can be taken.  
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ATP splitting by myosin ATPase is formulated here for the species MgATP2−, MgADP−, and 

H2PO4
−, to make the reactions of the cross-bridge cycle directly dependent on these compounds. The 

reaction in chemical notation form is given by: 

2- - -
2 2 4MgATP H O MgADP H PO    

The equilibrium constant for the above reaction is given by:  

 (A5a)

 (A5b)

 (A5c)

Kref1 (= 6.267 × 105), K3at, K3ad, PATP4−, and PADP3− were taken from [1]. At given [H+] and [Mg2+] 

values, the corresponding K   (= 4.9687 × 105, pH = 7.1, [Mg2+] = 800 µM) is identical to formulations 

with other reference constants.  

 [H+] and [Mg2+] Buffering  

[H+] buffering of SMFs is treated here analogously to VMs (see [1]). It is given by: 

 
(A6a)

At very high ATP consumption, which may not be matched by ATP production differences in 

proton binding between substrates and products of reactions like ATP splitting, CK and AK reactions 

may also contribute to pH changes. According to [20], such changes for [H+] and [Mg2+], respectively, 

are given by: 
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, and  (A6c)
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For [Mg2+] buffering, it is suggested that during short time intervals Mg2+ transport reactions across 

membranes can be neglected. Only intrinsic binding sites including [ATP] are present and, as with 

[H+] changes, [Mg2+] changes induced by ATP splitting, the CK reaction, and the AK reaction have 

been addressed. [Mg2+] buffering can be expressed as:  

, (A7a)

 (A7b)

. 
(A7c)

In addition, Mg2+ binding depends on [H+]. A decrease of pH can liberate magnesium ions from 

intrinsic binding sites and from the predominant ATP species MgATP2−. The H+ and Mg2+ dissociation 

constants of both binding sites are set to the values of a simplified PATP4−. The total concentration of 

Mg2+ binding sites,  tot

Mg
BU , is adjusted to 9.0 mM plus a variable [ATP]. The change of [Mg2+] is 

given then by: 

 (A7d)

In simulations, instead of complete d[H+]/dt, only those fluxes producing or consuming protons are 

considered, because changes of [H+] depend mainly on these fluxes (see Figure 5A).  

[Mg2+] is introduced as a variable only in those simulations that deal with muscular fatigue. 

Because changes of [Mg2+] depend mainly on acidification, and pH does not change markedly even 

under conditions of high power output, this variable is set constant to 800 µM for all other simulations.  
In the above equations, methods of calculus are used so formulas can be held compact. In 

simulations, however, these equations must be incorporated in an explicit form, which often results in 
very voluminous expressions.  

Simulation of Glycogenolysis and Glycolysis 

Most flux equations of glycogenolysis are congruent with those of a simulation of glycolysis given 

in [1]; they are taken over from that article. Glucose-6-phosphate (G6P) formation by hexokinase (HK) 

and glycogen phosphorylase is now included. The new flux equations used here are as follows. 

Flux through glycogen phosphorylase: 
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, (A8)

 = 4×10−3 (µM/ms)×(mol/J),  = 2.0 µM,  = 0.286; 

glucose – 6 –phosphate isomerase, 

 
(A9)

max
GPIL  = 2×10−2 (µM/ms)×(mol/J), GPI

MK  = 300 µM, GPIK  = 0.276;  

lactate dehydrogenase, 

 (A10)

max
LDHL  = 2.4×10−2 (µM/ms)×(mol/J), ldh

MK  = 50 µM, LDHK  = 2.497×104; 

lactate/proton cotransport,  

 (A11)

max
LacG  = 2.866× 108 pS (pico Siemens = 10−8 Ω−1), Lac

MK  = 17 mM;  

Na+/H+ exchange,  

 
(A12)

max
NaHG  = 105 pS, H05 = 0.1 µM, S[H

+
] = 0.004 µM;  

anion exchange reaction, 

 
(A13)

max
AnExG  = 104 pS, H05 = 0.05 µM, S05 = 0.008 µM, anex

MK  = 13.0 mM.  

The energising flux of the cross-bridge cycle is given by: 

              (A14)
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max
EnL  = 6.138×10−2 (µM/ms)×(mol/J), fcorr = ([CBt]−[CB0])/([CBt]−[CB]), [CBt] = 656 µM, [CB0] = 

492 µM, ε  = 24.0, AL05 = 3.0×104 (J/mol), SL = 2.0×104 (J/mol), , AEn = −5.866729×104, 
2+Ca 0.55

0 1
85 2 10 0 326 1 1

.
ref
BK . . e

    
 
 

  
  

     
  

  

.  

The factor [CB]/[CB0] corrects max
EnL  for changes of [CB]; the second factor is introduced to damp 

changes of [CB]. ref
BK  is not constant, but depends on [Ca2+].  

The stroke generating fluxes are given by: 

 (A15a)

(A15b)

Both fluxes are identical as long as uncoupling is absent. The first factor corrects max
StrL  = 4.6 × 10−4 

(µM/ms)×(mol/J) for changes of [CBt] – [CB]. The second factor introduces [Ca2+] dependence of LStr. 

The third factor is responsible for the hyperbolic character of the flux equation at constant [Ca2+] with 
CB
IK  = −1.8 × 104 J/mol, which represents the inhibition constant, ref

RK  = 1.310889 × 10−4. λ values are 

not independent; this interdependency is given in Results. Uncoupling is formulated to occur in two 
steps, expressed by 1

P
Str  = 0.15 and 2

P
Str  = 0.85.  

SIMGLYgen              (A16)
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 
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The above set of differential equations without a variable [Mg2+] ([Mg2+] = 0.8 mM = const.) is 

used to calculate the various points of figures (Figures 1B, 2, 3, and 4) for a given [Ca2+] and various 

loads. As already mentioned, [Mg2+] is introduced as a variable only for conditions of very high power 

output leading to fatigue. From the output of the simulation many more variables, as shown here, can 

be obtained as functions of time, which may often be helpful in understanding underlying mechanisms.  
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