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Abstract: Due to their sessile lifestyle, plants are exposed to a large set of environmental 

cues. In order to cope with changes in environmental conditions a multitude of complex 

strategies to regulate metabolism has evolved. The complexity is mainly attributed to 

interlaced regulatory circuits between genes, proteins and metabolites and a high degree of 

cellular compartmentalization. The genetic model plant Arabidopsis thaliana was intensely 

studied to characterize adaptive traits to a changing environment. The availability of 

genetically distinct natural populations has made it an attractive system to study plant-

environment interactions. The impact on metabolism caused by changing environmental 

conditions can be estimated by mathematical approaches and deepens the understanding of 

complex biological systems. In combination with experimental high-throughput 

technologies this provides a promising platform to develop in silico models which are not 

only able to reproduce but also to predict metabolic phenotypes and to allow for the 

interpretation of plant physiological mechanisms leading to successful adaptation to a 

changing environment. Here, we provide an overview of mathematical approaches to 

analyze plant metabolism, with experimental procedures being used to validate their 

output, and we discuss them in the context of establishing a comprehensive understanding 

of plant-environment interactions. 
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1. Introduction 

The performance and distribution of plants is significantly affected by several environmental 

factors, like for example temperature, drought and soil salinity. Due to their sessile lifestyle, plants 

have to cope with spontaneous or seasonal changes in these environmental factors in order to survive. 

To a certain degree, numerous plant species are able to respond to such changes by re-adjustment of 
their metabolism—a process that is in general termed as acclimation. It comprises a multitude of 

biochemical and physiological changes, ultimately leading to an increase in the capacity of the plants 

to cope with environmental stress. One prominent example, which was amongst others intensely 

studied in the model plant Arabidopsis thaliana, is the acclimation to low temperature leading to an 

improved cold tolerance. For many herbaceous plant species it was shown that they can grow at low 

temperature and even survive freezing [1–3]. It was demonstrated that freezing tolerance is a 

multigenic trait influenced by multiple factors comprising changes in gene expression, protein 

abundance, enzyme activity, metabolite concentrations and membrane structure [4–9]. Particularly, 

reprogramming of primary metabolism affects photosynthetic activity, accumulation of soluble sugars, 

certain amino acids and polyamines, indicating a complex relationship between metabolic 

consequences of low temperature. Therefore, it is not surprising that although the presence of certain 

sugars like e.g. sucrose or raffinose is well known to correlate with winter hardiness in many plant 

species [9,10], this accumulation alone is insufficient to explain the development of freezing tolerance [11]. 

Additionally, it is not clear whether sugars accumulate as cryoprotective substances or whether they 

are substrates for the synthesis of cryoprotectants, or even just as a consequence of growth retardation, 

which is stronger than reduction of photosynthetic activity at low temperature [12,13]. 

The analysis of complex metabolic processes involved in acclimation of plant metabolism to 

environmental stress significantly benefits from the availability of genetically distinct natural 

populations of the model plant Arabidopsis thaliana. This species is natural to Europe and central 

Asia, and the climate on a global scale was shown to be sufficient for shaping its range boundaries 

[14]. Arabidopsis has a comparatively large climatic amplitude and is spread over a latitudinal range 

from 68°N to 0°N, which makes it suitable for the analysis of variation in adaptive traits [15,16]. Due 

to being a predominantly selfing species, most individual Arabidopsis plants collected in nature are 

homozygous inbred lines and are commonly referred to as accessions which are specialized to 

particular sets of environmental conditions. The usefulness of accessions in exploring plant cold 

acclimation mechanisms was exemplified by Hannah and co-workers who demonstrated that the 

freezing tolerance of nine natural accessions, originating from Scandinavia to the Cape Verde Islands, 

correlates with habitat winter temperatures [6]. Additionally, they showed that low temperature 

represents an important selective pressure for Arabidopsis.  

Besides such complex plant-environment interactions, latest developments in bioanalytical research 

comprising shotgun and next-generation genome sequencing as well as molecular analysis using 

OMICS technologies have driven the need for computer-assisted analysis and modeling of biological 

data. Systems biology has evolved in a research field focusing on the system wide understanding of 

biological networks, like for example the cellular metabolism in a photosynthetically active plant cell. 

In a systems biology approach, network elements, such as genes, proteins or metabolites, are 

considered as interacting components rather than isolated entities in order to deepen the comprehensive 
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understanding of the organization of a complex biological system. A promising way to analyze such 

complex biological and biochemical networks is formal representation by mathematical models 

enabling their computer based handling and making biological data accessible to theoretical methods 

originating from applied mathematics and systems theory. Numerous mathematical approaches to 

model plant metabolic networks have been suggested and discussed, both relying on and emphasizing 

the importance of the iterative processes of model development, simulation and validation by 

experimental data [17–22]. An overview of several computational approaches to study metabolic 

networks with respect to features like topology, stability and dynamical behavior was provided 

previously [23], classifying the approaches by their mathematical structure. Thus, qualitative models 

for a static network description containing no kinetic parameters (network/stoichiometric analysis) 

were distinguished from quantitative approaches applying a dynamic system description using kinetic 

parameters (kinetic models) [23]. 

A main focus of mathematical modeling in biochemistry and plant science has been on the 

construction of kinetic models where metabolic states are simulated based on the knowledge about 

network topology, stoichiometry, rate equations and kinetic parameters. Typically, a system of 

ordinary differential equations (ODEs) is used to describe the time-dependent changes in state 

variables, i.e., metabolite concentration, protein abundance or the amount of transcripts. In the context 

of metabolic systems, the sum of synthesizing and degrading rates of enzyme reactions defines the 

time-dependent change in metabolite concentrations. The representation of biological systems by sets 

of ODEs has successfully been applied to various processes in plant biology and also in the 

comprehensive analysis of plant-environment interactions, as was already outlined in [24]. While 

kinetic modeling represents an attractive method to study and beyond that, to potentially predict the 

behavior of complex metabolic networks, plenty of information about the network topology and the 

kinetics of metabolite interconverting steps is required for model development and its experimental 

validation [25]. For example, although rates of enzymatic steps can in general be reliably 

approximated by Michaelis-Menten kinetics, in many cases a probable influence of allosteric effectors 

is not confirmed but may have a dramatic effect on systems dynamics, and negligence will have a 

significant impact on the model output, i.e., the result of model simulation [26]. Additionally, in many 

cases mechanisms of allosteric regulation are known but quantitative experiments on parameters like 

substrate affinity (KM) or inhibitory constants (Ki) are lacking. This enforces the application of 

parameter estimation to calculate parameter values which are either completely unknown or can be 

estimated within numerical bounds based on published data on a different condition or organism. 

Indeed, such assumptions cause uncertainties, which have to be discussed carefully when interpreting 

the model output. However, although there might be several uncertainties with respect to regulatory 

instances involved in every single reaction of metabolism, numerous studies have proven kinetic 

modeling to be a promising approach to comprehensively analyze complex processes in plant biology. 

An overview of applications is given by Schallau and Junker [27] exemplarily comprising the process 

of photosynthesis [28], leaf carbon metabolism [29], sucrose metabolism in sugar cane (Saccharum 

officinarum) [30] or the aspartic acid-derived amino acid pathway in Arabidopsis thaliana [31]. 

In contrast to kinetic modeling, the approach of structural modeling is based on the idea of 

constructing models without kinetic information. This modeling approach refers only to the 

stoichiometry of the reactions within the system which is summarized in the stoichiometric matrix N. 
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Considering a metabolic reaction network, each column of N represents a reaction while rows 

represent metabolites. Hence, the elements of N describe the stoichiometric coefficients of metabolites 

in the reactions. Positive entries indicate that the metabolite is produced by the reaction, while negative 

values indicate consumption. Entries of zero indicate that the metabolite is not involved in this 

reaction. The definition of a vector v containing the rates of metabolite interconversions allows for the 

description of the steady state of the metabolic reaction network by a set of differential equations: 

dM

dt
 Nv  0 (1)  

where M represents a matrix containing metabolite concentrations and t is time. Solutions of this 

equation can be calculated applying linear algebraic rules. The advantage of this approach becomes 

obvious when considering the large number of reactions in a metabolic system, which can be predicted 

from an annotated genome sequence. The workflow from metabolic reconstruction to modeling of a 

metabolic network based on an annotated genome sequence was previously described in detail [32]. 

Sequence data of a genome are derived from techniques like next-generation sequencing, which are 

capable of sequencing a whole prokaryotic or eukaryotic genome within days. The assembled 

complete genome sequence is analyzed for intron/exon structure, start and stop codons as well as 

homology with known sequences. A genome-scale functional annotation based on the homology with 

functionally characterized genes from other organisms results in a gene list, which is used to predict 

enzymatic reactions. Based on the substrates and products of the enzymatic reactions, pathways are 

structured and a stoichiometric matrix can be derived. Applying this approach, it becomes possible to 

analyze a large set of metabolic interactions simultaneously, and results of experimental high-

throughput studies on the metabolome and proteome are a promising way to validate the model output 

in metaproteogenomic studies as demonstrated for Chlamydomonas reinhardtii [33]. Yet, in context of 

metabolism of higher plants the main challenges of this modeling approach result from the genome 

content whose function remains undiscovered, and also from characteristics like subcellular 

compartmentation and tissue differentiation making the analysis of higher plants much more complex 

than in prokaryotic organisms [34].  

Focusing now again on the complexity of plant-environment interactions and the variability of 

stress responses in natural accessions of Arabidopsis thaliana, both kinetic and stoichiometric 

modeling represent promising approaches to comprehensively study regulatory instances in plant 

metabolism, its re-adjustment after environmental perturbations or even the impact of changes in 

transcriptional control on the metabolome. On the other hand, both applications of mathematical 

modeling are significantly limited in their ability to reconstruct and predict the behavior of plant 

metabolism in vivo. Kinetic modeling typically focuses on a relatively small part of metabolism and 

aims at simplification to constrain the complexity and amount of kinetic information, which is needed 

to simulate network dynamics. In contrast, approaches of stoichiometric modeling focus on the 

comprehensive compilation of network interaction, ultimately aiming at the complete representation of 

metabolism, yet neglecting kinetic information and the estimation of non-linear network dynamics. 

Motivated by the limitations of each of these methods, the following sections are intended to 

summarize current progress in mathematical modeling of plant metabolism and to figure out its 

potential to analyze and predict complex plant-environment interactions.  
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2. Estimating Dynamics of Plant Metabolism Due to Environmental Perturbation 

The mathematical analysis of plant metabolism first of all relies on the representation by a model, 

which is constructed based on information on biochemical pathways and the interaction of pathway 

components gained from numerous previous experimental studies. Typically, the first step of model 

construction consists of a graphical representation of the pathway or network of interest. In case of a 

kinetic model of metabolism, this may result in a map, which connects nodes by lines. Every node now 

represents a metabolite and every line describes a metabolite interconversion, i.e., enzymatic reaction. 

Based on this graphical representation, the mathematical model is then derived by translating nodes 

and lines in metabolite concentrations and enzymatic rate laws, for example the Michaelis-Menten 

equation. These rate equations are characterized by kinetic parameters like enzymatic substrate 

affinity, i.e., the Michaelis-Menten constant KM, and the maximum enzyme activity vmax. This process 

is crucial for the successful modeling approach as all further steps of mathematical analysis rely on 

these assumptions: if the interaction between two network components is described by equations or 

parameters which do not agree with confirmed experimental results, validation of simulation results by 

experimental data is not reliable anymore and the model becomes unfeasible. Although a vast number 

of metabolic interactions have intensively been characterized and many underlying laws of interaction 

are well known, like for example the Michaelis-Menten kinetics, deriving the most realistic model 

structure of a metabolic network becomes difficult when assumptions about simplification have to be 

made. This is frequently the case for kinetic models, based on systems of ODEs, which are intended to 

provide an insight into the dynamics of metabolism. These dynamics are predominantly nonlinear and 

model systems are often characterized by a high-dimensional parameter space. Kinetic parameters, 

characterizing substrate affinity (KM) or inhibition (Ki), are often not directly accessible to 

experimental measurements. In addition to the everlasting question how results of in vitro 

measurements differ from in vivo data, experimental conditions, like the temperature or pH, 

significantly constrain their validity. Hence, besides the determination of a model structure, the process 

of mathematical identification of unknown kinetic parameters represents another crucial step in 

building a realistic ODE-based model to simulate dynamics of plant metabolism. To reduce the 

complexity and also the number of unknown kinetic parameters, individual enzymatic steps might be 

summarized in blocks of interconversions directly linking the metabolite concentrations that have been 

quantified. These blocks of interconversion are confined by the rate-limiting steps, i.e., the enzymatic 

reaction representing a regulatory bottleneck for the synthesis/degradation of a metabolite. 

Measurement on the kinetic parameters of the corresponding enzymes then allows for the estimation of 

the kinetic characteristics of this metabolic pathway. This approach was recently applied to the analysis 

of diurnal dynamics of the central carbohydrate metabolism in leaves of Arabidopsis thaliana [35]. For 

modeling, the authors used a simplified scheme of central carbohydrate metabolism, focusing on the 

most abundant sugars and phosphorylated intermediates at which pathways branch. In this simplified 

model, subcellular compartmented pathways were lumped together and aerial organs of the vegetative 

plant were collectively interpreted as a source of carbon fixation that exports carbon to sink organs, for 

example roots [35]. The modeling approach was applied to wild type plants as well as mutant plants 

defective in the dominating vacuolar invertase AtβFruct4 (At1G12240) to analyze the physiological 

role of AtβFruct4 on whole plant carbon metabolism. Although this approach is based on assumptions 
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significantly simplifying the in planta metabolic network, the authors were successful in reproducing 

the experimentally observed data on metabolite concentrations. Furthermore, simulation results 

allowed for the evaluation of flux rates in the central carbohydrate metabolism revealing a significant 

impact of invertase activity on sink-source interaction and buffering metabolite concentrations against 

changes in environmental conditions [35]. The usefulness of this modeling approach to study dynamics 

of metabolism induced by environmental perturbations was underpinned by application to the analysis 

of the regulation of the central carbohydrate metabolism during cold acclimation [22]. In this study, the 

authors applied an extended version of the mathematical model presented in [35] to analyze diurnal 

dynamics in carbohydrate metabolism of natural accessions of Arabidopsis thaliana, now also 

comprising the central steps of raffinose interconversion. Based on results of model simulation, a 

critical temperature for sucrose synthesis in a cold sensitive accession could be predicted at which an 

imbalance in photosynthetic carbon fixation is caused, ultimately resulting in oxidative stress [22]. It 

was concluded that metabolic capacities contribute to the ability of accessions of Arabidopsis thaliana 

to cope with changes in environmental conditions at low temperature.  

As exemplified by these approaches of mathematical modeling, realistic output of model 

simulations can be expected despite a significant simplification of the model structure. This was also 

proven by many other kinetic modeling approaches (for an overview of several approaches please 

refers to [20]). Such simplifications may be performed in order to reduce the number of unknown 

model parameters and to minimize ambiguity of the model output. This ambiguity occurs due to 

uncertainties concerning model parameters as well as experimental data, kinetics and model structure. 

These different types of uncertainty are interlaced because uncertain network structures contain 

uncertain reaction kinetics that are characterized by uncertain parameters [36]. Assuming that both the 

model structure and kinetic laws are known, then parameter values have to be estimated allowing for 

the simulation of experimental data, for example metabolite concentrations. While uncertainty of 

unknown or marginally characterized parameters will be huge, extensive experiments on parameters 

will significantly contribute to unambiguous simulation results. Additionally, experimental data on 

dynamics of the model components, like for example time courses of metabolites, will contribute to 

minimization of parameter uncertainty: only parameter sets allowing for the successful simulation of 

the time-course will be approved. The parameter estimation of nonlinear dynamic modeling 

approaches can be classified as a nonlinear programming problem being subject to nonlinear 

differential-algebraic constraints [37]. In general, this mathematical problem can be formulated as follows: 

where Z represents the cost function to be minimized, yexp contains experimentally determined state 

variables (for example metabolite concentrations), ypred(p,t) is the model prediction of state variables 

depending on estimated parameters p and time t, and W(t) is the weighting matrix containing 

information about the level of importance of single state variables and determining their influence on 

the cost function. This optimization problem of minimization of Z is subject to the 

differential/algebraic equality constraints describing the systems dynamics and additional requirements 

Z= 
0

t

 ( yexp(t) - ypred (p,t))T  W(t) (yexp (t) - ypred (p,t)) dt  (2) 
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for system performance. Additionally, the estimation of model parameter p is subject to lower (plow) 

and upper (pup) bounds: 

plow  p  pup  (3) 

Due to nonlinearities in objective function and constraints, solving these optimization problems 

frequently means having to cope with multimodality, i.e., the potential existence of multiple local  

solutions [37,38]. This implies the application of algorithms, which are able to overcome local minima 

to ultimately yield the best solution, i.e., the global optimum. Gradient-based local optimization 

methods fail to reliably determine the global optimum in multimodal problems because of 

nonconvexity arising from the previously mentioned nonlinearities. A graphical representation of this 

problem is shown in [38]. In a simple example it was demonstrated that even with only two decision 

variables, e.g., unknown kinetic model parameters, multimodal surfaces may result from optimization 

problems, i.e., surfaces of the cost function with multiple peaks and valleys, which do not allow for the 

determination of one unique optimal solution by local optimization methods. Solving such multimodal 

problems is the goal of global optimization [39], which was discussed and reviewed in the context of 

parameter estimation in biochemical pathways [37]. One example for a global optimization method is 

the particle swarm pattern search method for bound constrained global optimization [40]. This 

algorithm was shown to be highly competitive with other global optimization methods and is a 

demonstrative example of how possible nonconvexity of the objective function can be globally 

explored. The basic idea behind this approach is to construct a hybrid of a pattern search method and a 

particle swarm search [40]. A particle swarm algorithm attempts to simulate the social behavior of a 

population of particles to explore a given problem space [41]. For every iteration step of the 

optimization process, the particles are associated with a stochastic velocity vector indicating the 

particles’ direction of movement. The velocity vector for each particle is a linear stochastic 

combination of the velocity at the previous time instant, of the direction to the particle’s best position, 

and of the direction to the best swarm position. The new position of every particle is calculated by 

adding the current velocity vector to the old particle position. The stopping criterion for the algorithm 

may then be defined by a tolerance level of velocities, which has to be reached for all particles. While 

pattern search methods are designed to achieve convergence from arbitrary starting points to points 

satisfying necessary conditions for local optimality [42], the incorporation of a particle swarm search 

in the search step of a pattern search method enables the attraction of local optima and the identification 

of global optima to be overcome [40]. 

Due to its capability to develop methods for comprehensive analysis of complex data sets and 

provide strategies of how to solve nonlinear problems, optimization theory represents an essential 

component for mathematical modeling of plant metabolism and other biological systems. Beyond that, 

the prediction of metabolism from first principles only becomes possible by application of 

optimization approaches [43]. 
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3. Modeling on a Large Scale—Reconstruction of Metabolic Networks and Validation of 

Predictions by Metabolomics Science 

Reconstruction of metabolic networks is based on information about whole genome sequences 

finally resulting in the stoichiometric matrix N of the network, which provides the basis for all 

modeling approaches [32]. As described in the previous section, particularly in kinetic modeling 

approaches, this information is frequently reduced in order to minimize complexity and unambiguous 

model outputs. In contrast, stoichiometric modeling approaches aim at the compilation and integration 

of the entire stoichiometric information of the metabolic network. Numerous missing enzyme 

parameters prevent comprehensive analysis by kinetic modeling, yet determination of steady-state 

solutions for the metabolic network is possible by solving equation (1) numerically. Compared to the 

complex analysis of nonlinear dynamical systems, this system of linear equations can easily be solved. 

However, the complexity of such an approach is indicated by the comprehensive reconstruction 

process as well as the experimental validation, revealing the need for permanent improvement of 

published metabolic network reconstructions by biochemist experts’ knowledge and proteogenomic 

methods [33,44,45]. In a detailed protocol, Thiele and Palsson described the complex reconstruction 

process within four major steps leading to a metabolic network model [46]. Based on an automated 

draft reconstruction, the network model is iteratively refined, converted into a computable format and 

evaluated by the comparison of model predictions with experimental results on physiology, 

biochemistry or genetics. Although the process of reconstruction is identical for prokaryotic and 

eukaryotic metabolic networks, the authors emphasize that in eukaryotic systems, e.g., metabolism of 

higher plants, it is more challenging due to the size of genomes and cellular compartmentation [46]. 

Additional complexity arises from network gaps and mass-balance errors resulting from incomplete 

genome annotation and reaction stoichiometry errors which severely affect the predictive power of 

network models [47]. Beyond that, model simulations provide only information about a steady state, 

i.e., a snapshot, of the system, which is pre-defined by the experimental design. Recently, in several 

studies genome-scale metabolic modeling in Arabidopsis thaliana was applied to address questions 

like ATP demand for growth and maintenance [21], the metabolic activity of key enzymes responsible 

for the supply of redox equivalents in plastids during the photorespiratory cycle [48] or to predict the 

design of genetic manipulations that are expected to increase vitamin E content in metabolically 

engineered seed strains [49].  

With respect to such comprehensive metabolic network simulations, quantitative measurement of 

metabolism is necessary to validate the output of such simulations, which can be accomplished 

applying bioanalytical methods in metabolomics science [50]. Mass spectrometry is one of the crucial 

technologies in this field, and an overview of different techniques in context with their characteristic 

features has recently been presented [32]. A recent development is the use of two-dimensional gas 

chromatography coupled with fast acquisition rate time-of-flight mass spectrometry (GC x GC-TOF-MS). 

The coupling of two gas chromatography columns with different characteristics, for example a 

hydrophobic and a polar column, increases the separation efficiency of a complex metabolomics 

sample. A complete strategy to perform a convenient data extraction and alignment using two-

dimensional gas chromatography coupled with mass spectrometry (GC x GC-MS) technology is 

already available [51]. Another important extension of current metabolomics platforms for 
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metabolomics is the integration of gas chromatography coupled to mass spectrometry (GC-MS) with 

liquid chromatography coupled to mass spectrometry (LC-MS) [52]. This approach enables the 

analysis of components of the primary metabolism by GC-MS, for example carbohydrates and amino 

acids, and higher molecular masses by LC-MS, e.g., secondary metabolites [53,54]. Beyond the 

development of techniques and new platforms, the improvement of databases, experimental standards 

and data compatibility among different laboratories is crucial for efficient metabolomics science [55].  

The analysis of metabolomics results on numerous biological replicates under different 

environmental conditions or with genotypic variation represents a multidimensional task and results in 

a complex data matrix. The covariance matrix C results from multivariate statistics representing a 

central result of the experiments [32,56–59]. The observed covariance matrix C of metabolite 

concentrations is linked to the underlying biochemical system and the corresponding genotype by a 

systematic approach, which is characterized by the following equation [60]: 

CJT  JC  2D  (4) 

In this equation, J represents the Jacobian matrix and D is the fluctuation/diffusion matrix. The 

diagonal entries Dii characterize the magnitude of fluctuations of each metabolite, whereas off-

diagonal entries Dij (i≠j) represent the fluctuation of metabolites caused by the interaction between 

enzymes i and j. The interconnection between metabolic networks and the Jacobian Matrix as well as 

the fluctuation matrix is described in detail elsewhere [32,60,61]. In general, the Jacobian matrix 

characterizes the local dynamics at a steady state condition. In the context of metabolic networks, the 

entries of the Jacobian J represent the elasticities of reaction rates to any change of the metabolite 

concentrations being characterized by the following equation: 

J  N
r

M
 (5) 

Here, N is the stoichiometric matrix, r represents the rates for each reaction and M is the metabolite 

concentration. Based on equations (4) and (5), an approach of inverse calculation of a Jacobian from 

metabolomics covariance data was recently derived [59]. Additionally, the authors developed the 

differential Jacobian, dJij, defining the relative change of two Jacobians Ja and Jb which are associated 

with different treatments, i.e., environmental conditions: 

dJij  log2 abs
Ja,ij

Jb,ij



















 (6)  

Calculation of the differential Jacobian reveals perturbation sites between two different metabolic 

states hinting at a significant regulatory event, e.g., the change of enzymatic reaction rates due to 

environmental perturbations. In principle, using this approach it is possible to conveniently connect a 

large metabolomics experiment with many samples and thousands of variables directly with the 

predicted genome-scale metabolic network to calculate biochemical regulation in the investigated 

biological system (for more detail see [32]). The approach relies on the assumption that regulation of 

metabolism becomes observable in the significant changes of the local dynamics around a steady state 

condition, e.g., rates of metabolite synthesis and degradation. Due to the redundancy of pathways and 

multiple isoforms of numerous enzymes, such calculations and predictions need to be confirmed and 
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validated by further biochemical experiments. Limitations to this approach are currently the low 

quality knowledge of N and the low number of detected metabolites in measurements compared to the 

number of predicted metabolites in a metabolome, necessitating the simplification of N in accordance 

with the data matrix [32,59].  

4. Conclusions  

With regard to currently emerging discussions about world population feeding, global climate 

change and limited energy resources with fossil fuels, plant biology and biotechnology are central 

topics of life sciences in the coming decades [53]. Latest developments in bioanalytical research aim at 

the understanding of organisms at a systems level and within their ecosystemic context. Characterized 

by nonlinearities and multidimensionality, the comprehensive analysis of plant-environment 

interactions is non-intuitive. Thus, the application of methods, which are capable of coping with this 

complexity, is necessary. Mathematical modeling and computer-assisted data analysis are powerful 

and adequate approaches used to exploit entire data sets provided by experimental high-throughput 

technologies in order to derive a new hypothesis about regulation of biological systems. Although 

every single mathematical approach is limited by underlying assumptions, the combination of different 

modeling approaches may yield the ultimate amount of information available from experimental  

data sets (Figure 1). 

Figure 1. Overview of modeling approaches and their interaction by validation. Data 

represent results of experiments on the metabolome, proteome, enzyme activities or 

transcriptome. 

 

Kinetic modeling approaches are limited by lack of kinetic information and stoichiometric modeling 

approaches are limited by their reference to a steady state. Yet, if a stoichiometric modeling approach 

delivers information about potential perturbation sites in metabolism, this will enable systematic in-

depth analysis, for example by kinetic modeling, promoting a comprehensive understanding of how 

plant metabolism is composed functionally. 
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