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Abstract

Background/Objectives: Carotenoids in citrus are vital nutritional compounds and precur-
sors of the stress hormone abscisic acid (ABA). SNF1-related kinases (SnRKs)—key regula-
tors of plant stress signaling that phosphorylate is targeting proteins for post-transcriptional
regulation—mediate ABA signaling through its subfamily SnRK2-phosphatase type-2C
(PP2C)-PYR1-LIKE (PYL) cascades. This study aims to identify the SnRK-PP2C-PYL family
members and decipher their underlying post-transcriptional regulatory mechanisms which
control carotenoid metabolism in Citrus sinensis for improved nutrition and stress resilience.
Methods: SnRK, PP2C, and PYL were identified by integrated HMMER-blastp-CDD
pipeline in the Citrus genome. Using two carotenoid-divergent cultivars, ‘Newhall” (yellow)
and ‘Cara Cara’ (red, hyperaccumulating linear carotenoids), we conducted spatiotemporal
expression profiling and integrated transcriptomic and metabolomic data via Weighted
Gene Co-expression Network Analysis (WGCNA) to identify modules correlated with ac-
cumulation. Results: We identified 26 CsSnRKs (1 SnRK1, 7 SnRK2, 18 SnRK3), 57 CsPP2Cs,
and 7 CsPYLs in Citrus sinensis. Despite a >26-fold difference in linear carotenoids, structural
gene expression was similar among cultivars, strongly implicating post-transcriptional con-
trol. WGCNA identified a key turquoise module highly correlated with linear carotenoid
content. This module contained phosphorylation-related genes (CsSnRK1/3.5/3.6/3.16,
CsPP2C14/15/33/35/38/40/43/56, and CsPYL6), biosynthetic genes (CsPSY1, CsZISO,
and CsZDS), and candidate transcription factors. Network analysis predicted that CsSnRKs,
CsPP2Cs, and CsPYLs regulate phytoene-derived carotenoid biosynthesis. Conclusions:
We propose a novel phosphorylation-mediated post-transcriptional regulatory network
in carotenoid accumulation. This mechanism bridges ABA signaling and metabolic adap-
tation, providing crucial molecular targets for engineering nutrient-dense and climate-
resilient citrus varieties.

Keywords: SnRK; PP2C; PYL; carotenoid; Citrus sinensis; gene family; metabolism

1. Introduction

Citrus sinensis (also written as Citrus X sinensis) is a hybrid between the pomelo (Citrus
maxima) and mandarin (Citrus reticulata), known as the cultivated sweet orange. Citrus
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sinensis stands as the most globally significant Citrus species in terms of cultivated area and
production [1-3]. Its commercial value hinges critically on fruit pigmentation, primarily
governed by carotenoids—tetraterpenoid pigments that confer vibrant coloration and serve
as precursors for vitamin A, potent antioxidants with demonstrated roles in mitigating
carcinogenesis, cardiovascular diseases, and neurodegeneration [4—6]. Beyond human
health benefits, carotenoids underpin photosynthesis, photoprotection, and phytohormone
synthesis [5]. Carotenoids include carotenes, which lack oxygen atoms, and xanthophylls,
which contain oxygen. The carotenoid biosynthetic pathway is well-characterized [7]
(Figure 1). Enzymes involved in carotenoid biosynthesis are primarily localized in plastids
and encoded by nuclear genes. Phytoene synthase (PSY), the rate-limiting enzyme of
the carotenoid pathway, catalyzes the condensation of two molecules of geranylgeranyl
diphosphate (GGPP) to form the first carotenoid molecule, phytoene. Phytoene is then
processed by several enzymes into lycopene [5]. The pathway then splits into «,f3- and
(3,B-branches at lycopene, leading to degradation by carotenoid cleavage dioxygenase
(CCD). Carotenoids can be cleaved into volatile compounds that serve as plant signaling
molecules and aroma compounds, or they can be degraded into apocarotenoids. 9-cis-
epoxycarotenoid dioxygenase (NCED), a member of the CCD family, specifically cleaves
9-cis-violaxanthin and 9-cis-neoxanthin to generate abscisic acid (ABA) [5,7].

Transcriptional regulation of carotenoid metabolism is increasingly understood. Light-
responsive TFs (PIF1 repressing PSY /carotenoids in darkness; HY5 activating PSY under
light/temperature) critically regulate carotenoid biosynthesis [8-10], while MADS-box
TFs (e.g., tomato RIN/ AGAMOUS-likel/FRUITFULL) directly control PSY /carotenoid
levels during ripening [10,11]. However, the regulatory mechanisms, particularly post-
transcriptional controls, governing carotenoid flux remain incompletely resolved. As
central stress-signaling regulators, SNF1-related kinases (SnRKs) broadly coordinate post-
translational responses via phosphorylation [12,13]; however, their specific modes of action
in regulating carotenoid biosynthesis and degradation remain unresolved and demand sys-
tematic investigation. ABA, a carotenoid-derived sesquiterpenoid hormone, orchestrates
plant development and stress responses [13,14]. A major breakthrough in ABA signaling
was the identification of the core signaling components: the pyrabactin resistance (PYR)/
PYR1-like (PYL)/RCAR receptor family, phosphatase type 2C (PP2C), and SnRK2 kinases
belong to a subfamily of SnRK [15-17]. The established model shows that ABA binding
to PYR/PYL/RCAR induces conformational changes enabling receptor-PP2C interaction,
which disrupts the PP2C-mediated inhibition of SnRK2s (Figure 1). This releases active
SnRK2s to phosphorylate downstream targets, including transcription factors [18] (Figure 1).
SnRKs comprise three subfamilies—SnRK1 (energy sensing), SnRK2 (ABA /osmotic stress),
and SnRK3 (Ca®* signaling)—all sharing a conserved kinase domain but with subgroup-
specific domains (KA1/UBA in SnRK1; NAF in SnRK3) [12,13] (Figure 1). In Arabidopsis,
these families are represented by 14 PYR/PYL/RCAR receptors [17], 80 PP2Cs [19], and
38 SnRKs (3 SnRK1, 10 SnRK2, 25 SnRK3) [12]. ABA is a carotenoid-derived metabolite
functioning as a phytohormone that regulates diverse physiological processes. It maintains
multifaceted equilibrium during plant growth through hormonal crosstalk. As products
shaped by extensive evolution, the carotenoid metabolic pathways in plants likely possess
intricate feedback regulation mechanisms. A compelling scientific question worthy of
exploration is the potential regulatory role of the SnRK, PYL, and PP2C protein families in
carotenoid biosynthesis. Our preliminary research on the ‘Cara Cara’ mutant, which hy-
peraccumulates linear carotenoids in its juice vesicles, revealed that neither transcriptional
differences in biosynthetic genes nor chromoplast sink capacity explain its enhanced accu-
mulation. Thus, post-transcriptional regulation, particularly phosphorylation, is strongly
implicated as the underlying mechanism [20,21].
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Figure 1. Carotenoid biosynthetic pathway in higher plants and ABA signaling via SnRK-PP2C-PYL
cascades. Illustration depicts: (1) core carotenoid biosynthesis from geranylgeranyl diphosphate
(GGPP) to o/ -branch carotenoids and ABA precursor cleavage by NCED; (2) ABA signal transduc-
tion through PYL receptor-PP2C phosphatase-SnRK2 kinase cascades; and (3) structural domains
distinguishing SnRK subfamilies. GGPP, geranylgeranyl pyrophosphate; PSY, phytoene synthase;
PDS phytoene desaturase; Z-ISO, (-carotene isomerase; ZDS, (-carotene desaturase; CrtISO, carotene
isomerase; CYCB, chromoplast-specific lycopene B-cyclase; LCYB, lycopene p-cyclase; LCYE, ly-
copene ¢-cyclase; BCH, 3-carotene hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin de-
epoxidase; NSY, neoxanthin synthase; NCED, 9-cis-epoxycarotenoid dioxygenase; CCD, carotenoid
cleavage dioxygenase.

Characterizing the temporal and spatial expression patterns of the SnRK, PYL, and
PP2C family members during the development of these two sweet orange genotypes with
distinct carotenoid accumulation phenotypes will provide crucial insights into this un-
derlying regulatory mechanism. A 2012 Citrus study [22] identified the SnRK2 subfamily,
PYL, and clade-A type-2C protein phosphatases (PP2CAs). However, it relied solely on
BLASTYp alignments with known Arabidopsis sequences. Likely due to limited genome
data at the time, the number of identified SnRK2, PYL, and PP2CA genes differs from
this study. Here, we comprehensively identify SnRK, PYL, and PP2C gene families in Cit-
rus sinensis using an integrated HMMER-blastp-CDD pipeline, updating previous partial
annotations. We further compare spatiotemporal expression of these genes in ‘Newhall’
(yellow pulp) and ‘Cara Cara’ (red pulp) across fruit development, integrating transcrip-
tomic and carotenoid metabolite data. Weighted Gene Co-expression Network Analysis
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(WGCNA) employs eigengene network methodology to analyze gene expression corre-
lation matrices, facilitating the identification of phenotype-associated gene modules and
candidate biomarkers [23].

This study employs integrated transcriptomic and metabolomic co-expression analysis
to construct correlation networks, identifying modules of co-expressed genes and highly
connected regulatory hubs to explore phosphorylation-mediated post-transcriptional net-
works regulating carotenoid metabolism in sweet orange. Our objectives are (1) the iden-
tification of SnRK, PYL, and PP2C families in sweet orange; (2) expression profiling of
these regulators in contrasting carotenoid-accumulating genotypes; and (3) co-expression
network analysis to uncover putative regulatory nodes linking post-transcriptional regula-
tion and ABA signaling to carotenoid metabolism. Our analysis sheds light on potential
regulatory mechanisms and nominates prioritized candidate genes implicated in post-
transcriptional control. These candidates provide a foundation for future experimental
validation and represent potential molecular targets for precision citrus breeding aimed at
enhancing nutritional carotenoid content.

2. Materials and Methods

2.1. Genome-Wide Identification, Characterization, and Phylogenetic Analysis of CsSnRK,
CsPP2C, and CsPYL Genes

The Pfam domains PF00069 (SnRK) and PF00481 (PP2C) were downloaded from
the InterPro Scan database (https://www.ebi.ac.uk/interpro/entry/pfam/, accessed on
1 June 2025). Since no established Pfam domain exists for PYL proteins, we constructed a
custom hidden Markov model (HMM) profile using 14 Arabidopsis thaliana AtPYL protein
sequences. The workflow involved performing multiple sequence alignments of 14 AtPYL
peptides, building the HMM profile via hmmbuild, and generating the HMM file: 14At-
PYLpep.stockholm. The software HMMER 3.0 [24] was used to perform local hmmbuild
and hmmsearch on annotated protein sequences from Citrus sinensis (http:/ /citrus.hzau.
edu.cn, accessed on 1 June 2025) with a cut-off E-value of <1 x 10~ for both full length
and best domain. Protein sequences of AtSnRKs [12], AtPP2Cs [19], and AtPYLs [17] from
Arabidopsis were downloaded from NCBI (https://www.ncbinlm.nih.gov/, accessed
on 1 June 2025). A local BLASTP search was then performed using the protein AtSnRKs,
AtPP2Cs, and AtPYLs sequences as query and annotated protein sequences from Citrus
sinensis as the database, with default parameters, and was further filtered with a threshold
of identity > 50%. The candidate sequence was further confirmed in the Conserved Domain
Database (CDD) (https:/ /www.ncbi.nlm.nih.gov/Structure/cdd /wrpsb.cgi, accessed on
1 June 2025) to remove the false-positive sequences.

The candidate protein sequences of AtSnRKs and CsSnRKs (Figure S1), AtPP2Cs and
CsPP2Cs (Figure S2), and AtPYLs and CsPYLs (Figure S3) were separately performed for
multiple sequence alignments using the CLUSTAL tool in MEGA 7.0 software [25] with
default settings. Any sequences with poor alignment were excluded. The phylogenetic
tree was constructed using the neighbor-joining method with 1000 bootstrap replicates
in MEGA 7.0 software. To enhance the visual presentation of the tree, Evolview (http:
/ /www.evolgenius.info/evolview/, accessed on 1 June 2025) was utilized [26].

2.2. Plant Materials and Carotenoid/Chlorophyll Extraction with HPLC Quantification

‘Newhall’ is a cultivar derived from a mutation of the Washington navel orange.
It is characterized by a relatively small, flat-round or round-headed canopy with short,
dense branches and dark green leaves. The fruit is elliptical, relatively large, and has a
smooth, orange-red to deep-orange rind. In contrast, the origin and pedigree of ‘Cara
Cara’ remain unclear, though its main agronomical traits are largely consistent with those
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of ‘Newhall’. The ‘Newhall” and ‘Cara Cara’ plant materials used in this study were
collected from orchard-grown trees in Zhejiang Province, China. The leaves, flowers, and
fruits were immediately frozen in liquid nitrogen and stored at —70 °C for subsequent
analysis. All experiments in this study, including HPLC quantification, RNA-seq, and
qPCR validation, were performed with three independent biological replicates (1 = 3), and
for carotenoids/chlorophylls extraction and measurement by HPLC, according to a method
previously described [27]. Fresh tissues (0.4 g) were ground in liquid nitrogen and extracted
with chloroform/methanol/Tris-HCl (pH 7.5). After centrifugation, the chloroform phases
were collected and dried under nitrogen gas. The residue was saponified with 6% KOH
in methanol at 60 °C for 0.5 h (this step was omitted for chlorophyll analysis). Water and
chloroform were added to saponified mixtures, and after centrifugation, the chloroform
phases were recollected and dried under nitrogen gas. HPLC analysis used a Waters
Alliance 2695 system (Waters Corporation, Milford, MA, USA) with a YMC reverse-phase
C30 column at 25 °C. Mobile phases comprised (A) methanol, (B) 80% methanol with 0.2%
ammonium acetate, and (C) tert-butyl methyl ether. The gradient program was 95% A /5%
B (0-6 min), linear transition to 80% A /5% B/15% C (7 min), held (7-12 min), transition to
30% A /5% B/65% C (32 min), held (32-48 min), return to 95% A /5% B (50 min), and held
to 60 min. Quantification used peak areas at specific wavelengths: 400 nm (chlorophyll
a), 470 nm (chlorophyll b), 286 nm (phytoene), 348 nm (phytofluene), and 450 nm (other
carotenoids), with concentrations calculated against authentic standards.

2.3. Transmission Electron Microscopy (TEM)

Sample preparation and transmission electron microscopy were conducted as de-
scribed in our previous study [20]. Plant samples were separated and fixed overnight at
4 °C in 2.5% glutaraldehyde (in 0.1 M phosphate buffer, pH 7.0). After fixation, samples
were washed three times (15 min each) with phosphate buffer, then post-fixed in 1% OsOy4
(in 0.1 M phosphate buffer, pH 7.0) for 1-2 h. Subsequently, samples were washed three
times with phosphate buffer. Dehydration was performed using a graded ethanol series
(50%, 70%, 80%, 90%, 95%, and 100%,; 15 min per step), followed by infiltration in absolute
acetone for 20 min. For resin infiltration, samples were sequentially treated with a 1:1
mixture of absolute acetone and Spurr resin for 1 h, a 1:3 mixture of absolute acetone and
Spurr resin for 3 h, and finally, pure Spurr resin overnight. The embedded samples were
placed in capsules filled with embedding medium and polymerized at 70 °C for 9 h. Prior
to observation, ultrathin sections were stained with uranyl acetate and alkaline lead citrate
(15 min each) and examined using a Hitachi JEM-1230 transmission electron microscope
(Hitachi, Ltd., Tokyo, Japan).

2.4. RNA Extraction, RNA-Seq Analysis, and Quantitative Real-Time PCR (qPCR) Analysis

Total RNA was extracted by the CTAB method as described in our previous work [21].
High-quality total RNA was extracted, with RNA Integrity Numbers (RIN) consistently
exceeding 7.0, as determined by Bioanalyzer analysis (Agilent Technologies, Santa Clara,
CA, USA). RNA sequencing was performed by Biomarker Technologies on the Illumina
HiSeq PE150 platform (Illumina, San Diego, CA, USA). For quantitative real-time PCR
(qPCR) validation, first-strand cDNA was synthesized from 1 pg total RNA using the
HiScript II 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). qPCR reactions
were performed on a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA,
USA) using SYBR Green qPCR Master Mix (MedChemExpress, Monmouth Junction, NJ,
USA), strictly adhering to manufacturer protocols. The thermal cycling profile consisted of
(1) initial denaturation: 95 °C for 5 min; (2) 45 amplification cycles: 95 °C for 5 s, 58 °C
for 15s, and 72 °C for 10 s; and (3) melting curve analysis: 65 °C to 95 °C (increment
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0.5 °C/5 s). Melting curve analysis confirmed amplification specificity for all reactions. The
four carotenoid biosynthetic structural genes—CsPSY1, CsPDS, CsZISO, and CsBCH—were
selected for qPCR validation of RNA-seq data accuracy. Transcript levels were normalized
against the CsActin reference gene by the value of 22¢T. Primers for RNA-seq validation
were designed based on sequences of selected genes (Table S1).

2.5. Weighted Gene Co-Expression Network Analysis (WGCNA) and Establishment of
Co-Expression Networks

Weighted Gene Co-expression Network Analysis (WGCNA) was implemented using
the WGCNA R package v1.72 [23]. An adjacency matrix was constructed by raising the pair-
wise Pearson correlation matrix of all expressed genes to a soft-thresholding power (3 = X,
selected based on the scale-free topology criterion). This adjacency matrix was subsequently
transformed into a Topological Overlap Matrix (TOM) to minimize spurious connections
and measure network interconnectedness. Module identification was performed using
average linkage hierarchical clustering of genes based on TOM dissimilarity (1-TOM).
Modules were delineated from the resulting dendrogram using the dynamic tree-cutting
algorithm. Branches of the dendrogram were assigned color codes representing distinct
co-expression modules. Module-trait association analysis correlated module eigengenes
(the first principal component of module expression) with phenotypic traits. Associations
were visualized in a heatmap where rows represent modules (color-coded) and columns
represent traits. Heatmap color intensity corresponds to the Pearson correlation coefficient
(r) between module eigengene and trait (scale bar: red = positive correlation, blue = nega-
tive correlation, and white = | 7| = 0). Intramodular analysis identified highly connected
genes (hub genes) within modules using connectivity measures. Network visualization
for selected modules was performed using Cytoscape v3.10.3 [28]. Transcription factor
(TF) identification was conducted by cross-referencing module gene lists with the Plant
Transcription Factor Database (PlantTFDB; http:/ /planttfdb.gao-lab.org/, accessed on
1 June 2025) [29].

3. Results

3.1. Identification and Classification of CsSnRK, CsPYL, and CsPP2C Gene Families in
Citrus sinensis

By integrating the HMMER-blastp-CDD pipeline, CsSnRK, CsPYL, and CsPP2C were
identified (Figure 2). We identified 26 CsSnRK genes in Citrus sinensis, fewer than the
38 AtSnRK genes in Arabidopsis (Figure 2A). Based on subfamily classification [12], these
comprise 1 CsSnRK1,7 CsSnRK2, and 18 CsSnRK3 genes, respectively fewer than the corre-
sponding Arabidopsis subfamilies (3 AtSnRK1, 10 AtSnRK2, and 25 AtSnRK3) (Figure 2A).
We also identified 7 CsPYL genes in sweet orange, indicating a contraction of this gene
family compared to the 14 AtPYL genes in Arabidopsis (Figure 2B). Following established
subfamily classification methods [17], the CsPYLs were grouped into three subfamilies (I,
II, IT): CsPYL5, CsPYL6, and CsPYL7 belong to subfamily I; CsPYL4 belongs to subfamily II;
and CsPYL1, CsPYL2, and CsPYL3 belong to subfamily III (Figure 2B). Furthermore, we
identified 57 CsPP2C genes in sweet orange, fewer than the 80 AtPP2C genes in Arabidopsis
(Figure 2C). Consistent with the established classification for the model plant Arabidop-
sis [19], these were categorized into 13 subfamilies (A, B,C, D, E,F1,F2,G, H, L, ], K, and L)
(Figure 2C). A small number of genes remained unclassified into these subfamilies.
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Figure 2. Phylogenetic analysis of SnRK, PYL, and PP2C families in Citrus sinensis. (A) SnRK family
tree showing the three subfamilies SnRK1, SnRK2, and SnRK3. (B) PYL family tree showing the three
subfamilies (I, I, III). (C) PYL family tree showing the 13 subfamilies (A-L). Trees were constructed
using the neighbor-joining method in MEGA 7 with 1000 bootstrap replicates. Arabidopsis SnRKs,
PYLs, and PP2Cs were included as references for identification and classification.

3.2. Comparative Profiling Reveals ‘Cara Cara’ Juice Vesicles Hyperaccumulate Linear Carotenoids
(Phytoene, Phytofluene, and Lycopene) over ‘Newhall’, with Parallel Leaf/Flower Phytoene
Elevation and Supporting Plastid Ultrastructure

Visual observation revealed uneven pigmentation and significant inter-fruit variability
in the juice vesicles of ‘Cara Cara’ oranges. To document this phenomenon during fruit
maturation, eight ‘Cara Cara’ fruits and one ‘Newhall’ fruit (as a control) were randomly
sampled, as shown in Figure 3A. Carotenoid profiling of ‘Cara Cara’ juice vesicles confirmed
high inter-fruit variability and revealed disconnected relationships between the color of
the central core and its pigment composition (Figure 3B). The average total carotenoid
content in ‘Cara Cara’ juice vesicles ranged from 22.91 to 42.61 pg/g FW, significantly
higher than the 1.12 ng/g FW found in “‘Newhall’ (Figure 3B). Linear carotenoids (phytoene,
phytofluene, and lycopene) dominated the total carotenoids in ‘Cara Cara’, accounting
for 89.58% to 96.12%. Phytoene was the predominant component, constituting 52.42% to
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67.60% of the total. In contrast, linear carotenoids represented only 16.07% of the total
carotenoids in ‘Newhall” juice vesicles, with phytoene at 11.31% (Figure 3B). While the
average total xanthophylls in ‘Cara Cara’ juice vesicles were higher than in ‘Newhall’, no
clear obligatory link existed between total xanthophyll levels and total carotenoid content
(Figure 3C). For instance, Sample C3 had lower total carotenoids but higher xanthophylls,
Sample C4 had the highest total carotenoids but lower xanthophylls, and Samples C1 and
C3 had similar total carotenoid levels, but C3 had significantly more xanthophylls than C1
(Figure 3B,C).

- [T
N

N iz
« TR

Total xanthophylls (ug/g FW)

[ 00 0N

Total carotenoids (ug/g FW)

Figure 3. Morphological and carotenoid composition differences between ‘Newhall” and ‘Cara Cara’
oranges exhibiting distinct color variation. (A) Longitudinal sections of mature ‘Newhall” (N) and
‘Cara Cara’ (C1-C7) fruits. (B,C) Total carotenoid (B) and total xanthophyll (C) content in juice
vesicles of individual fruits (fresh weight, FW). (D) Morphology of ‘Newhall’ and ‘Cara Cara’ fruits
with white (W)- or red (R)-pigmented central cores at key developmental stages: green (G), mature
Green (MG), turning (T), and mature (M). (E) Composition of carotenoids accumulated in red central
cores (R), predominantly linear carotenoids (phytoene, phytofluene, and lycopene) with phytoene as
the major component. (F) Total carotenoid content in juice vesicles (FW) of ‘Cara Cara’ fruits with
white (W)- or red (R)-pigmented central cores across developmental stages. All data were derived
from three independent biological replicates (1 = 3), and error bars represent the standard error (SE).

Longitudinal sectioning of individual ‘Cara Cara’ fruits revealed two distinct cen-
tral core phenotypes: red (C3, C4, and C5) and white (C1, C2, C6, and C7) (Figure 3A).
Subsequent developmental stage sampling confirmed that central core coloration is tree-
specific; individual trees exclusively produce either red- or white-core fruits, indicating
two distinct subpopulations within the ‘Cara Cara’ group (Figure 3D). This phenotypic
divergence was observable as early as the immature green stage (Figure 3D). Red central
cores accumulated lycopene (red pigment) alongside substantial colorless carotenoids (phy-
toene and phytofluene), mirroring the pigment profile of ‘Cara Cara”s red juice vesicles
(Figure 3E). However, central core coloration did not directly correlate with significant
differences in juice vesicle carotenoid composition (Figure 3F). Comparative analysis of
plant morphology showed minimal distinctions in leaf/flower (Figure 4A,B). Plastid ul-
trastructure among red-core ‘Cara Cara’, white-core ‘Cara Cara’, and ‘Newhall” controls
aligned with their carotenoid accumulation patterns (Figure 4B,C). Notably, both red- and
white-core ‘Cara Cara’ leaves accumulated phytoene + phytofluene (6.44-13.54 ug/g FW,
predominantly phytoene (>97%)), constituting 5.2-10.75% of total leaf carotenoids with
no lycopene detected, while ‘Newhall’ leaves contained only trace phytoene (0.38 pug/g
FW; 0.24% of total carotenoids) (Figure 4C); ‘Cara Cara’ flowers (both types) exhib-
ited enlarged plastoglobuli consistent with phytoene hyperaccumulation and contained
high phytoene + phytofluene (9.57-25.34 ug/g FW, >98% phytoene; 84.46-92.16% of to-
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tal carotenoids), whereas ‘Newhall” flowers showed minimal phytoene (0.28 ug/g FW;
8.21%) (Figure 4A—C). In contrast, ‘'Newhall leaves had significantly higher chlorophyll
content than ‘Cara Cara’ leaves, though chlorophyll levels did not differ between red- and
white-core ‘Cara Cara’ (Figure 4D). In conclusion, beyond carotenoid profiles, ‘Newhall’
and ‘Cara Cara’ share highly similar physiological and morphological traits, establishing
them as a suitable comparative system for investigating post-transcriptional regulation
(e.g., SNRK, PYL, PP2C) of carotenoid biosynthesis.

A

[ Chlorophyll b

[ Chlorophyll a

Tz

-axanthin

cis-Violaxanthin CRL

Others

50 100 150 200 250 500 750 1000

Total carotenoids (ug/g FW) Total chlorophylls (ug/g FW)
Figure 4. Comparative analysis of morphology, plastid ultrastructure, and pigment content in
leaves and flowers of ‘Newhall” and ‘Cara Cara’ oranges with white- or red-pigmented central cores.
(A,B) Morphology and chloroplast ultrastructure in leaves (A: ‘Newhall’ leaf, NL; ‘Cara Cara’ white-
core leaf, CWL; and ‘Cara Cara’ red-core leaf, CRL) and flowers (B: ‘Newhall’ flower, NF; ‘Cara Cara’
white-core flower, CWF; and ‘Cara Cara’ red-core flower, CRF). (C,D) Total carotenoid (C) and total
chlorophyll (D) content in leaves and flowers of ‘Newhall’ and ‘Cara Cara’ oranges with white- or
red-pigmented cores. All data were derived from three independent biological replicates (1 = 3), and
error bars represent the standard error (SE).

3.3. Spatiotemporal Expression Dynamics of PP2C, SnRK, and PYL Gene Families Across Tissues
and Fruit Developmental Stages Between ‘Newhall” and ‘Cara Cara’

gPCR validation of four carotenoid-biosynthetic structural genes (CsPSY1, CsPDS,
CsZISO, and CsBCH) confirmed consistency with RNA-seq data, verifying the reliability
of transcriptomic analyses (Figure 5). Given minimal carotenoid differences between red-
and white-core ‘Cara Cara’, equal-weight pooled samples from both phenotypes were
used to represent ‘Cara Cara’ versus ‘Newhall’. FPKM-based expression heatmaps of
PP2C, SnRK, and PYL families across tissues and developmental stages revealed (1) consti-
tutively high expression of CsPP2C1/7/50/51 and CsSnRK1/2.4/3.2/3.8/3.9/3.10/3.18,
and (2) consistently low /absent expression of CsPP2C12/23/25/31/45, CsSnRK3.4/3.11,
and CsPYL3 (the sole low-expressing PYL member) (Figure 6). Key carotenoid structural
genes showed comparable expression in ‘Newhall” and ‘Cara Cara’ (Figure 6), failing
to explain ‘Cara Cara”s > 26-fold higher phytoene accumulation in leaves, flowers, and
juice vesicles (Figure 3B,F and Figure 4C). Tissue-specific genes were filtered using the
following thresholds: floral-specific (F: NF/NL > 2 & CF/CL > 2), young fruit juice vesicle-
specific (GJV: NGJV/NL > 2 & CGJV/CL > 2), and mature fruit juice vesicle-specific (MJV:
NMJV/NL > 2 and CMJV/CL > 2) (Table 1). Venn analysis identified six reproductive
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organ-specific genes (CsSnRK3.7, CsPP2C36/37/40/53, and CsPYL4) potentially regulating
fruit maturation and carotenoid metabolism (Figure 7). Screening for ‘Cara Cara’-specific
regulators (‘Cara Cara’/’Newhall” > 1.5 or <0.6) pinpointed a single candidate, CsPP2C10,
providing a critical lead for investigating phytoene hyperaccumulation (Figure 7).
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Figure 5. Validation of RNA-seq expression data by qPCR for key carotenoid biosynthetic genes.
Expression levels of CsPSY1, CsPDS, CsZISO, and CsBCH were measured by both RNA-seq (FPKM)
and gPCR (272€T) across various tissues and developmental stages. The relative fold-change values
were normalized to CsActin. The strong concordance between the two methods confirms the reliability
of the transcriptomic data. Tissue codes: NL, ‘Newhall’ leaf; CL, ‘Cara Cara’ leaf; NF, ‘Newhall’
flower; CF, “‘Cara Cara’ flower; NGJV, ‘Newhall’ green stage juice vesicle; CGJV, ‘Cara Cara’ green
stage juice vesicle; NMJV, ‘Newhall” mature stage juice vesicle; and CM]JV, ‘Cara Cara” mature stage
juice vesicle. All data were derived from three independent biological replicates (1 = 3), and error
bars represent the standard error (SE).
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Figure 6. Heatmap of FPKM expression levels for CsPP2Cs, CsSnRKs, CsPYLs, and carotenoid
biosynthetic genes across tissues of ‘Newhall” and ‘Cara Cara’ oranges. NL, ‘Newhall” leaf; CL, ‘Cara
Cara’ leaf; NF, ‘Newhall’ flower; CF, ‘Cara Cara’ flower; NGJV, ‘Newhall’ green stage juice vesicle;
CGJV, ‘Cara Cara’ green stage juice vesicle; NMJV, ‘Newhall” mature stage juice vesicle; and CMJV,
‘Cara Cara’ mature stage juice vesicle. To clearly visualize the expression differences of most genes,
the color scale of the heatmap was set to a range of 0.01 to 100 (FPKM). Expression values beyond
these limits are represented by the maximum or minimum color.

Table 1. Stage-specific expression patterns of CsSnRK, CsPP2C, and CsPYL genes during fruit devel-
opment in ‘Newhall” and ‘Cara Cara’ oranges. Expression specificity codes: F (floral-specific), GJV
(green juice vesicle-specific), and MJV (mature juice vesicle-specific). Tissue codes: NL (‘Newhall’
leaf), CL (‘Cara Cara’ leaf), NF (‘Newhall’ flower), CF (‘Cara Cara’ flower), NGJV (‘Newhall’
green juice vesicle), CGJV (‘Cara Cara’ green juice vesicle), NMJV (‘Newhall” mature juice vesicle),
and CMJV (‘Cara Cara’ mature juice vesicle).

F Expressed Genes GJV Expressed Genes MJV Expressed Genes
CsSnRK2.1;
CsSnRK3.3; ' .
CsSnRK3.4; NF/NL>2 R Nav/NLz2 SPREIS v L2
CSS”RK3.7,' and ‘ and . and
CsSnRK3.15 CF/CL>2 CGJV/CL>2 CMJV/CL>2
CsPP2C31; CsPP2C14;
CsPP2C15;
CsPP2C32;
CsPP2C36; CsPP2C23;
CsPP2C37; CsPP2C36; CsPP2C31;
CsPP2C40- CsPP2C37; CsPP2C33;
csppzazgf CsPP2C40; CsPP2C36;
’ ! CsPP2C53 CsPP2C37;
CsPP2C53;
CsPP2C40;
CsPP2C54;
CsPP2C55 CsPP2C53;
CsPP2C56
CsPYL2; CsPYL4 CSPYLL; CsPYL2; CsPYL4; CsPYL6

CsPYL5; CsPYL6
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Figure 7. Reproductive organ-specific and ‘Cara Cara’-specific expression features of CsSnRK, CsPP2C,
and CsPYL genes. (A) Venn diagram identifying reproductive organ-specific CsSnRK/PP2C/PYL
genes. (B) Heatmap of developmental-stage expression profiles for reproductive organ-specific genes.
(C) CsPP2C10 as the sole ‘Cara Cara’-specific gene member and its developmental-stage expression
heatmap. Expression specificity codes: F (floral-specific), GJV (green juice vesicle-specific), MJV
(mature juice vesicle-specific). Tissue codes: NL (‘Newhall’ leaf), CL (“Cara Cara’ leaf), NF ("‘Newhall’
flower), CF (‘Cara Cara’ flower), NGJV ("‘Newhall’ green juice vesicle), CGJV (‘Cara Cara’ green juice
vesicle), NMJV (‘Newhall’ mature juice vesicle), and CMJV (‘Cara Cara” mature juice vesicle). To
clearly visualize the expression differences of most genes, the color scale of the heatmap was set
to a range of 0.5 to 2 (fold change). Expression values beyond these limits are represented by the

maximum or minimum color.

3.4. WGCNA Integrates Transcriptome and Carotenoid Profiles Revealing a ‘Cara Cara’-Specific
Module for Linear Carotenoid Accumulation; Network Analysis Identifies Candidate SnRK, PYL,
PP2C, and TF Regulators of Post-Transcriptional Control

To investigate the potential regulation of CsSnRK, CsPP2C, and CsPYL gene families
on carotenoid biosynthesis, specifically phytoene hyperaccumulation in ‘Cara Cara’, we
performed WGCNA co-expression analysis integrating transcriptome data from ‘Cara
Cara’ and ‘Newhall’ tissues from different organs and fruit developmental stages with
carotenoid metabolic profiles (Figure 8A), aiming to identify modules associated with
specific carotenoid accumulation (Figure 8).

Hierarchical clustering and module-trait heatmaps defined 34 distinct modules, each
characterized by unique carotenoid accumulation patterns (Figure 8B,C). Focusing on
modules linked to phytoene, phytofluene, and lycopene accumulation in ‘Cara Cara’ juice
vesicles, we ranked modules by summing correlation coefficients for these three traits; the
sky-blue, turquoise, and steel-blue modules topped the list (Table 2).

Table 2. Correlation coefficients of WGCNA modules with specific carotenoids (phytoene,
phytofluene, and lycopene) and cumulative ranking.

Module Phytoene Phytofluene Lycopene Sum Rank
MEskyblue 0.34 0.58 0.68 1.60 1
MEturquoise 0.24 0.58 0.63 1.45 2
MEsteelblue 0.32 0.52 0.57 1.41 3
MEviolet 0.18 0.39 0.38 0.95 4
MEgrey 0.31 0.30 0.32 0.93 5
MEroyalblue 0.12 0.37 0.35 0.84 6
MEcyan 0.22 0.21 0.34 0.77 7
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Figure 8. Integrated WGCNA of transcriptome and carotenoid metabolism across tissues and
developmental stages. (A) Carotenoid metabolite profiles in sampled tissues. (B) Hierarchical
clustering of co-expression modules. (C) Module-trait relationship heatmap; heatmap values indicate
correlation coefficients between modules and specific carotenoids. Tissues: NL (‘Newhall” leaf),
CL (“Cara Cara’ leaf), NF (‘Newhall’ flower), CF (‘Cara Cara’ flower), NGJV (‘Newhall” green juice
vesicle), CGJV (‘Cara Cara’ green juice vesicle), NMJV (‘Newhall” mature juice vesicle), and CMJV
("Cara Cara’ mature juice vesicle).

Analysis of CsSnRK/PP2C/PYL family distribution across modules revealed turquoise
contained the highest number (13 members: CsSnRK1/3.5/3.6/3.16, CsPP2C14/15/33/35/
38/40/43/56, and CsPYL6) (Table 3) alongside key carotenoid structural genes (CsPSY1,
CsZISO, and CsZDS), implicating turquoise in regulating phytoene/phytofluene/lycopene
synthesis (Tables 4, S2 and S3; Figure S4). Within this module, four transcription factors
(SPL/NZZ, NAC, bHLH, and ERF) potentially bridge post-transcriptional phosphorylation
to transcriptional control of structural genes. Connectivity analysis prioritized regulatory
hubs: SPL/NZZ and bHLH ranked highly, while structural genes (CsPSY1/ZISO/ZDS;
ranks 2332/2082/1847) showed low connectivity as expected; notably, CsSnRK1 and
CsPP2C14/15/40/56 exhibited high connectivity, with CsPP2C40 (rank 67) emerging as a
potential hub gene (Table 4). Cytoscape-visualized co-expression networks revealed gene in-
teractions (Figure 9A, Table 54). GO/KEGG enrichment of turquoise highlighted top terms:
metabolic process (GO:0008152), protein phosphorylation (GO:0006468), plasma membrane
(GO:0005886), chloroplast (GO:0009507), ATP binding (GO:0005524), and pathways in-
cluding Ribosome (ko03010), Protein processing in endoplasmic reticulum (ko04141), and
RNA transport (ko03013)—indicating processes relevant to carotenoid metabolism and
post-transcriptional regulation (Figure 9B).



Metabolites 2025, 15, 610 14 of 20

Table 3. Distribution frequency of CsSnRK, CsPP2C, and CsPYL genes across WGCNA co-
expression modules. Values indicate gene counts and percentage representation per module (sorted

by frequency).
Module Count Percentage
turquoise 13 13.48%
black 10 11.24%
red 10 11.24%
blue 9 10.11%
yellow 9 10.11%
brown 6 6.74%
cyan 6 6.74%
purple 5 5.62%
royalblue 5 5.62%
salmon 4 4.49%
grey60 3 3.37%
midnightblue 2 2.25%
darkolivegreen 1 1.12%
darkred 1 1.12%
greenyellow 1 1.12%
lightcyan 1 1.12%
lightgreen 1 1.12%
lightyellow 1 1.12%
magenta 1 1.12%
pink 1 1.12%

Table 4. Intramodular connectivity and ranking of hub genes in the turquoise co-expression module.
Genes include members of the CsSnRK, CsPP2C, and CsPYL families, transcription factors, and
carotenoid-biosynthetic structural genes. Connectivity represents node connectivity in the scale-free
network, where higher values indicate greater potential for regulatory interactions and elevated
hierarchical importance (sorted by rank).

Classification Gene Name Gene ID Connectivity =~ Rank by Connectivity

CsSnRK1 Cs6g21650 750.35 602

CsSnRK3.5 Cs4g01450 102.98 3788

SnRK CsSnRK3.6 orangel.1t02758 522.88 1331

CsSnRK3.16 Cs2g28990 582.86 1093

CsPP2C14 Cs3g20540 971.09 106

CsPP2C15 Cs9g18330 796.31 496

CsPP2C33 Cs9g03785 455.52 1578

CsPP2C35 orangel.1t03838 337.26 2119

PP2C CsPP2C38 Cs722880 303.26 2288
CsPP2C40 Cs9g04470 998.44 67

CsPP2C43 orangel.1t02237 230.55 2780

CsPP2C56 Cs9g06410 824.48 433

PYL CsPYL6 Cs9g18410 348.99 2060
SPORO%Y gf}ﬁ;sz/)NOZZLE Cs1g06080 705.83 711

Transcription factor NAC Cs1g09660 99.36 3825
bHLH Cs1g02580 612.51 995

AP2-EREBP (ERF) Cs1g03300 164.06 3236
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Table 4. Cont.
Classification Gene Name Gene ID Connectivity =~ Rank by Connectivity
Carotenoid CsPSY1 Cs6g15910 295.83 2332
biosynthesis CsZISO Cs5g24730 343.93 2082
structural genes CsZDS Cs3g11180 396.55 1847
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Figure 9. Co-expression network and functional enrichment analysis of the turquoise module.
(A) Gene—gene interaction network visualized with Cytoscape. (B) Functional enrichment of GO
terms and KEGG pathways.

4. Discussion

This study provides a comprehensive genomic identification of the SnRK, PYL, and
PP2C families in sweet orange and leverages the natural phenotypic variation between
the wild-type ‘Newhall” and the ‘Cara Cara’ mutant to investigate post-transcriptional
regulatory mechanisms controlling carotenoid metabolism. Multi-omics analysis serves as
a powerful and indispensable tool in plant research, enabling the systematic discovery of
novel regulatory mechanisms, key genes, and signaling metabolites that govern complex
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plant responses to development and environmental stresses [30-34]. Our multi-omics
approach, integrating genomics, transcriptomics, metabolomics, and co-expression network
analysis, yields several novel insights with significant implications for both basic plant
biology and applied horticulture.

4.1. A Putative Phosphorylation Network Orchestrates Carotenoid Hyperaccumulation

The most salient finding of this study is the pronounced disconnect between transcript
levels of carotenoid biosynthetic genes and the massive (26-fold) accumulation of linear
carotenoids in ‘Cara Cara’ across tissues (leaves, flowers, and juice vesicles) (Figures 3, 4 and 6).
This strongly implicates regulatory mechanisms acting post-transcriptionally. While post-
transcriptional regulation is crucial for plant signal transduction, its role in metabolic
synthesis is less explored; SnRK kinases emerge as pivotal core factors mediating this level
of regulation [35-39]. Our WGCNA analysis identified a key turquoise module highly
correlated with phytoene, phytofluene, and lycopene accumulation. The co-localization
within this module of genes from the post-transcriptional cascade (CsSnRK1/3.5/3.6/3.16,
CsPP2C14/15/33/35/38/40/43/56, and CsPYL6), key biosynthetic enzymes (CsPSY1,
CsZISO, and CsZDS), and candidate transcription factors (SPL/NZZ, NAC, bHLH, and ERF)
suggests an intricate regulatory network where phosphorylation is a central mechanism
(Table 4, Figure 8).

This proposed network aligns with emerging evidence that post-translational modifica-
tions are crucial for metabolic regulation. For instance, SnRK2s are well-established kinases
in ABA signaling that phosphorylate downstream targets like transcription factors and
enzymes [12,13,15]. Our finding that specific CsPP2Cs (e.g., CsPP2C40, a high-connectivity
hub) and CsSnRKs are central to this module suggests a mechanism where SnRK-mediated
phosphorylation and PP2C-mediated dephosphorylation fine-tune the activity of proteins
involved in the carotenogenic pathway. This could occur through direct phosphorylation of
biosynthetic enzymes, altering their stability or activity, as demonstrated for other metabolic
pathways [40,41], or more likely indirectly through the phosphorylation of transcription
factors that regulate structural gene expression [13,42-45].

4.2. Bridging ABA Signaling and Carotenoid Metabolism: A Potential Feedback Loop

A particularly intriguing aspect of our model is its connection to ABA signaling. ABA
is a carotenoid-derived hormone, creating a potential feedback loop where the hormone
regulates its own biosynthetic precursors. Our results suggest that components of the
core ABA signaling pathway (PYL-PP2C-SnRK) are co-expressed with carotenogenic genes
(Table 4, Figures 6 and 8). This implies that the SnRK-PP2C-PYL network in citrus may not
only respond to ABA but also directly regulate carotenoid precursor availability.

This finding adds a new layer to the understanding of ABA’s role beyond stress
response, positioning it as a direct modulator of core metabolism. It would be highly
relevant to explore how environmental stresses known to induce ABA production (e.g.,
drought) impact carotenoid accumulation in these genotypes via this proposed mechanism,
thus bridging the gap between the abstract’s mention of stress resilience and the discussion
of metabolic adaptation.

4.3. Scientific Advance and Comparison with Previous Studies

Our work represents a significant advance over previous studies in citrus [22]. While
earlier research identified some SnRK2 and PP2C members, our study provides the first
comprehensive genome-wide analysis of all three gene families (SnRK, PYL, and PP2C) in
sweet orange, revealing a contraction of the CsSnRK, CsPP2C, and CsPYL families com-
pared to Arabidopsis (Figure 2). More importantly, by moving beyond descriptive gene
identification and employing WGCNA on multi-tissue, multi-omics data from contrasting
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genotypes, we predict a functional, post-transcriptional regulatory network (Figure 10).
This approach addresses a critical gap in the field, as the regulatory mechanisms control-
ling carotenoid accumulation in citrus, particularly post-transcriptionally, have remained

CsSPL/CsNZZ,CsbHLH , etc.

Transcription TTranslation Transcription | Translation

| CsSnREK, CsPP2C, CSPYL CsSPL/CSNZZ, CSNAC, CsbHLH, CSERF |

Transcription | Translation Tl'anscriptionl Translation

CsSnRK, CsPP2C, CsPYL

Phosphorylation

Potentially regulatory
TFs : CsPSYI1, CsZISO, CsZDS |

Figure 10. Putative dual-layer regulatory network mediated by SnRK/PP2C/PYL in carotenoid

largely unexplored.

CsPP2C40, CsPP2C14, etc.

Phosphorylation

@ Potentially

regulatory

CsSPL/CSNZZ, CsNAC, CsbHLH, CSERF

Potentially regulatory

metabolism. Integrates transcript-level (TF-mediated) and post-transcriptional (phosphorylation)
control. Diagram elements: arrows = promoters; rectangles = genes; ovals = proteins.

4.4. Limitations and Future Perspectives

It is crucial to highlight that the regulatory model proposed in Figure 10, while
informed by robust co-expression analysis, remains speculative and requires direct exper-
imental validation. The arrows labeled “potentially regulatory” denote predicted inter-
actions based on correlation and connectivity, not confirmed mechanistic links. A major
limitation of this study is the lack of functional validation experiments. Future studies
must include phosphorylation assays (e.g., in vitro kinase assays, phosphoproteomics),
protein—protein interaction studies (e.g., Y2H, Co-IP, BiFC) to confirm the interactions
between CsSnRKs/CsPP2Cs and their putative targets (e.g., CsPSY1, TFs), and functional
characterization through gene overexpression/knockdown in citrus or model systems to
assess the impact on carotenoid profiles.

Furthermore, the exploration of the relationship between plant resilience and hormonal
regulation, as mentioned in the abstract, is not fully developed here. Future work should
explicitly test whether the proposed network confers enhanced stress resilience to the ‘Cara
Cara’ mutant by subjecting both genotypes to abiotic stresses and monitoring changes in
the network components and carotenoid accumulation.

5. Conclusions

In conclusion, our study moves beyond transcriptional regulation and provides com-
pelling evidence for a novel, phosphorylation-mediated post-transcriptional mechanism
that fine-tunes carotenoid accumulation in citrus. We propose a model where an ex-
panded SnRK-PP2C-PYL network, integrated with transcriptional regulators, modulates
carotenogenic flux, potentially linking ABA signaling to metabolic homeostasis. This
work not only provides a foundational resource of candidate genes but also unveils a
new regulatory layer for carotenoid metabolism, offering prioritized molecular targets
for breeding nutrient-dense and climate-resilient citrus varieties. The validation of this
proposed network constitutes an essential and exciting direction for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

SnRK sucrose non-fermenting related kinases
PYR1 pyrabactin resistance

PYL PYR1-like

RCAR regulatory components of ABA receptors
PP2C protein phosphatases type 2C

TFs transcription factors

GGPP geranylgeranyl pyrophosphate

PSY phytoene synthase

PDS phytoene desaturase

Z-1SO (-carotene isomerase

ZDS (-carotene desaturase

CrtISO carotene isomerase

CYCB chromoplast-specific lycopene -cyclase
LCYB lycopene -cyclase

LCYE lycopene e-cyclase

BCH [3-carotene hydroxylase

ZEP zeaxanthin epoxidase

VDE violaxanthin de-epoxidase

NSY neoxanthin synthase

NCED 9-cis-epoxycarotenoid dioxygenase
CCD carotenoid cleavage dioxygenase
NL ‘Newhall’ leaf

CL ‘Cara Cara’ leaf

NF ‘Newhall’ flower

CF ‘Cara Cara’ flower

NGJV ‘Newhall” green stage juice vesicle
CGJv ‘Cara Cara’ green stage juice vesicle

NMJV ‘Newhall” mature stage juice vesicle
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CMJV ‘Cara Cara’ mature stage juice vesicle
WGCNA  weighted gene co-expression network analysis
Co-IP co-immunoprecipitation
BiFC bimolecular fluorescence complementation
EMSA electrophoretic mobility shift assays
qPCR quantitative real-time PCR
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