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Abstract

Background: This study aimed to analyze metabolic changes in blood samples from pa-
tients with confirmed COVID-19 to explore the correlation between metabolomics and
cytokines in survivors and non-survivors of SARS-CoV-2 infection. Understanding the
complex biochemical and immunometabolic mechanisms underlying SARS-CoV-2 infection
is essential for elucidating the pathophysiology and virulence of COVID-19. Methods:
This study included 40 hospitalized COVID-19 patients and 40 healthy controls. Serum
metabolic profiles were analyzed using ultra-high-pressure liquid chromatography-mass
spectrometry (UHPLC-MS), and cytokine levels were measured using ELISA. Results: Our
study defined three clear metabolic phenotypes among survivors and non-survivors of
COVID-19 compared with healthy controls, which might be related to mortality, severity,
and disease burden. A strong relationship was observed between certain inflammatory
markers, including IL-13, IL-2, IFN-§3, IFN-y, IL-17, and GM-CSF, as well as several metabo-
lites, particularly in COVID-19 non-survivors, such as LysoPCs, 3-hydroxykynurenine,
and serotonin. Different metabolite-cytokine correlation patterns were observed accord-
ing to patient outcomes, indicating unique correlations between metabolic and immune
responses in survivors and non-survivors. Metabolic phenotypes were associated with
clinical outcomes, comorbidities, and sex-related differences. Kynurenine and related
metabolites of tryptophan metabolism were closely correlated with COVID-19 severity, age,
and mortality. Compared with survivors and healthy controls, non-survivors displayed
higher IL-6, together with distinct metabolic changes. These included increased kynurenine
through the IDO1 pathway, elevated glucose and lactate reflecting hyperglycolysis and
energy stress, and higher xanthosine from purine turnover. Stronger cytokine—metabolite
correlations in this group point to tightly linked immunometabolic activation. Conclusions:
Metabolomic profiling revealed distinct metabolic phenotypes that could be associated
with the severity and inflammation levels of COVID-19. Correlation analysis between
metabolites and cytokines demonstrated strong intercorrelations between specific metabo-
lites and cytokines, indicating a strong interrelationship between inflammatory markers
and metabolic alterations. Specific metabolic pathways associated with cytokines and their
clinical relevance may serve as potential therapeutic targets.
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1. Introduction

The COVID-19 pandemic has seriously affected both global health and economies,
causing over 778 million infections and more than 7.1 million deaths worldwide, as of
June 2025 [1]. The mechanisms by which SARS-CoV-2 may affect the human body include
direct injury from viral cytotoxicity, endothelial damage through angiotensin-converting
enzyme 2 (ACE-2) receptor-mediated viral entry, an extreme immune response, and virus-
independent mechanisms such as unknown tissue-specific effects and immunopathol-
ogy [2]. Although research into COVID-19 immunometabolism has expanded, several
central questions remain unanswered. First, the causal links and cellular origins of
cytokine-metabolite networks such as the tryptophan/kynurenine and arginine pathways
are still unclear [3,4]. Second, it is not well established how these networks shift from
the acute stage of disease into recovery or Long COVID, or whether immune-directed
therapies normalize the disrupted metabolism [3,5]. Third, the influence of obesity and
related metabolic conditions on inflammatory metabolism needs a clearer mechanistic
explanation [6]. Fourth, the extent to which viral variants and vaccination shape distinc-
tive immunometabolic patterns is uncertain. Finally, it remains to be seen if combined
cytokine and metabolite signatures can reliably predict outcomes across independent co-
horts [7]. The elaborate interaction between the host immune response and metabolic
changes partly explains the mechanisms behind the cytokine storm and multiorgan dys-
function in severe cases. Severe COVID-19 cytokine storm develops through a mix of
immune over-activation, altered metabolism, and breakdown of normal control mech-
anisms. When viral components are detected by pattern recognition receptors such as
TLRs, macrophages and dendritic cells release IL-6, TNF-«, and IL-1§3. Instead of settling
down, these signals are amplified by PAMPs, DAMPs, and inflammatory cell death, like
pyroptosis or necroptosis [8]. The result is a self-reinforcing cycle that drives widespread
inflammation. High levels of cytokines then weaken endothelial and epithelial barriers,
raise vascular permeability, trigger clotting pathways, and promote microthrombi. Damage
spreads across the lungs, heart, kidneys, liver, and brain [9]. Metabolic rewiring is deeply
involved. Indoleamine 2,3-dioxygenase (IDO1) activation drains tryptophan and builds
up kynurenine, which dampens T-cell activity but fuels AhR-driven pro-inflammatory
signaling. Disturbed arginine metabolism limits nitric oxide, undermining endothelial
function and encouraging clot formation. A glycolytic shift in immune cells, the Warburg
effect, boosts lactate production and feeds back into cytokine release [10,11]. Alongside
this, depletion of glutathione, accumulation of ROS, and mitochondrial failure intensify
tissue injury. When regulatory brakes like IL-10 signaling fail, the immune system cannot
contract, and unchecked inflammation advances toward multi-organ failure [12].

A dysregulated immune response in severe cases of infection characterizes COVID-19
pathophysiology. The elevation of systemic levels of pro-inflammatory cytokines/chemokines
characterizes severe clinical disease and is associated with poor clinical outcomes [13].
Significantly higher levels of inflammatory cytokines and inflammatory markers, such as
IL-6, IL-8, IL-10, and C-reactive protein and lactate dehydrogenase (LDH), are associated
with the critical group than with the moderate group [14,15]. Multiple cohorts and meta-
analyses show that circulating cytokines and inflammatory markers consistently rise with
worsening COVID-19. Elevated IL-6, IL-8, and IL-10 at the time of admission predict
progression, ICU transfer, and mortality, even when adjusted for other variables [16].
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CRP is also markedly higher in severe cases compared to moderate disease and shows
strong predictive value for adverse outcomes in both individual studies and quantitative
reviews [17]. LDH follows the same pattern, linking closely with severity, ICU requirement,
and risk of death, with meta-analyses confirming its rise in severe or critical groups [18].
Taken together, these findings align with our observation that IL-6, IL-8, IL-10, CRP, and
LDH are enriched in critical illness and offer prognostic insight beyond the initial clinical
presentation [19].

SARS-CoV-2 induces a huge metabolic change that alters the energy pathways of
immune cells. Typically, cells of the immune system gain energy through oxidative phos-
phorylation. Metabolic programming is a hallmark of immune cell activation that controls
effector functions and fate decisions. Environmental signals such as antigens, cytokines,
hypoxia, and nutrients act through mTOR, HIF-1«, and AMPK to reprogram glycolysis, the
TCA cycle, fatty acid oxidation, and oxidative phosphorylation, shaping immune cell activ-
ity. Naive T cells depend on oxidative phosphorylation and fatty acid oxidation but shift to
aerobic glycolysis after activation to sustain biomass growth and cytokine release. Memory
T cells return to mitochondrial metabolism and fatty acid oxidation [20,21]. Lineage specifi-
cation is also guided by metabolism: Th17 cells rely on glycolysis and glutaminolysis under
HIF-1c and Myc control, while Tregs depend on fatty acid oxidation and mitochondrial
pathways [20]. In myeloid cells, M1 macrophages are glycolytic and accumulate succinate,
which stabilizes HIF-1« to promote IL-1{3. In contrast, the metabolite itaconate, produced
by IRG1/ACOD], limits inflammation by inhibiting SDH and activating Nrf2 [22-24].
In COVID-19, monocytes display a HIF-1a—driven glycolytic shift with elevated lactate
that amplifies cytokine production [10]. Plasma kynurenine from IDO1-mediated trypto-
phan breakdown correlates with IL-6 levels and disease severity [11]. Disturbed arginine
and nitric oxide metabolism further disrupts endothelial function and host defense [25].
These metabolic programs directly regulate cytokine production, antigen presentation,
proliferation, cytotoxicity, and lineage fate rather than serving only as correlates [20].

The severity of the disease is attributed to the significant metabolic changes reported
in COVID-19 [26,27]. The first reports have shown alterations in carbohydrate metabolism,
aminotransferase activity, lipid metabolism, and amino acid turnover, which may be events
pertinent to immune responses [27]. For instance, a hypermetabolic state characterized by
increased glycolysis usually exists during severe COVID-19 cases that meet the enhanced
energy and biosynthetic needs of activated immune cells [10]. Similarly, lipid metabolism
abnormalities among COVID-19 patients may affect immune signaling, membrane-bound
protein functionality, and cell membrane flexibility [28]. Severe COVID-19 is marked by
broad metabolic remodeling. Carbohydrate pathways shift toward hyperglycolysis, with
HIF-1a—driven monocyte reprogramming and increased lactate that fuels inflammatory
signaling [10]. Aminotransferase activity often rises, and a recent systematic review and
meta-analysis reported that both the De Ritis ratio (AST/ALT) and elevated AST or ALT are
linked to greater severity and higher mortality [29]. Lipid handling is also disrupted, with
altered transport and plasma lipid signatures that track with disease severity in cross-omic
studies [30]. Amino acid metabolism changes as well: activation of the tryptophan to
kynurenine pathway aligns with IL-6 levels and clinical status, while disrupted arginine
and nitric oxide pathways impair endothelial and immune function [11,25]. Collectively,
these alterations reveal a recurring pattern of metabolic rewiring that parallels escalating
inflammation and poor outcomes. Other metabolites, such as kynurenine, have been linked
to immunosuppression in COVID-19 and may influence its course [11]. Mapping virally
induced metabolic perturbations is important for understanding how viruses meet their
biosynthetic demands. This information offers a new avenue for controlling SARS-CoV-2
infections. Furthermore, how metabolic interplay and immunity-versus-virally induced
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metabolic persuasions offer prospects for predicting trajectories of COVID-19 infection and
identifying people who are likely to have worse outcomes. Biological pathways can play
different roles in the induction of pro-inflammatory mechanisms during COVID-19 infec-
tion [31]. We aimed to determine the serum metabolomic profile of patients with COVID-19,
including survivors and non-survivors, and their correlation with the cytokine profiles.
We hypothesized that these correlations would index a coordinated immunometabolic
state because inflammatory cytokines actively reprogram metabolism and metabolites
reciprocally modulate cytokine output; accordingly, we treat correlations as composite
readouts of disease activity rather than causal claims.

2. Methods and Materials
2.1. Patients’ Enrollment

This study included 40 hospitalized and PCR-positive COVID-19 patients; some were
survivors (n = 20), whereas others were non-survivors (n = 20). Data were obtained from
the University of Miami Hospital, Miller School of Medicine, Miami, FL, USA, for patients
admitted between June 2020 and April 2021. Serum samples were obtained within the
first two days following the onset of illness. More than 100 clinical comorbidities and
common variables related to biochemical standards have been collected for COVID-19
patients. Correlation analysis was performed on more than twenty-one demographic and
clinical data points. Additionally, a control group of 40 age- and sex-matched healthy
participants from the University of Miami Hospital was included. This study was approved
by the institutional review board of the University of Miami. Blood samples were collected
following receipt of informed consent from the patient or a family member.

2.2. Liquid Chromatography-Mass Spectroscopy (LC-MS)-Based Metabolomics Analysis

50 pL of serum samples were used for the semi-non-targeted metabolomic analysis
using a Q Exactive HF Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo-Fisher,
Calgary, AB, Canada). Chromatography was performed using a 2.1 mm x 100 mm long
Synchronism HILIC (Thermofisher, Calgary, AB, Canada) LC column packed in-house
with 3 um porous Hyperarc particles. We identified and quantified 166 metabolites in
this analysis. Maven software V.12, an open-source software, was used for processing
metabolomics data obtained by LC-MS [32]. All procedures for sample preparation, ultra-
high-pressure liquid chromatography-mass spectrometry (UHPLC-MS, Thermo-Fisher,
Calgary, AB, Canada) data acquisition and processing, and statistical analysis are detailed
in our recently published article [33].

2.3. Cytokines Analysis

Fourteen cytokines, including TNF-«, IL-6, IL-2, IFN-y, IL-1$, IL-17A (CTLA-8),
IL12/1L-23p40, IL-7, IL-2R, IFN-«, IL-8 (CXCLS), IFN-3, GM-CSF, and IL-10, were measured
in patients with COVID-19 using ELISA kit from R&D system@ Rat Luminex® Discovery
Assay (Catalog #: LXSARM) Minneapolis, MN, USA.

2.4. Data Analysis

Metabolite identifications and quantification were performed using EI-MAVEN V.12
(Elucidata Inc., San Francisco, CA, USA) to measure the ion intensities of compounds [34].
Ion peaks were selected based on the mass-to-charge ratio (M/Z), retention time (RT), and
ion intensity of metabolites compared to the pre-and post-blank.

For data analysis, principal component analysis (PCA) was applied to have an
overview and find outliers in an unsupervised manner. Partial Least Squares-Discriminant
Analysis (PLS-DA) was used to discriminate the phenotypes between two or more groups.
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A non-parametric analysis of variance was used to detect differences in raw ion intensities
among samples between different groups. FDR correction by Benjamini-Hochberg test
followed by Bonferroni corrections.

Student’s t-test was performed to indicate differences between samples from the two
groups. All statistical tests were two-sided, and adjusted p-values below 0.05 were consid-
ered statistically significant. Univariate analysis identified significantly altered metabolites
among three cohorts, which were selected for categorizing metabolic phenotypes. Correla-
tions among variables of interest were performed using the Spearman correlation test, and
when necessary, corrected for multiple inferences using Holm’s method. Power analysis
was performed to calculate the minimum number of samples required to detect a statisti-
cally significant difference between two populations, based on a user-specified degree of
confidence. MetaboAnalyst 6.0 [35], GraphPad Prism 9.5.1 and SIMCA P v 14.0 were used
for comprehensive metabolomics data analysis.

3. Results
3.1. Patient Characteristics

The patient population for this retrospective observational study consisted of 40 pa-
tients admitted to the hospital with COVID-19 and a group of 40 age- and sex-matched
healthy controls. The COVID-19 cohort included 20 survivors and 20 non-survivors with a
mean age of 73.3 & 11.4 and 70 + 12.5, respectively. There was no significant difference in
sex (p = 1.000) or age distribution between males and females (p = 0.549) (Table 1).

Table 1. Patient characteristics, clinical and comorbidities of two COVID-19 non-survivors (dead)
and the COVID-19 alive cohorts.

Patients Characteristics Alive (n =20) Death (n = 20) p-Value
Sex (Male/Female) 10/10 10/10 1.000
73+11.4 70 £125 0.549
Ethnicity (Hispanic/Non-Hispanic) 16/4 18/2 0.428
Race (White/Black) 18/2 17/3 0.501
Obesity (Yes/No) 2/18 6/14 0.235
Chronic Diseases (Yes/No) 16/4 16/4 1.000
Diabetes (Yes/No) 3/17 7/13 0.137
Hypertension (Yes/No) 56/48 28/11 0.039
Infectious Diseases (Yes/No) 13/93 4/35 0.497
Immunodeficiencies (Yes/No) 15/92 8/31 0.239
Pneumonia (Yes/No) 13/7 19/1 0.055

Intubation/endotracheal tubes (Yes/No) 5/15 14/6 <0.0001
Bipap (Yes/No) 4/16 8/12 0.011
PT (24/48 after COVID infection) 152 +21 162+ 5.6 0.491
PPT (24/48 after COVID infection) 357 £10.3 352 +£97 0.904
1.2 4+0.20 1.32 + 0.64 0.475

Respiratory rate 18.7 £ 4.2 262 + 6.6 <0.0001
Tidal volume 357.5 £+ 60.1 405.5 4+ 39.3 0.149
PEEP cm/H,0 11.0 £ 1.41 11.8+27 0.682

113.0 £59.3 87.5£43.5 0.226
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Table 1. Cont.

Patients Characteristics Alive (n =20) Death (n = 20) p-Value
FiO2 56.0 +30.7 75.3 £259 0.105
PF-ratio 247.3 £ 141.0 135.0 £ 79.0 0.016
P/F ratio (<100, 100-200, >201) 2,1,4 9,54 0.002
Oxygen-dependent (<6 L Oy) (Yes/No) 10/10 4/16 0.006
ICU admission (Yes/No) 3/17 19/1 <0.0001
ARDS (Yes/No) 3/17 19/1 <0.0001
ICU length of stay 3.00 £ 3.01 16.8 + 15.1 0.182
Length of stay to discharge or death 112 £87 16.5 £ 11.6 0.123

3.2. Cytokine Profiling of COVID Patients

Table S1 shows the analysis of 14 cytokines in the non-survivors and survivors of
COVID-19. IL-6, TNF-«, IFN-y, and IL-2 were significantly different between the two
groups with a significant FDR (p < 0.05) for IL-6 and TNF-«; IFN-f3, IL-2R, IL-10, and IL-8
also had FC > 1.5 or <1.5 between the groups (Table S1). Total serum immunoglobulin G
(IgG) mean (£ SD) was measured at 1.87 (£1.70) among COVID patients. IgG levels were
also not significantly different (p > 0.05) between non-survivors and survivors, with a mean
of 2.11 (£1.74) and 1.78 (£1.70), respectively.

3.3. Metabolomic Profiling Showed Three Main Metabolic Phenotypes in Patients with COVID-19
Compared with Those in HCs

Three main metabolic phenotypes were identified by comparing COVID-19 non-
survivors and survivors with those of healthy controls using a t-test analysis (Figure S1).
All three phenotypes were illustrated using multivariate analysis via PLS-DA (Figure 1)
and hierarchical analysis (heatmap) (Figure 2). Patients are not restricted to one phenotype,
since each sample can carry metabolites from all three patterns. Metabolic phenotype
1 exhibited a significant change in the concentrations of metabolites among COVID-19
non-survivors compared to COVID-19 survivors and HCs, and a significant difference be-
tween COVID-19 survivors and HCs, suggesting a possible correlation of these metabolites
with the severity or increased inflammation of COVID-19 infection. Phenotype 1 com-
prises 14 metabolites, including kynurenine, xanthine, 3-ureidopropionate, D-glucuronic
acid, uridine, acetylspermine, and 5-hydroxy-L-tryptophan (Table S2). Examples include
kynurenine from the tryptophan-kynurenine pathway, acetylspermidine from polyamine
turnover, and 5-hydroxytryptophan as a serotonin precursor. Boxplots in Figure 2B il-
lustrate the stepwise rise across groups with exact p-values noted, and representative
chromatograms are shown in Figure S5. The pattern reflects IDO1/AhR-driven inflamma-
tory catabolism along with enhanced polyamine acetylation in fatal cases. Phenotype 2
represents metabolites significantly altered exclusively in COVID-19 non-survivors, while
their concentrations showed no significant differences between COVID-19 survivors and
healthy controls. This indicates that metabolic phenotype 2 can be linked to poorer (mortal-
ity) outcomes and is a significant indicator of the severe progression of COVID-19. This
metabolic phenotype included 17 metabolites, such as xanthosine, glucose, malic acid, and
N-formylglycine. Carbohydrate and purine metabolism shift with disease severity. Glucose
is most elevated in non-survivors, xanthosine from purine breakdown also rises in this
group, while phenylacetylglutamine (PAGIn) is comparatively higher in survivors. These
findings point to hyperglycolytic stress and accelerated nucleotide turnover in the poorest
outcomes, with survivors showing a distinct gut-liver axis signal through PAGIn. Boxplots
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and chromatograms are presented in Figures 2B and S5. Phenotype 3 is characterized by
metabolites with similar concentrations in both COVID-19 non-survivors and survivors
but significantly altered compared to the HC group, indicating COVID-19 infection-related
metabolite alterations irrespective of disease severity. The higher number of metabolites
in phenotype 3 confirmed the significant effect of the disease on metabolism. Metabolites
such as indole-3-acetic acid, azelaic acid, suberic acid, glutarate, guanidinoacetate, and
3-hydroxykynurenine are categorized under this phenotype. This module links oxidative
kynurenine pathway activity with immunoregulatory signals. 3-hydroxykynurenine is
elevated in non-survivors, azelaic acid rises in both COVID groups compared with healthy
controls, and itaconate, a macrophage-derived metabolite, is higher in COVID-19 with a
trend toward greater levels in survivors, suggesting a more active counter-inflammatory

response. Group differences are shown in the boxplots of Figure 2B, with chromatograms
in Figure S5.
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Figure 1. (A-C): PCA demonstrates the differentiation of the three cohorts based on phenotypes
1 to 3. (D-F): The PLS-DA using metabolic phenotypes highlights distinct changes in metabolites
across the cohorts based on phenotypes 1-3. The models showed Phenotype 1: R? = 0.71, Q% = 0.69;
Phenotype 2: R? = 0.51, Q? = 0.45; Phenotype 3: R? = 0.78, Q? = 0.76. Predictive ability is high for
Phenotypes 1 and 3 (Q? > 0.6) and moderate for Phenotype 2. The close agreement of R2 and Q?
suggests no evident overfitting.
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Figure 2. Heatmap analysis illustrates the metabolite variations associated with different metabolic
phenotypes across three groups: COVID-19 non-survivors, COVID-19 survivors, and healthy con-
trols (A). Examples of metabolites related to each metabolic phenotype are shown (B). Statisti-
cal significance was determined using. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001;
ns: non significant.

3.4. Correlation Between Metabolic Phenotypes 1-3 and Cytokine Profiling

An overview of the correlation between all metabolites and cytokines is available
in the Supplementary (Figure S3). Regarding metabolic phenotype 1, the relationship
between kynurenine and various cytokines differed between survivors and non-survivors.
Kynurenine was strongly correlated with IL-10, IL-8, IL-7, IL-6, IL-2R, IL-12, and IFN-o
levels in patients with COVID-19. In particular, IL-12 and IFN-« were more strongly
related to L-cystathionine, kynurenine, 5-hydroxy-L-tryptophan, uridine, and D-glucuronic
acid in non-survivors. In addition, nearly all metabolites of phenotype 1 were positively
correlated with IL-8 levels among survivors (Figure 3). The results showed that IL-1f3, IL-2,
IEN-{, IFN-y, IL-17, GM-CSF, and TEN-« had a slightly higher correlation with metabolic
phenotype 2 in non-survivors, indicating a potential association with COVID-19 mortality
outcome. For metabolic phenotype 2, C10, C50H, phenylacetylglutamine, and N-amidino-
L-aspartate showed higher correlation coefficients with IL-12 and IFN-¢ in non-survivors;
however, methyl malonate showed a stronger cytokine correlation in survivors (Figure 3).
Further analysis showed an overall lower correlation between the cytokines IL-2R, IL-
6, IL-7, IL-8, and IL-10 and metabolic phenotype 3 among non-survivors, indicating a
lower association of these cytokines with COVID-19-related metabolites. In metabolic
phenotype 3, L-arginine, 6-carboxyhexanoate, and L-glutamic acid showed lower cytokine
correlation coefficients among non-survivors. In general, a few metabolites were strongly
associated with IL-12, IEN-y, TNF-o,, GM-CSF, IFN-f3, and IFN-« in the survivors (Figure 3).
Figure 4 shows some key examples of important metabolite-cytokine correlations (p < 0.05)
that appeared almost entirely within non-survivors, except for the itaconate and IL-13
correlations, which were significant in survivors. A significant (p < 0.05) correlation among
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metabolites within metabolic phenotypes between non-survivors and survivors is shown

in Figure S4.
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Cytokines

Phenotype 1

Further investigation showed that IL-8, IL-7, and IL-2R levels were less highly corre-
lated with other cytokines in survivors. In contrast, IL-2R, IL-6, IL-8, and IL-10 levels were
highly correlated in non-survivors compared to those in survivors (Figure S5).

3.5. Metabolomics and Patients” Demographics, Clinical Data, and Comorbidities

Further investigation demonstrated a strong correlation between metabolic phenotype
1 (intensity of severity-related metabolites) and clinical data, comorbidities, and outcomes.
Metabolic phenotype 1 metabolites were highly correlated with COVID-19 outcomes such
as mortality, ARDS, and ICU admission. These metabolites also correlated more strongly
with the P/F ratio, respiratory rate > 24, intubation, and pneumonia. Females showed
a higher correlation with most of this metabolic phenotype than did males (Figure 5).
Metabolic phenotype 2, some metabolites, such as C10:1, C50H, phenylacetyl glutamate,
xanthosine, L-isoleucine, and N-formylglycine, were mostly correlated with poor out-
comes. Interestingly, glucose, allose, and 2-oxobutanoate levels were highly associated
with obesity. Among the metabolic phenotype 3, N4-acetylcytidine, C-glycosyl-tryptophan,
and kynurenic acid were mainly correlated with COVID-19 outcomes and comorbidi-
ties. Interestingly, the respiratory rate > 24 was negatively correlated with most of the
metabolites of this phenotype. IL-6 was the only cytokine that showed a positive cor-
relation with mortality, ARDS, and ICU admission outcomes in the investigated cohort
(Figure 5). All cytokines showed high correlations with INR and PT, history of infectious
disease, and obesity. Females had higher cytokine concentrations than males. Higher
correlations between cytokines and metabolic phenotype 1 among females may indicate a
higher level of inflammatory mechanisms among female patients. Kynurenine, the most
well-known metabolite related to inflammatory mechanisms, had a higher correlation with
COVID-19 outcomes and age > 65 years, along with two other metabolites from tryptophan
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Figure 5. Correlations between cytokines, metabolites from metabolic phenotypes, and patients’
demographics, clinical data, and comorbidities.

4. Discussion

We observed that elevated levels of several metabolites, including urate, 5-hydroxyisourate,
guanosine, kynurenine, inosine, pyruvate, LysoPCs, 3-hydroxykynurenine, and serotonin,
were strongly associated with poor clinical outcomes and increased serum inflammatory cy-
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tokine levels in patients with COVID-19. Notably, IL-2R, IL-6, IL-7, IL-8, and IL-10 showed
lower correlations with the metabolites for the worst outcomes, indicating that these cy-
tokines might have different regulatory mechanisms during severe COVID-19. We also
observed a strong association between metabolic phenotypes and clinical outcomes, noting
that phenotype 1 metabolites were strongly correlated with mortality, ARDS, severity, and
clinical parameters such as increased respiratory rates and lower P/F ratios. SARS-CoV-2
is associated with an increase in pro-inflammatory cytokines, which may cause cytokine
storm and hyperinflammation in patients with severe COVID-19. The cytokine storms are
characterized by significant induction of specific cytokines such as IL-6, IL-2, IL-7, GM-CSF,
and IFN-y in COVID-19 patients, which are different from other respiratory viruses with
the increase in cytokines such as IL-2, IL-10, IL-4, or IL-5 [2]. In severe COVID-19, elevated
levels of cytokines such as TNF-«, IL-6, IL-8, and IL-10 have been significantly associated
with a reduction in T-cell counts [2]. However, IL-6, a significant cytokine in COVID-19,
is mainly associated with two JAK/STAT pathways [36]. Our data showed that most
metabolites had a lower correlation with IL-6 than other cytokines such as IL-2, IFN-f3,
and GM-CSF. This may describe the role of different SARS-CoV-2 variants in the induction
of inflammatory response [37] and/or different stages of the disease or the presence of
potential comorbidities in the group. The cytokine-metabolite relationships we report are
associative rather than causal. We view these correlations as integrated markers of ongoing
immunometabolic activity that may aid risk stratification, while acknowledging that causal
links will need to be tested in longitudinal and perturbational studies.

Several studies have shown a correlation between metabolic changes and cytokine ex-
pression in COVID-19 patients. Importantly, it has been demonstrated that some metabolic
agitation in COVID-19 is mediated by elevated pro-inflammatory cytokines, oxidative
stress, and deregulation of the renin-angiotensin—aldosterone system in many tissues, indi-
cating that metabolic and cytokine changes are key contributors to tissue dysfunction [38].
The metabolic machinery required for the replication of SARS-CoV-2 is characterized by
metabolic perturbations, such as alterations in nucleic acid pathways and depletion of malic
acid and GMP from host cells [39], which contribute to the production of the viral capsid
through the mobilization of free fatty acids [40]. SARS-CoV-2 infection directly affects cells
and tissues via metabolite perturbations, which may influence the host’s inflammatory
responses [41]. On the other hand, dysregulated immunometabolism causes immune
dysregulation and cytokine storm in patients with COVID-19 in severe form. For instance,
upregulation of glycolysis and glutaminolysis can lead to hyperinflammatory responses,
tissue damage and multi-organ dysfunction. Moreover, the interplay between immune cells
and viruses for metabolic competition may shape host—pathogen interactions, contributing
to disease development. This indicates that metabolic crosstalk between immune cells and
SARS-Cov-2 may be important for understanding new avenues of targeted interventions
that aim to modulate host immune responses [8].

Identifiable metabolic alterations include essential metabolic pathways related to
amino acid and energy metabolism in COVID-19 patients. Among these metabolites,
L-tryptophan and L-kynurenine play key roles in COVID-19 pathogenesis [4,42]. Our
metabolomic study showed that several metabolites in tryptophan metabolism or the
tryptophan-kynurenine pathway differentially changed depending on the severity of
COVID-19.

It has been reported that metabolites, such as agmatine, putrescine, and
2-quinolinecarboxylate, are involved in the activation of the NF-kB pathway, thereby
promoting an increase in the secretion of the pro-inflammatory cytokines TNF-o and IL-6,
which are two important cytokines governing the severity of COVID-19. Longitudinal
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studies have shown that cytokines such as IL-6 and IL-10 can also be used as markers of
liver injury severity in patients with COVID-19 [43].

It has been shown that IL-4 is not only associated with liver repair but is also suggested
to be a restoring factor of liver function. This relationship between cytokine profiles and
metabolome changes indicates the complexity of recovery from COVID-19 [44]. The quan-
tification of cytokines in plasma revealed associations with antibody decay in COVID-19
convalescent patients for cytokines, such as M-CSF and IL-12p40, and metabolites, such
as glycylproline and long-chain acylcarnitines. Glycylproline, a product of dipeptidyl
peptidase 4 activity, has recently been shown to provide a basis for the rapid waning of
SARS-CoV-2-specific antibodies. An experiment that entailed supplementing glycylproline
in experiments with SARS-CoV-2 vaccination in healthy mice resulted in a down-regulation
of SARS-CoV-2-specific antibody levels and a suppressed immune response [45]. Major
metabolites of energy, amino acids, and lipid metabolisms were differentially altered and
closely related to inflammatory responses and disease progression. L-arginine participates
in pathways related to inflammation, immune regulation, and NO generation, which are
necessary for the differentiation, survival, and proliferation of Th cells. IL-18, IL-13, and
IL-23 have been correlated with arginine biosynthesis in COVID-19 [46]. Our study showed
L-arginine had a higher correlation with most cytokines in survivors than in non-survivors.
Our study also showed that glucose and allose, metabolites associated with mortality, were
strongly correlated with TNF-o, GM-CSEF, IFN-vy, IL-17, IEN-3, IL-2, and IL-1f3 levels in non-
survivors. Profiling serum samples from COVID-19 patients of varying severity showed
strong correlations between metabolites and pro-inflammatory cytokines/chemokines,
including IL-6 and IL-1f3, highlighting a regulatory interplay between arginine, trypto-
phan, purine metabolism, and hyperinflammation [4]. This study showed that the levels
of classical pro-inflammatory cytokines such as IL-6, IP-10, and M-CSF increased during
hospitalization. Anti-inflammatories such as IL-10 and IFN-«2 also increased over the
same duration, suggesting a protective immune response. IDO1 inhibition has been demon-
strated to suppress SARS-CoV-2-induced pro-inflammatory cytokine release by reducing
the activity of tryptophan-metabolizing enzymes. Conversely, inhibition of IMPDH, a key
enzyme in purine metabolism, during hyperinflammation results in the upregulation of
several pro-inflammatory cytokines, including IL-6 and IL-13 [4]. Significant collective data
have revealed strong correlations between arginine metabolism and key pro-inflammatory
cytokines expressed during this process, including GM-CSF, IFN-y, IL-17A, IFN-f3, IL-2,
and IL-1f3 [4]. Metabolic phenotyping revealed a systemic reaction and immunometabolic
disorder associated with the infection. The tryptophan pathway is linked to neuroinflam-
mation and neuropsychiatric consequences [47]. In male patients, the concentration of
kynurenic acid and KA /kynurenine ratio were positively influenced by age and inflam-
matory cytokines and chemokines. This indicates that KA has a sex-specific link with the
immune and clinical results of COVID-19 [48]. Our study also demonstrated the association
between KA and age > 65 years, male sex, ARDS, and severity. An NMR-based study
showed correlations among plasma cytokines, lipoproteins, and metabolites in distinct
groups. Patients in the recovery phase demonstrated an incomplete metabolic recovery
postinfection [49].

IL-10 and IL-6, cytokines indicative of inflammation, showed a significant negative
correlation with glutamine, a key metabolic marker of COVID-19 infection. Increased levels
of IL-6 and IL-8 were correlated with acute-phase proteins (CRP and ferritin), glycoproteins
(Glycs), and ketone bodies, highlighting the connection between the immune response
and metabolic disturbances. IFN-a2 levels negatively correlated with inflammatory Glycs
and the supramolecular phospholipid composite (SPC) and negatively correlated with
all measured cytokines. MCP1 was positively correlated with all major lipid and HDL
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parameters, suggesting its unique role in lipid metabolism in COVID-19. Significant
negative correlations between IL-6 and ApoAl, particularly in the dense HDL subfraction
(H4A1), indicated inflammation-induced changes in the lipoprotein profiles [50]. Our study
showed that LysoPCs correlated more strongly with cytokines, notably GM-CSF and IL-103.

Tocilizumab, an IL-6R inhibitor, only partially reverses the metabolic consequences of
severe COVID-19. This confirms that immune mediators drive metabolic alterations upon
infection and suggests a dynamic interplay between the immune system and metabolism.
The activities of particular cytokines and different immune cells have been proposed to
modulate metabolic pathways centered on lipid metabolism and energy use [51].

Plasma metabolomics and cytokine profiling in critically ill patients with SARS-CoV-2
infection revealed four metabolites (3-hydroxybutyrate, lactate, leucine, and phenylala-
nine) and five cytokines/growth factors (CXCL9, CXCL10, HGF, IL-6, and SCF) whose
concentrations were associated with a favorable patient outcome [52].

Previous studies have shown alterations in metabolic profiles with simultaneous
changes in immune cell functions, including implications for COVID-19 severity and
progression [53,54]. An interplay between immune responses and metabolic pathways
is also apparent in pregnant women with COVID-19, where different disease severities
generate distinct immune-metabolic profiles between mothers and neonates [55].

The correlations identified point to linked immune and metabolic activity rather than
independent signals. Inflammatory cytokines such as IL-6 and IFN pathways can redirect
metabolism toward routes like tryptophan to kynurenine or glycolysis to lactate, while
certain metabolites in turn influence cytokine output and vascular or immune function.
These paired readouts therefore capture integrated features of disease biology. Clinically,
such signatures have several applications: they can sharpen prognostic stratification when
added to standard labs and covariates, help define immunometabolic subtypes such as
IL-6-kynurenine-driven versus glycolysis/lactate-driven patterns that may guide therapy
or trial design and serve as markers of pharmacodynamic response to anti-inflammatory or
supportive treatments. Although correlation does not establish causation, the biological
logic of these axes makes them suitable for targeted validation in independent cohorts and
longitudinal studies.

We found that cytokine-metabolite correlations were stronger in females. This is
biologically plausible for several reasons. Hormonal influences play a role: estrogens
tend to boost innate antiviral and type I IFN responses as well as humoral immunity,
while androgens can shape ACE2/TMPRSS2 expression and inflammatory pathways.
X-linked immune genes such as TLR7 may also contribute, since gene-dose or escape
effects can heighten IFN signaling in some women. In addition, sex-related metabolic
remodeling has been reported in COVID-19, spanning lipid, pentose, bile acid, and aromatic
amino acid/tryptophan pathways. Prior studies further show sex-dependent differences
in the kynurenine axis, including distinct associations of kynurenic acid by sex, which
emphasizes that immunometabolic coupling does not operate identically in males and
females. We interpret the stronger correlations in females as associative evidence of tighter
immunometabolic coordination, while recognizing the limitations of sample size, treatment
and variant heterogeneity, and the need for independent validation [56-58].

Patient enrollment (2020-2021) took place across several SARS-CoV-2 variant waves,
including Alpha and Delta. Viral genotyping was not available, so analyses were not
stratified by variant. Since variants differ in both immune and metabolic responses, and
clinical management changed during this period, the applicability of our immunometabolic
signatures to specific variant contexts, particularly the Omicron era, is limited. Future
work should include viral sequencing or reliable proxy assignment and conduct variant-
stratified analyses. Also, patients were admitted at different points in their illness, our
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baseline reflects an admission-time snapshot rather than a consistent disease day. This
heterogeneity may blur or weaken stage-specific effects. Studies that stratify by illness
duration and include serial sampling will be important to confirm these observations. In-
hospital therapies such as glucocorticoids, antivirals, IL-6 receptor blockers, anticoagulants,
and glucose-lowering agents can rapidly influence cytokine and metabolic profiles. Detailed
information on timing and dosing at the time of sampling was not consistently available,
and the cohort size did not allow for robust adjustment. Residual confounding is therefore
likely. The profiles presented here should be viewed as reflecting both disease activity and
concurrent treatment, and future work will need to include more granular medication data
and stratified analyses

The limitations of this study include the small sample size. Also, this study was a
modest single-centre cohort; both power and generalizability are limited. Even with FDR
correction, some results may be unstable and will need confirmation in larger multi-centre
studies. In addition, other limitations include a lack of comparative samples across different
severities of COVID-19 (mild and moderate), limited representation of SARS-CoV-2 variants,
a lack of comparisons between hospitalized and outpatient cases, and limited number of
cytokines. Longitudinal data could help determine whether the observed changes in
metabolites and cytokines persisted or evolved during the disease. Investigations of the
role of confounding factors, such as age, sex, comorbidities, and medications, have not
been fully considered in this study. Finally, a separate validation cohort was required to
verify the findings.

In conclusion, we identified a distinct profile of metabolites that may serve as novel
biomarkers for poor outcomes in COVID-19. These findings provide valuable insights
into disease severity, though further studies are necessary to validate and expand upon
these results.
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