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Abstract: Imaging tests, tumor marker (TM) screening, and biochemical tests provide a definitive
diagnosis of hepatocellular carcinoma (HCC). However, some patients with HCC may present TM-
negative results, warranting a need for developing more sensitive and accurate screening biomarkers.
Various diseases exhibit increased blood levels of bile acids, biosynthesized from cholesterol in the
liver, and they have been associated with HCC. Herein, we analyzed plasma bile acids using liquid
chromatography/tandem mass spectrometry and integrated them with conventional biomarkers
to develop a diagnostic screening model for HCC. Plasma samples were obtained from patients
diagnosed with chronic hepatitis, hepatic cirrhosis (HC), and HCC. A QTRAP 6500 mass spec-
trometer and a Nexera liquid chromatograph with a YMC-Triart C18 analytical column were used.
The mobile phase A was a 20 mmol/L ammonium formate solution, and mobile phase B was a
methanol/acetonitrile mixture (1:1, v/v) with 20 mmol/L ammonium formate. After determining the
concentrations of 32 bile acids, statistical analysis and diagnostic screening model development were
performed. Plasma concentrations of bile acids differed between sample groups, with significant
differences observed between patients with HC and HCC. By integrating bile acid results with
conventional biochemical tests, a potential diagnostic screening model for HCC was successfully
developed. Future studies should increase the sample size and analyze the data in detail to verify the
diagnostic efficacy of the model.

Keywords: biomarkers; hepatocellular carcinoma; bile acids; plasma; LC-MS/MS; screening

1. Introduction

Liver cancer is the third leading cause of cancer-related death worldwide [1], with
hepatocellular carcinoma (HCC) accounting for 75–85% of all liver cancers [1]. HCC mostly
develops from hepatic cirrhosis (HC), caused by chronic inflammation following hepatitis
virus infection. More than 60% of patients with HCC are diagnosed at a later stage when
metastasis has occurred because of difficulty in diagnosis, resulting in a 5-year survival rate
of <20% [2,3]. However, if diagnosed at an early stage, the prognosis improves significantly,
with the 5-year survival rate exceeding 70% [2,4]. Therefore, early diagnosis and initiation
of HCC treatment are crucial to achieve a better prognosis.
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HCC is mainly diagnosed using imaging modalities, such as computed tomography
and magnetic resonance imaging, when nodular lesions are detected by abdominal ultra-
sound [5–8]. Nevertheless, despite ultrasound being the initial diagnostic procedure for
HCC, its result analysis is subject to operator dependency and exhibits inherent limitations
in detecting small tumors [9–12]. Concomitant liver diseases or body habitus, such as
metabolic dysfunction-associated steatohepatitis (MASH) or obesity, can impair the efficacy
of ultrasound imaging, resulting in diminished sensitivity. Additionally, serum tumor
marker (TM) tests are performed to complement ultrasound results. Three TMs, namely
α-fetoprotein (AFP) [13–17], protein induced by the absence of vitamin K or antagonist-II
(PIVKA-II) [16–20], and AFP-L3 [17,21,22], have been identified and measured in HCC
surveillance. AFP is a glycoprotein that is normally produced in the liver and gastroin-
testinal tract during fetal and neonatal development. In patients with HCC, AFP serum
levels are increased, and their usefulness in the diagnosis of HCC has been confirmed
in a randomized controlled trial. AFP is further divided into three glycoforms, namely
AFP-L1, AFP-L2, and AFP-L3, based on their binding affinity to lectins; AFP-L3 is the
binding fraction that increases in HCC. Although AFP-L3 levels are correlated with AFP
levels, AFP-L3 shows higher specificity than AFP because AFP-L3 is derived from can-
cer cells. PIVKA-II is an abnormal prothrombin in which γ-carboxylation of glutamic
acid residues in the N-terminal domain is incomplete from the prothrombin precursor.
Although PIVKA-II levels are increased in the serum of patients with HCC, there is no
established correlation between PIVKA-II and AFP levels; hence, PIVKA-II could serve as a
complementary TM in HCC diagnosis. Although these biomarkers have some utility, their
diagnostic performances remain incomplete. Increased AFP levels have been reported to
be increased in benign liver diseases, such as HC and chronic hepatitis, which may lead
to poor specificity. AFP-L3 shows higher specificity than AFP but has been reported to
be undetectable in patients with AFP levels < 20 ng/mL. Whether PIVKA-II is useful for
HCC screening remains controversial as evidence remains lacking, especially in Western
populations. Moreover, these biomarkers are negative in approximately 30% of patients at
an early stage [23,24]. Thus, monitoring AFP during surveillance is treated as an option or
not recommended, while PIVKA-II and AFP-L3 are not recommended in clinical guidelines
other than Japan [25,26].

Bile acids are amphiphilic molecules synthesized from cholesterol in the liver [27–30]
and are involved in essential physiological functions such as glucose and energy metabolism,
cholesterol metabolism, and cellular immunity [31]. In individuals with healthy liver func-
tion, approximately 95% of bile acids are produced in enterohepatic circulation, and bile
acids in systemic circulation are maintained at low levels [29,32–34]. Conversely, in cases
of liver disease, the enterohepatic circulation is disrupted, which results in increased levels
of bile acids in the blood and urine [35–39]. Increased bile acid levels have been reported in
various liver diseases, such as cholestasis, HC, MASH, and even HCC [40–46].

Recently, bile acids have been reported to be involved in HCC development [41,47,48].
While bile acids play important roles in various physiological functions, they can induce
inflammation and reactive oxygen species production, and reduce the apoptosis of DNA-
damaged cells [40,49]. Therefore, more detailed relationships between serum bile acid
levels and HCC development have been investigated, including whether bile acids can
serve as diagnostic or risk classification markers for HCC. Stepien et al. performed un-
targeted metabolomics and showed strong positive associations between HCC risk and
circulating levels of glycine-conjugated cholic acid (GCA) and glycine-conjugated chen-
odeoxycholic acid (GCDCA) [50]. They further performed targeted metabolomics for bile
acids and revealed that the profile of plasma bile acids shifted toward increased proportions
of taurine conjugates, along with increased total bile acid concentration several years before
HCC diagnosis [51]. Khalil et al. measured 14 bile acids in patients with non-HC, HC, and
HCC following hepatitis C infection and in control subjects. Additionally, the serum con-
centrations of some bile acids, including taurine-conjugated cholic acid (TCA), GCA, and
glycine-conjugated ursodeoxycholic acid (GUDCA), were increased in patients with HCC,
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followed by those with HC, non-HC, and healthy controls [52]. Ressom et al. conducted
untargeted metabolomics and quantitative analyses of bile acids in the sera of patients with
HCC and CH. The findings revealed a notable downregulation of GCA, glycine-conjugated
deoxycholic acid (GDCA), TCA, and taurine-conjugated chenodeoxycholic acid (TCDCA)
in patients with HCC compared to those with HC [53]. Serum metabolomics analysis of
patients with HCC and HC, and healthy individuals performed by Han et al. revealed that
chenodeoxycholic acid (CDCA) and GCA were downregulated in the serum of patients
with HCC compared to that of patients with HC [54]. Thus, the profile of bile acids in HCC
could be altered from that in other liver diseases, and bile acids could serve as biomarkers.
However, whether bile acids change during the development of HCC has been inconsistent
in previous reports, and their diagnostic value remains controversial. In addition, studies
in the Japanese population are limited.

In this study, we quantified 32 bile acids in the plasma of patients with HCC and other
liver diseases using liquid chromatography (LC)-tandem mass spectrometry (MS/MS)
to evaluate their diagnostic performance for HCC. Our method is distinguished by the
incorporation of bile acids with diverse characteristics, including sulfate and glucuronide
conjugates. This approach is promising for the development of highly innovative models.
Furthermore, we developed and evaluated a diagnostic screening model for HCC by
integrating bile acid levels and conventional biochemical tests.

2. Materials and Methods
2.1. Chemicals and Reagents

The structures of bile acids are shown in Figure S1. CA, CDCA, and taurine-conjugated
lithocholic acid (TLCA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Am-
monium formate, deoxycholic acid (DCA), lithocholic acid (LCA), and methanol were
purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Ursodeoxy-
cholic acid (UDCA), GUDCA, TCA, and taurine-conjugated ursodeoxycholic acid (TUDCA)
were purchased from Nacalai Tesque Inc. (Kyoto, Japan). LCA-2,2,4,4-[2H] (LCA-[2H4]) was
purchased from Cambridge Isotope Laboratories (Tewksbury, MA, USA). GCA, GCDCA,
GDCA, glycine-conjugated lithocholic acid (GLCA), TCDCA, taurine-conjugated deoxy-
cholic acid (TDCA), CDCA 3-sulfate (3S), DCA 3S, LCA 3S, GCA 3S, GCDCA 3S, GDCA 3S,
GUDCA 3S, GLCA 3S, TCA 3S, TCDCA 3S, TDCA 3S, TUDCA 3S, TLCA 3S, cholic acid (CA)
3-glucuronide (3GlcA), CDCA 3GlcA, DCA 3GlcA, UDCA 3GlcA, LCA 3GluA [55], CA-
3,7,12-[18O], DCA-2,2,4,4-[2H], GCA-3,7-[18O], GCDCA-3,7-[18O,2H] (GCDCA-[18O2,2H2]),
GLCA-3-[18O,2H], TDCA-3,12-[18O,2H], TLCA-3-[18O,2H], 17β-estradiol-2,4,16,16-[2H] 3-
sulfate, and 3β-sulfooxy-7β-hydroxy-23-nor-5-cholen-oic acid [56], previously synthesized
in our laboratory, were used. Ethanol was purchased from the Japan Alcohol Trading Co.,
Ltd. (Tokyo, Japan). Acetonitrile was purchased from Kanto Chemical Co., Inc. (Tokyo,
Japan). Ultrapure water was purchased from Puric-α (Organo Corporation, Tokyo, Japan).

2.2. Plasma Samples

This study was conducted in accordance with the protocol approved by the Ethics
Committee of the Graduate School of Medicine, Tohoku University (approval number:
2020-1-732). The inclusion criteria were (1) patients with liver diseases such as chronic
hepatitis, HC, and HCC; (2) 20 years or older. Patients whose clinical data were unavailable
were excluded. We published the online research information and established the opt-out
option because the samples were previously collected. According to these criteria, plasma
samples from patients with chronic hepatitis (n = 20), HC (n = 20), and HCC (n = 39) were
included. These samples were collected at Tohoku University Hospital between 2011 and
2019. Patients with HCC were divided into two groups based on their TM status: TM-
negative (TM−) and TM-positive (TM+). Patients who met all of the following criteria were
classified as TM− (n = 19): AFP ≤ 10 ng/mL, PIVKA-II ≤ 40 mAU/mL, and AFP-L3 < 10%.
The TM+ HCC group comprised individuals who did not meet at least one of the specified
criteria (n = 20).
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The previously measured clinical test values were used in this study. Biomarkers of
liver injury included gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST),
and alanine aminotransferase (ALT). Biomarkers of liver function included serum albumin
(ALB) and cholinesterase (ChE) Serum creatinine (SCr) was used as a biomarker of renal
function. AFP, PIVKA-II, and AFP-L3 were used as TMs for HCC.

2.3. Plasma Bile Acid Analysis by LC-MS/MS

For deproteinization, 50 µL of the internal standard (IS) mixture and 400 µL of acetoni-
trile were added to each plasma sample (50 µL) and vortexed. Subsequently, centrifugation
was performed at 15,000× g for 5 min at 4 ◦C, after which 450 µL of the supernatant
was transferred to another tube and dried. The residue was dissolved in 50 µL of a wa-
ter/methanol solution (1:1, v/v), and 10 µL of aliquots were measured.

A Nexera ultra-high-performance liquid chromatography system (Shimadzu Corpora-
tion, Kyoto, Japan) equipped with a QTRAP6500 quadrupole linear ion trap hybrid tandem
mass spectrometer and an electrospray ionization probe (SCIEX, Framingham, MA, USA)
were used. The LC-MS/MS conditions were based on a previously established method
in our laboratory [45]. For LC, 20 mmol/L aqueous ammonium formate and a mixture of
methanol/acetonitrile (1:1, v/v) were employed as mobile phases A and B, respectively.
The flow rate was adjusted to 0.3 mL/min. The bile acids were eluted under gradient
conditions. The proportion of mobile phase B was maintained at 40% from 0 to 10 min,
increased from 40% to 80% from 10 to 23 min, and maintained at 80% from 23 to 28 min. A
YMC Triart C18 guard column (2.1 mm I.D. × 5 mm, 1.9 µm, YMC, Kyoto, Japan) and a
YMC Triart C18 analytical column (2.1 mm I.D. × 150 mm, 1.9 µm, YMC) were connected
and employed at a temperature of 40 ◦C [45].

The curtain gas, collision gas, ion source gas 1, ion source gas 2, ion spray voltage, and
ion source temperature were set to 20 psi, 12 psi, 60 psi, 60 psi, −4500 V, and 300 ◦C, respec-
tively. Bile acids were analyzed under previously established selected reaction monitoring
conditions, as summarized in Table S1. Data acquisition and integration were conducted
using the Analyst software version 1.6.2 (SCIEX) and MultiQuant version 2.1.1 (SCIEX).

A calibration curve was constructed within the range of 1–3000 nmol/L. The resulting
calibration curves are listed in Table S2.

2.4. Statistical Analyses and the Development of Diagnostic Model

GraphPad Prism version 9.3.1 (Dotmatics, Boston, MA, USA) was used to draw
Figure 1. JMP Pro version 17.1 (SAS Institute, Cary, NC, USA) was used for all statistical
analyses. A nonparametric method was employed for analyzing significant differences for
items that did not meet the normal distribution. Diagnostic performance was evaluated
using the logistic regression and receiver operating characteristic (ROC) analyses. The
area under the curve (AUC) of the ROC curve and its 95% confidence interval (CI) were
calculated using GraphPad Prism version 9.3.1.

A stepwise method was used to construct a diagnostic model that integrated multiple
test values, including plasma bile acid levels. The threshold p-value was set to 0.25 for
inclusion and 0.10 for exclusion of selected items to construct the model formula. Targeted
items for selection were including clinical test values, each concentration of 32 bile acids,
total bile acids (TBA, the sum of 32 bile acids concentrations), and bile acid fractions based
on their classification listed in Table S3b. By selecting the items and building a model, the
following formula was constructed:

Possibility[4_HCC] = −9.988 − (0.0005504 × GCA [nM]) + (0.04487 × GGT [U/L]) + (0.02604 × GCDCA 3S
[nM]) + (0.03243 × GLCA 3S [nM]) + (0.02491 × GUDCA 3S [nM]) − (0.2112 × ALT [U/L]) + (7.833 × ALB

[g/dL]) + (0.0006565 × Unconjugates [nM]) − (0.02653 × sulfates [glycine] [nM])
(1)
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Figure 1. Concentrations of plasma bile acids in all subjects.

3. Results and Discussion
3.1. Analysis of Serum Bile Acids in Patients with Hepatocellular Carcinoma and Other
Liver Diseases

The patients included in this study are listed in Table 1. No significant differences
were observed between sexes. However, significant differences were observed in age, with
the age of patients with HCC being significantly higher than that of the other groups.
The underlying diseases in the hepatitis, HC, and HCC groups are shown in Table 1, and
significant differences were observed in their profiles. Significant differences were observed
in AST and ALT levels, whereas no significant differences were found in GGT levels. In
chronic hepatitis, AST and ALT levels may return to normal; however, if inflammation
persists, a slight increase may be observed. ALT is specific to the liver and is an important
indicator of hepatitis [57]. As HC progresses, AST and ALT levels may increase; however,
after progression, these levels may return to the normal range, with AST levels often higher
than ALT levels [58,59]. The presence of HCC did not necessarily result in increased AST
or ALT levels. Increased GGT levels were particularly noticeable in patients with alcoholic
hepatitis and alcoholic HC. In cases of HCC, GGT may also be increased; however, if
combined with other liver diseases, GGT may also be affected [60]. ALB is a major serum
protein synthesized in the liver. It maintains the osmotic pressure of blood and is involved
in the transport of nutrients and hormones. However, as HC progresses, the liver’s ability
to synthesize ALB decreases, resulting in decreased albumin levels [61]. ChE breaks down
acetylcholine and is found in large amounts in the liver, pancreas, and red blood cells. Low
ChE levels may indicate impaired liver or pancreatic functions [62–64]. There were no
significant differences in SCr levels concerning kidney function. UDCA has been approved
for the treatment of chronic liver disease and other conditions. There was no significant
difference in the rate of UDCA use, which is believed to affect bile acid metabolism. AFP
levels were increased in the HCC and TM+ groups, with no significant overall difference
observed. This trend was the same as that observed in PIVKA-II and AFP-L3 cells.
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Table 1. Patient characteristics.

Chronic
Hepatitis
(n = 20)

Hepatic
Cirrhosis
(n = 20)

HCC
p ValueTotal

(n = 39)
TM−

(n = 19)
TM+

(n = 20)

Sex, n (male/female) 10/10 12/8 24/15 12/7 12/8 0.6976 a

Age, median (IQR) 56 (48.5–65) 53.5
(49.75–62.75) 70 (62–76) 68 (60–76) 70.5 (64.5–78.25) <0.0001 b

Primary disease, n (%) 0.0122 b

HBV 7 (35) 4 (20) 6 (15) 3 (16) 3 (15)

HCV 5 (25) 4 (20) 20 (51) 12 (63) 8 (40)

NASH 3 (15) 3 (15) 3 (8) 1 (5) 2 (10)

PBC 3 (15) 5 (20) 0 (0) 0 (0) 0 (0)

Alcohol 1 (5) 4 (20) 8 (21) 3 (16) 5 (25)

Others AIH, 2 (10)
Unknown, 1 (5)

Wilson disease,
1 (5)

Unknown, 1 (5)

Unknown,
2 (5) 0 (0) Unknown, 2 (10)

GGT, median (IQR)
(U/L) 62 (41.25–116.5) 35

(18.25–158.75) 37 (20–85) 25 (18–42) 83.5
(33.25–138.5) 0.1756 a

AST, median (IQR)
(U/L) 49.5 (27.5–79) 49 (34.25–62.25) 35 (26–50) 28 (18–42) 45.5

(30.25–56.25) 0.0401 a

ALT, median (IQR)
(U/L) 62 (29–99.75) 33 (15.5–50) 28 (17–35) 20 (16–31) 30.5 (17.5–47.25) 0.0005 a

Albumin, median
(IQR) (g/dL) 4 (3.7–4.3) 2.95

(1.95–3.425) 3.5 (3.1–3.7) 3.6 (3.4–4.2) 3.3 (3–3.6) <0.0001 a

ChE, median (IQR)
(U/L)

288
(238.75–335.5) 144 (54.5–192.5) 199 (142–253) 221 (176–323) 175 (136–220.5) <0.0001 a

Scr, median (IQR)
(mg/dL)

0.675
(0.58–0.8375)

0.765
(0.5825–1.07) 0.73 (0.64–0.93) 0.77 (0.64–1.06) 0.73

(0.635–0.815) 0.6146 a

UDCA take, n
(Yes/No) 8/12 11/9 16/23 7/12 9/11 0.5601 b

AFP, median (IQR)
(ng/mL) c - 4.1 (2.425–14.4) 5.4 (3.2–45.8) 4.4 (3.1–5.4) 37.7

(5.175–1570.975) 0.1811 a

PIVKA-II, median
(IQR) (mAU/mL) d - 59.5

(37.5–457.5) 23 (18–134) 19 (16–21) 122.5
(45.25–1749.25) 0.1560 a

AFP-L3, median (IQR)
(%) e - 0.5 (0.5–12.45) 0.5 (0.5–28.2) 0.5 (0.5–0.5) 21.3

(1.575–43.75) 0.8027 a

a Kruskal–Wallis test was performed for significant difference analysis. b Fisher’s exact test was performed for
significant difference analysis. c n = 20 for liver cirrhosis, n = 19 for TM−, n = 20 for TM+. d n = 16 for liver cirrhosis,
n = 19 for TM−, n = 20 for TM+. e n = 15 for liver cirrhosis, n = 19 for TM−, n = 20 for TM+. AFP, α-fetoprotein;
AIH, autoimmune hepatitis; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ChE, cholinesterase;
GGT, γ-glutamyl transferase; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; IQR,
interquartile range; NASH, non-alcoholic steatohepatitis; PBC, primary biliary cholangitis; PIVKA-II, protein
induced by vitamin K absence or antagonist-II; Scr, serum creatinine; UDCA, ursodeoxycholic acid.

All the bile acids were successfully separated and detected (Figure S2). The ranges
of plasma bile acid concentrations are shown in Figure 1 and Table S4. This investigation
revealed considerable discrepancies in the concentration of bile acids in the blood, which
might be due to the body habitus, dietary habits, etiology, disease stage, or other plasma
components, such as cholesterol and bilirubin [57,58]. Additionally, variations in the
concentrations of different bile acids were determined. The ten bile acids that showed
significant differences in ANOVA were UDCA, GCA, GCDCA, GUDCA, TCDCA, GCDCA
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3S, GDCA 3S, GUDCA 3S, CDCA 3GlcA, and DCA 3GlcA (Table 2). Significant differences
were also observed in the bile acid characteristics in this study, including sulfate and
glucuronide conjugates.

Table 2. Plasma concentrations of bile acids in each sample group.

Chronic
Hepatitis HC

HCC p Value

Total TM− TM+ All Group b CH vs.
HCC a

CA (nM)
[median (IQR)]

39.0
(27.2–173.1)

189.6
(64.4–619.8)

314.3
(41.5–909.1)

136.8
(37.8–590.1)

426.8
(87.6–1116.9) 0.0721 0.9666

CDCA (nM)
[median (IQR)]

127.1
(47.4–452.7)

572.6
(284.8–2044.1)

634.7
(197.1–1723.6)

405.2
(109.9–1532.8)

741.5
(362.6–2504.1) 0.0884 0.9249

DCA (nM)
[median (IQR)]

226.4
(126.3–459.7)

358.9
(208.5–1024.1)

259.7
(106.8–407.4)

293.9
(192.3–613.3)

259.7
(37.6–384.4) 0.3202 0.3450

LCA (nM)
[median (IQR)]

23.2
(14.8–60.6)

72.7
(22.6–120.0)

103.6
(15.3–154.3)

80.1
(15.3–125.9)

135.8
(16.2–258.3) 0.2012 0.7907

UDCA (nM)
[median (IQR)]

135.5
(9.2–998.5)

492.2
(35.8–5296.0)

572.2
(39.3–2440.0)

272.7
(21.3–1971.0)

1327.5
(121.5–3178.2) 0.0242 0.9528

GCA (nM)
[median (IQR)]

842.6
(309.4–1845.4)

6060.0
(1952.4–
12,455.0)

1725.5
(524.5–5480.0)

1104.6
(283.5–2796.0)

2515.7
(1005.0–7615.3) 0.0008 0.0327

GCDCA (nM)
[median (IQR)]

1837.4
(601.6–3608.0)

15,534.5
(2147.6–
41,090.0)

5135.0
(1706.2–9624.0)

2896.6
(1201.3–5881.0)

6549.0
(2111.5–12,073.5) < 0.0001 0.0561

GDCA (nM)
[median (IQR)]

622.7
(232.5–1199.6)

750.3
(261.2–1913.4)

755.3
(255.8–1574.6)

836.2
(257.9–1531.3)

379.3
(110.0–2738.4) 0.3466 0.9818

GLCA (nM)
[median (IQR)]

21.5
(18.7–30.9)

37.9
(21.4–59.0)

66.6
(21.9–119.6)

68.6
(11.7–127.1)

58.0
(22.7–106.9) 0.1346 0.5084

GUDCA (nM)
[median (IQR)]

1201.2
(248.4–4011.0)

2681.5
(824.3–67,072.5)

2281.0
(432.7–11,582.0)

1306.5
(66.9–13985.0)

2666.2
(599.4–8557.0) 0.0158 0.5561

TCA (nM)
[median (IQR)]

136.7
(54.8–698.6)

1626.2
(375.0–2698.5)

338.6
(57.2–1756.0)

121.9
(56.6–1145.5)

475.4
(137.1–2404.8) 0.1248 0.0607

TCDCA (nM)
[median (IQR)]

391.9
(106.0–1222.5)

3880.0
(578.4–15,372.5)

1126.0
(196.0–2716.9)

437.6
(96.2–2585.5)

1288.5
(263.9–2844.9) 0.0040 0.0313

TDCA (nM)
[median (IQR)]

166.0
(49.6–254.8)

77.2
(27.3–380.8)

77.5
(21.3–293.9)

164.4
(48.2–333.5)

56.0
(6.2–160.6) 0.5894 0.9557

TLCA (nM)
[median (IQR)]

5.5
(3.8–24.7)

8.3
(5.2–20.8)

18.7
(7.5–35.1)

23.6
(10.4–35.0)

8.5
(3.3–52.1) 0.3826 0.3604

TUDCA (nM)
[median (IQR)]

74.6
(19.1–222.2)

473.8
(139.4–6565.0)

241.6
(40.3–931.3)

363.2
(15.0–1171.5)

241.6
(48.4–927.2) 0.0681 0.2966

CDCA 3S (nM)
[median (IQR)]

9.0
(6.9–18.8)

72.4
(16.7–88.4)

37.5
(10.7–104.5)

55.4
(9.7–87.7)

33.2
(11.0–135.7) 0.2542 0.6424

DCA 3S (nM)
[median (IQR)]

10.9
(6.2–14.8)

16.2
(5.8–82.2)

15.1
(7.0–41.5)

15.1
(6.6–80.1)

14.9
(7.8–33.7) 0.2262 0.9244

LCA 3S (nM)
[median (IQR)]

23.4
(13.6–36.5)

37.0
(20.9–175.3)

40.3
(24.3–125.2)

56.0
(27.9–196.5)

32.6
(24.3–96.8) 0.2081 0.9420

GCDCA 3S (nM)
[median (IQR)]

284.2
(157.1–504.6)

1285.3
(448.6–2660.0)

538.7
(285.2–960.9)

395.0
(193.1–670.1)

649.6
(422.5–1091.1) 0.0266 0.0230

GDCA 3S (nM)
[median (IQR)]

224.7
(85.9–524.2)

413.1
(124.5–820.3)

170.2
(81.1–286.7)

165.2
(107.8–409.2)

189.9
(44.5–266.6) 0.0324 0.2418

GLCA 3S (nM)
[median (IQR)]

517.0
(205.5–1243.2)

395.9
(59.8–1527.8)

419.0
(91.0–1216.2)

655.0
(326.8–1366.0)

280.1
(15.4–599.7) 0.9949 0.8369

GUDCA 3S (nM)
[median (IQR)]

338.0
(54.3–2787.6)

2803.8
(205.9–10,962.5)

1842.0
(110.2–3140.0)

544.0
(60.8–3140.0)

2016.4
(821.9–3192.5) 0.0040 0.3658

TCA 3S (nM)
[median (IQR)]

30.0
(24.8–59.7)

14.5
(11.2–60.1)

133.9
(8.8–259.0) Not detected 133.9

(8.8–259.0) 0.3906 1.0000
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Table 2. Cont.

Chronic
Hepatitis HC

HCC p Value

Total TM− TM+ All Group b CH vs.
HCC a

TCDCA 3S (nM)
[median (IQR)]

52.0
(18.9–109.2)

153.9
(79.2–1074.5)

103.8
(43.9–365.3)

61.1
(27.8–129.7)

189.7
(99.5–385.1) 0.1153 0.3320

TDCA 3S (nM)
[median (IQR)]

31.7
(17.6–97.7)

40.1
(13.4–150.2)

23.4
(11.4–35.4)

23.4
(13.4–35.2)

19.2
(6.8–49.4) 0.2611 0.1485

TLCA 3S (nM)
[median (IQR)]

155.1
(36.3–310.8)

137.6
(33.2–281.7)

95.9
(17.5–260.7)

151.8
(70.7–297.2)

70.2
(3.1–160.8) 0.7421 0.8452

TUDCA 3S (nM)
[median (IQR)]

83.5
(12.1–490.1)

869.0
(25.9–2180.0)

134.8
(39.7–555.4)

91.2
(19.1–545.4)

162.9
(78.1–726.4) 0.1929 0.4887

CA 3GlcA (nM)
[median (IQR)]

548.4
(345.4–637.7)

657.7
(252.1–1100.9)

532.5
(377.4–1018.6)

528.7
(260.8–1018.6)

583.3
(382.9–1042.4) 0.1740 0.9423

CDCA 3GlcA
(nM)

[median (IQR)]

9.8
(3.7–20.7)

37.2
(12.7–139.0)

23.6
(16.4–57.5)

23.6
(16.4–50.8)

23.1
(16.2–73.7) 0.0079 0.7513

DCA 3GlcA (nM)
[median (IQR)]

4.0
(2.6–6.2)

10.3
(2.2–52.5)

4.4
(1.9–6.3)

4.6
(1.7–11.5)

4.2
(2.1–5.0) 0.0209 0.3210

LCA 3GlcA (nM)
[median (IQR)] Not detected 10.4

(10.4–10.4)
8.5

(5.9–10.8)
8.6

(6.4–10.8)
8.2

(5.7–10.6) 0.5505 1.0000

UDCA 3GlcA
(nM)

[median (IQR)]

28.6
(9.3–55.5)

21.7
(7.5–35.7)

25.4
(10.9–42.0)

28.7
(12.9–45.9)

16.5
(9.4–50.9) 0.8427 0.7473

a Steel–Dwass test was performed for significant difference analysis. b ANOVA was performed for significant
difference analysis. 3GlcA, 3-glucuronide; 3S, 3-sulfate; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, de-
oxycholic acid; GCA, glycine-conjugated cholic acid; GCDCA, glycine-conjugated chenodeoxycholic acid; GDCA,
glycine-conjugated deoxycholic acid; GLCA, glycine-conjugated lithocholic acid; GUDCA, glycine-conjugated ur-
sodeoxycholic acid; IQR, interquartile range; LCA, lithocholic acid; TCA, taurine-conjugated cholic acid; TCDCA,
taurine-conjugated chenodeoxycholic acid; TDCA, taurine-conjugated deoxycholic acid; TLCA, taurine-conjugated
lithocholic acid; TUDCA, taurine-conjugated ursodeoxycholic acid; UDCA, ursodeoxycholic acid.

3.2. Diagnostic Screening Performance Evaluation of Bile Acids as Biomarker Candidates for HCC
by Integrating with Conventional Biomarkers

Next, we analyzed the diagnostic performance of HCC using ROC analysis. The initial
objective was to identify potential biomarker molecules that could differentiate HC from
HCC. Plasma bile acids, other biochemical tests, and TM results are shown in Table S3.
Combined bile acid levels were also calculated.

The bile acids and fractions that showed significant differences between HC and HCC
were GCA, TCDCA, GCDCA 3S, total bile acids, total primary bile acids (primary bile
acids), total conjugated bile acids (conjugates [total]), total glycine conjugated bile acids
(glycine), total taurine conjugated bile acids (taurine), total glycine sulfate conjugated bile
acids (3-sulfate [glycine]), total taurine sulfate conjugated bile acids (3-sulfate [taurine]),
total sulfated bile acids (3-sulfate [total]), total glycine conjugates and glycine conjugated 3-
sulfates (glycine [total]), total taurine conjugates and taurine conjugated 3-sulfates (taurine
[total]), respectively.

GCDCA 3S exhibited the best performance in terms of single-molecule diagnostic
performance. Plasma GCDCA 3S levels were significantly lower in patients with HCC
than in patients with HC (Figure 2a). The results of the ROC analysis indicated that the
AUC for GCDCA 3S was 0.7115 (95% confidence interval (CI), 0.5636–0.8595) (Figure 2b).
Furthermore, the total fraction of all conjugated bile acids demonstrated good screening
performance (AUC = 0.7359 (95% CI, 0.5992–0.8726), Figure 2d). Previous studies have
demonstrated that the concentration of bile acids in the blood of patients with HCC is signif-
icantly lower than that in patients with HC [53,59]. Both aforementioned studies reported a
reduction in GCDCA levels [53,59]. The observed decline in these metabolites is believed
to reflect alterations in the metabolic pathways that occur during HCC progression. [60] A
previous study suggested that the reduction in plasma bile acids may be due to decreased
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excretion from the liver and that toxic and carcinogenic bile acids were accumulated in
the liver. Chronic inflammation is one of the factors for HCC development. Alonso-Peña
et al. reported that inflammatory cytokines downregulate CYP7A1, responsible for bile
acid synthesis, and BAAT, responsible for bile acid amino conjugation [61]. In terms of
single bile acids, GCA, TCDCA, and GCDCA 3S showed significantly low concentrations
in HCC patients compared with HC patients, which were all conjugated primary bile
acids. Thus, the lower concentration of GCA and TCDCA in HCC than in HC is probably
due to the downregulation of these enzymes caused by inflammation, and the reduction
of GCDCA 3S level might result from GCDCA downregulation. In addition, GCA was
reported to attenuate the inflammation by inducing the farnesoid X receptor expression [62].
TCDCA is known to be anti-inflammatory and promote apoptosis [63,64], and GCDCA
promotes the apoptosis of normal hepatocytes but cell proliferation of HCC cells [65]. Thus,
GCA reduction in HCC might result in promoting inflammation. On the other hand, a
reduction in TCDCA and GCDCA 3S is likely to result from the protective reaction. In
recent years, several HCC biomarker candidates, such as midkine and osteopontin, have
been reported [66]. Midkine is a molecule with excellent biomarker performance and is
believed to be produced by tumor cells [67]. Osteopontin is a glycoprotein biosynthe-
sized by various cell types and malignant tissues, with increased levels in patients with
HCC [68–70]. Bile acids differ from these existing biomarkers and are thought to show
a decrease in HCC. Some lipids that compose lipoprotein, other biomarker candidates,
were also reported to decrease in HCC [71,72]. Because bile acids are involved in lipid
metabolism, it is suggested that they are interrelated in developing HCC. A comparison
was conducted between patients with TM− HCC and those with HC (Figure 2a,c). In
instances of TM− HCC, the levels of bile acids were slightly diminished compared to those
of TM+ HCC (Figure 2a). A positive correlation was identified between the concentration
of TM (AFP and PIVKA-II) and several bile acids (CDCA 3S, GCDCA 3S, TCA 3S, 3-sulfate
free fraction, and 3-glucuronide fraction), indicating the potential correlation between TM
synthesis and bile acid production capacity (Table S5).

Our objective was to construct a multiparameter discrimination model for HC and
HCC to develop a diagnostic screening model. A stepwise method was used to construct
an HCC prediction model derived from the entire dataset. Items with a considerable
number of missing values were excluded from the analysis. Specifically, PIVKA-II and
AFP-L3 were excluded because of the absence of data from patients with HC. Items were
incorporated into the model in descending order of p-values, with the removal of items
when the p-value exceeded 0.10, to construct the model. The nine selected items were GGT,
ALT, ALB, GCA, GCDCA 3S, GLCA 3S, GUDCA 3S, unconjugates (total unconjugated bile
acids: CA, CDCA, DCA, LCA, and UDCA), and 3-sulfate (glycine) (total glycine sulfate
conjugated bile acids: GCDCA 3S, GDCA 3S, GLCA 3S, and GUDCA 3S). These markers
of liver damage (GGT and ALT), liver function (ALB), primary bile acid conjugates (GCA,
GCDCA 3S), secondary bile acid conjugates (GLCA 3S, GUDCA 3S), and the sum of bile
acids (unconjugated bile acids and glycine-conjugated bile acid 3-sulfates) were used to
construct the model, represented by Equation (1). The likelihood ratio test yielded a p-value
of less than 0.05 for all nine factors. If the value was positive, it was determined to be HCC;
conversely, if it was negative, it was determined to be HC. The results demonstrated a
remarkably high AUC (0.9923; 95% CI, 0.9758–1.0000), sensitivity (97.44%), and specificity
(100%), suggesting that this model may prove valuable for the prediction of HCC (Figure 3).
The model demonstrated the capacity to accurately detect HCC irrespective of the value
of the TMs. It is hypothesized that this model integrates changes in hepatic metabolic
capacity with changes in the tumor-producing capacity of tumor cells. As there is no
precedent for combining multiple bile acids with conventional biochemical tests or for
accurately detecting tumors with high precision [47], this approach is regarded as highly
novel. ALB is also employed in the Child–Pugh classification, and the range of values
observed for HCC was nearly identical to that documented in a previous study [73–75].
ALB exhibits a high degree of homology with AFP and is postulated to be associated with
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HCC, as evidenced by its strong correlation [76]. GGT levels are increased in patients with
HC [77–79]. In the present study, TM was excluded from the analysis owing to missing
data (PIVKA-II and AFP-L3) or lack of statistical significance (AFP). A limitation of this
study is the limited number of cases and retrospective cohort analysis. However, further
verification is necessary. In addition, we also investigated the performance of the model
without bile acids; the diagnostic performance was significantly lower than Equation (1).
Therefore, we think that bile acids are important for HCC prediction.
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Figure 2. Diagnostic performance evaluation of glycine conjugated chenodeoxycholic acid 3-sulfate
(a,b) and total conjugated bile acids between patients (c,d) with hepatic cirrhosis and hepatocellular
carcinoma (a,c) plasma concentration and (b,d) receiver operating characteristic analysis.



Metabolites 2024, 14, 513 11 of 15

Metabolites 2024, 14, x FOR PEER REVIEW  11  of  15 
 

 

acids: CA, CDCA, DCA, LCA, and UDCA), and 3-sulfate (glycine) (total glycine sulfate 

conjugated bile acids: GCDCA 3S, GDCA 3S, GLCA 3S, and GUDCA 3S). These markers 

of liver damage (GGT and ALT), liver function (ALB), primary bile acid conjugates (GCA, 

GCDCA 3S), secondary bile acid conjugates (GLCA 3S, GUDCA 3S), and the sum of bile 

acids (unconjugated bile acids and glycine-conjugated bile acid 3-sulfates) were used to 

construct the model, represented by Equation (1). The  likelihood ratio  test yielded a p-

value of less than 0.05 for all nine factors. If the value was positive, it was determined to 

be HCC; conversely, if it was negative, it was determined to be HC. The results demon-

strated a remarkably high AUC (0.9923; 95% CI, 0.9758–1.0000), sensitivity (97.44%), and 

specificity  (100%), suggesting  that  this model may prove valuable  for  the prediction of 

HCC (Figure 3). The model demonstrated the capacity to accurately detect HCC irrespec-

tive of the value of the TMs. It is hypothesized that this model integrates changes in he-

patic metabolic capacity with changes in the tumor-producing capacity of tumor cells. As 

there  is no precedent  for combining multiple bile acids with conventional biochemical 

tests or for accurately detecting tumors with high precision [47], this approach is regarded 

as highly novel. ALB is also employed in the Child–Pugh classification, and the range of 

values observed  for HCC was nearly  identical  to  that documented  in a previous study 

[73–75]. ALB exhibits a high degree of homology with AFP and is postulated to be associ-

ated with HCC, as evidenced by its strong correlation [76]. GGT levels are increased in 

patients with HC [77–79]. In the present study, TM was excluded from the analysis owing 

to missing data (PIVKA-II and AFP-L3) or lack of statistical significance (AFP). A limita-

tion of this study is the limited number of cases and retrospective cohort analysis. How-

ever, further verification is necessary. In addition, we also investigated the performance 

of the model without bile acids; the diagnostic performance was significantly lower than 

Equation (1). Therefore, we think that bile acids are important for HCC prediction. 

 

Figure 3. Diagnostic performance evaluation of the integrated diagnostic model between patients 

with hepatic cirrhosis and hepatocellular carcinoma. 

4. Conclusions 

This study investigated the potential utility of bile acids as biomarkers for HCC. A 

comprehensive analysis of 32 plasma bile acids was conducted using liquid chromatog-

raphy/tandem mass spectrometry. Samples from patients with chronic hepatitis, HC, and 

HCC were analyzed. Initially, we examined the differences in bile acid levels between in-

dividuals with HC and HCC identifying significant variations in several bile acids, such 

as GCA, TCDCA, GCDCA 3S, and some fractions, which might be due to the alteration of 

the  metabolism  pathway  during  HCC  development.  Subsequently,  our  aim  was  to 

Figure 3. Diagnostic performance evaluation of the integrated diagnostic model between patients
with hepatic cirrhosis and hepatocellular carcinoma.

4. Conclusions

This study investigated the potential utility of bile acids as biomarkers for HCC. A
comprehensive analysis of 32 plasma bile acids was conducted using liquid chromatogra-
phy/tandem mass spectrometry. Samples from patients with chronic hepatitis, HC, and
HCC were analyzed. Initially, we examined the differences in bile acid levels between
individuals with HC and HCC identifying significant variations in several bile acids, such
as GCA, TCDCA, GCDCA 3S, and some fractions, which might be due to the alteration of
the metabolism pathway during HCC development. Subsequently, our aim was to develop
a precise method to distinguish patients with HC from those with HCC. We constructed
a novel HCC screening tool integrating bile acids with conventional biochemical tests,
demonstrating high accuracy. Moving forward, we plan to evaluate the diagnostic efficacy
of this model through a comprehensive analysis of a larger patient cohort and to investigate
the underlying molecular mechanisms supporting its utility.
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