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Abstract: Mastitis is a significant infectious disease in dairy cows, resulting in milk yield loss and
culling. Early detection of mastitis-prone cows is crucial for implementing effective preventive
measures before disease onset. Current diagnosis of subclinical mastitis (SCM) relies on somatic
cell count assessment post-calving, lacking predictive capabilities. This study aimed to identify
metabolic changes in pre-SCM cows through targeted metabolomic analysis of urine samples col-
lected 8 wks and 4 wks before calving, using mass spectrometry. A nested case-control design was
employed, involving a total of 145 multiparous dairy cows, with disease occurrence monitored pre-
and postpartum. Among them, 15 disease-free cows served as healthy controls (CON), while 10 cows
exclusively had SCM, excluding those with additional diseases. Urinary metabolite profiling revealed
multiple alterations in acylcarnitines, amino acids, and organic acids in pre-SCM cows. Metabotyp-
ing identified 27 metabolites that distinguished pre-SCM cows from healthy CON cows at both 8
and 4 wks before parturition. However, only four metabolites per week showed significant alter-
ations (p < 0.005). Notably, a panel of four serum metabolites (asymmetric dimethylarginine, proline,
leucine, and homovanillate) at 8 wks prepartum, and another panel (asymmetric dimethylarginine,
methylmalonate, citrate, and spermidine) at 4 wks prepartum, demonstrated predictive ability as
urinary biomarkers for SCM risk (AUC = 0.88; p = 0.02 and AUC = 0.88; p = 0.03, respectively). In
conclusion, our findings indicate that metabolite testing can identify cows at risk of SCM as early as
8 and 4 wks before parturition. Validation of the two identified metabolite panels is warranted to
implement these predictive biomarkers, facilitate early intervention strategies, and improve dairy
cow management to mitigate the impact of SCM. Further research is needed to confirm the efficacy
and applicability of these biomarkers in practical farm settings.

Keywords: mastitis biomarkers; urine metabolomics; dairy cow; metabotyping; DI/LC-MS/MS

1. Introduction

Bovine mastitis, a major concern for the dairy industry, is characterized by udder
inflammation [1]. Various factors, including bacterial infection, poor farm hygiene, dry
cow therapy, or automated milking machines, contribute to its pathogenesis [1]. The
estimated cost of mastitis is $660 per case in Canada and $2.5 billion in North America
annually [2]. Mastitis can manifest as clinical or subclinical forms. Subclinical mastitis
(SCM) is an asymptomatic udder inflammation characterized by the influx of cellular
elements, primarily polymorphonuclear neutrophils, into the mammary gland [1]. On the
other hand, clinical mastitis (CM) presents external changes to the udder (e.g., swelling,
heat) and milk appearance (e.g., discoloration, thickness), along with systemic signs in the
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cow (e.g., fever, reduced feed intake) [1]. Udder infections lead to reduced milk production
in current and subsequent lactations, as well as compromised reproductive performance
and conception rates, resulting in early culling of dairy cows. In fact, mastitis is the second
most common reason for culling dairy cows in Canada [1].

The traditional diagnostic method for subclinical mastitis is the somatic cell count
(SCC) test, which assesses immune cell count, primarily neutrophils, in milk [3]. This test
is conducted shortly after calving and throughout the milking period. However, a recent
study revealed a high incidence of new intramammary infections (IMI) during the dry
period [3]. Subclinical IMI during dry-off may persist or develop into acute or subclinical
mastitis following calving. Our findings indicate that cows infected after parturition exhibit
a low-grade systemic inflammatory state during the dry-off period [4]. Additionally, our
previous studies demonstrated multiple changes in serum and urinary metabolic signatures
distinguishing SCM cows from healthy counterparts [5,6].

Metabolomics and microbiomics approaches have gained prominence in studies of
periparturient diseases in dairy cows over the past decade. Most studies have focused
on postpartum biofluids, such as milk or blood, for diagnostic purposes [7]. Limited data
exists on urine metabolite fingerprinting in dairy cows to identify mastitis biomarkers or
predict susceptibility. In a previous study, we examined urine samples from prepartum
cows that later developed SCM postpartum, revealing urinary alterations in acylcarnitines
(ACs), phosphatidylcholines (PCs), biogenic amines (BAs), and amino acids (AAs) from
−8 wks to +8 wks around calving [6].

Recent reports indicate that UK farmers prefer test results within 24 h of sampling [8],
while the demand for lab-on-chip or pen-side tests continues to grow. Hence, our laboratory
focuses on identifying metabolites that differentiate healthy cows from those susceptible to
SCM, aiming to develop pen-side tests utilizing these biomarkers.

Our hypothesis proposes that cows susceptible to SCM would present detectable
urinary metabolite alterations starting at 8 wks and 4 wks prepartum, enabling the identifi-
cation of susceptible cows during the dry-off period. This study, part of a larger project [9],
employs a quantitative, targeted metabolomics approach to analyze urine samples from
dairy cows. The objective is to identify urinary metabolites and assess whether those
metabolites can be used for screening purposes as a pen-side test to predict the risk of SCM
during the dry-off period.

2. Materials and Methods
2.1. Animals, Diets, and Urine Samples

In this nested case-control study, urine samples were collected from 145 multiparous
cows on a commercial dairy farm in Alberta, Canada. The University of Alberta Animal
Care and Use Committee for Livestock approved all experimental procedures, which were
conducted in accordance with the Canadian Council’s guidelines on Animal Care (protocol
number AUP00003216).

Cows were chosen based on their anticipated calving date and were sampled at the
onset and midpoint of the dry-off period, corresponding to 8 wks (55–58 days) and 4 wks
(27–30 days) before parturition, respectively. Throughout this paper, these samples will be
referred to as −8 wks and −4 wks. Urine samples were collected with precision using the
free catch method. The collection was conducted between 7:00 and 8:00 a.m., utilizing sterile
50 mL specimen tubes sourced from Fisher Scientific, Toronto, ON, Canada. To facilitate the
collection, a gentle stimulation technique was employed. This involved cautiously rubbing
the perineal area of the cows to induce urination, ensuring minimal stress and discomfort
to the animals. The Metabolomics Innovation Centre (University of Alberta, Edmonton,
AB, Canada) conducted all urinary metabolite analyses. All samples were stored at −80 ◦C
until analysis.

The prepartum cows exhibited various conditions, such as mastitis, metritis, retained
placenta, laminitis, displaced abomasum, milk fever, and postpartum ketosis. Health
records for periparturient diseases were collected from the farm’s database. A herd veteri-
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narian diagnosed all diseases during weekly visits to the herd. Positive cases for subclinical
mastitis (SCM) were defined as cows with two or more consecutive wks of postpartum
milk somatic cell counts (SCCs) equal to or exceeding 200,000 cells/mL. Cows without
any health issues throughout the dry period and up to 4 wks postpartum, with SCCs
below 200,000 cells/mL, were considered healthy controls (CON). Out of the initial group
of 145 dairy cows, 44 were identified with high Somatic Cell Counts (SCC) exceeding
200,000 cells/mL of milk. Among these, 34 cows were diagnosed with Subclinical Mas-
titis (SCM) and also presented concurrent diseases. For this analysis, cows exhibiting
other periparturient conditions such as metritis, retained placenta, laminitis, displaced
abomasum, milk fever, and postpartum ketosis, which did not meet the specific criteria
for comparison between SCM and control groups (CON), were excluded. Consequently,
15 cows were classified as healthy (CON), and only 10 met the criteria of having SCC
indicative of subclinical mastitis without the presence of other diseases. During the two
sampling wks, the body condition score (BCS) was determined for both groups (8 wks and
4 wks prepartum). Tables 1 and 2 present the dry matter content of feed ingredients before
and after calving.

Table 1. Ingredients of the prepartum diet for the dry-off cows [9].

Ingredient Weight/Cow (kg) DM (%) Final DMI (kg) 1

Hay 5.50 85.14% 4.68
Oats 5.75 36.20% 2.08
Corn 8.84 30.30% 2.68

Protein 2.00 93.00% 1.86
Ground Barley 0.75 97.26% 0.66

Minerals 0.42 97.26% 0.41

Total 23.36 53.17% 12.37
1 Dry Matter Intake (DMI) is calculated based on the DM% over the offered amount (kg) of feed. Daily DMI is
formulated to be 2% of a cow’s body weight.

Table 2. Feed ingredients on a dry-matter basis for cows during early lactation [9].

Ingredient Weight/Cow (kg) DM (%) Final DMI (kg)

Hay dairy 2.50 88.50 2.21
Grass silage 10.75 31.80 3.42

Oats 5.99 36.20 2.17
Barley-Dakota 11.50 40.00 4.80

Corn 13.52 31.50 4.26
Whey 2.75 17.00 0.47

Protein 4.75 93.30 4.43
Energy dairy 4.25 88.00 3.74

Ground Barley 1.75 88.00 1.54
Mineral & Fat 1.26 97.26 1.23

Total 59.02 47.56 28.07

2.2. Mass Spectrometry (MS)-Based Compound Identification and Quantification
2.2.1. Sample Preparation

A targeted MS-based metabolomics method (TMIC Prime assay, PMID: 32634308)
was utilized to analyze all urine samples. This method combines liquid chromatography
(LC) and flow injection analysis (FIA) with an AB SCIEX QTRAP® 4000 mass spectrometer
(Framingham, MA, USA), enabling the identification and quantification of up to 142 differ-
ent metabolites. To facilitate the identification and quantification of biogenic amines and
organic acids, the samples were derivatized using 13C-labeled phenylisothiocyanate (PITC)
and 3-nitrophenylhydrazine (3-NPH), respectively. Prior to MS analysis, the urine samples
were thawed on ice and vortexed. For the analysis of biogenic amines, amino acids, lipids,
acylcarnitines, and hexose (according to the manufacturer 95% glucose), 10 µL of flow
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injection analysis (FIA) running buffer and LC internal standards (ISTD) were loaded into
a 96-well filter plate. The first 14 wells of the plate were utilized for quality control and
standardization, including a blank, three zero samples, seven standards, and three quality
control (QC) samples. The remaining 82 wells were allocated for the thawed urine samples,
with 10 µL of urine added to each well for both the samples and standards. Subsequently,
the plate was incubated and dried for 30 min using a nitrogen flow Zanntek Analytical
Evaporator (Glas-Col, LLC, Terre Haute, IN, USA). After drying, each well received 50 µL
of 5% phenylisothiocyanate (PITC) solution and was incubated at room temperature for
20 min. Following another 90-min drying period under nitrogen flow, the metabolites were
extracted using 300 µL of methanol containing 5 mM ammonium acetate.

The plate was shaken at 330 rpm for 30 min, then centrifuged for 5 min at 500 rpm in
a lower 96 deep-well plate using a Sorvall Evolution RC Superspeed Centrifuge (Fisher
Scientific, Toronto, ON, Canada). The extract was diluted 1:1 with water for the analysis of
amino acids and biogenic amines, and 10 µL of the diluted extract was injected into the LC
column. Additionally, 150 µL of the extract was diluted with 400 µL of FIA running buffer
for the analysis of acylcarnitines, lipids, and hexose compounds, and 20 µL of the diluted
extract was injected into the LC column.

To each well, three solutions were added, as follows: (1) 25 µL of a 250 mM 3-
nitrophenylhydrazine (3-NPH) solution in 50% aqueous methanol, (2) 25 µL of a 150 mM
1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide solution in methanol, and (3) 25 µL of a
7.5% solution in 75% aqueous methanol. Subsequently, the plate was placed on a shaker
and shaken at 450 rpm for 2 h at room temperature to allow for complete derivatization.
After the reaction, each sample well received 350 µL of HPLC water and 50 µL of butylated
hydroxytoluene (BHT) at a concentration of 2 mg/mL to dilute and stabilize the solution
for LC-MS analysis.

2.2.2. Tandem Mass Spectrometry (MS/MS)

Urine metabolites underwent separation and analysis using an Agilent 1100 series
liquid chromatographic system (LC) (Agilent, Palo Alto, CA, USA) equipped with an
Agilent reversed-phase Zorbax Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 M particle
size, 80 Å pore size), along with a Phenomenex (Torrance, CA, USA) SecurityGuard C18 pre-
column (4.0 mm × 3.0 mm), coupled with an AB SCIEX QTRAP® 4000 mass spectrometer
(Sciex Canada, Concord, ON, Canada).

LC-MS grade formic acid and high-performance liquid chromatography (HPLC) grade
water were supplied by Fisher Scientific (Ottawa, ON, Canada), while ammonium acetate,
phenylisothiocyanate (PITC), and HPLC grade acetonitrile (ACN) were provided by Sigma-
Aldrich (St. Louis, MO, USA). The LC-MS assay workflow was managed using the Analyst®

1.6.2 software (Sciex Canada, ON, Canada).
For analyzing amino acids and biogenic amines, the following HPLC parameters were

utilized: mobile phase A containing 0.2% (v/v) formic acid in HPLC grade water and
mobile phase B containing 0.2% (v/v) formic acid in ACN. The gradient profile for the
HPLC solvent run was as follows: t = 0 min, 0% B; t = 0.5 min, 0% B; t = 5.5 min, 95% B;
t = 6.5 min, 95% B; t = 7.0 min, 0% B; and t = 9.5 min, 0% B. The column oven temperature
was set to 50 ◦C, with a sample injection volume of 10 µL and a flow rate of 500 µL/min.
The mass spectrometer operated in positive electrospray ionization (ESI) mode with a
scheduled multiple reaction monitoring (MRM) scan.

For FIA-MS/MS analysis, the HPLC autosampler was directly connected to the MS
ion source using red PEEK tubing. The FIA running buffer served as the mobile phase, and
the flow rate was programmed as follows: t = 0 min, 30 µL/min; t = 1.6 min, 30 µL/min;
t = 2.4 min, 200 µL/min; t = 2.8 min, 200 µL/min; t = 3.0 min, 30 µL/min. The sample
injection volume was 20 µL. The mass spectrometer operated in positive ESI mode with
MRM scanning for analyzing lipids and acylcarnitines, while the negative ESI mode was
employed for detecting glucose/hexose.
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2.3. Statistical Analysis

Univariate analyses were conducted using the Wilcoxon rank sum test via the em-
means package in R (version 4.3.1), adhering to a significance threshold of p < 0.05. For
metabolomic data, including multivariate and biomarker analyses, we employed Metabo-
Analyst, following the established protocols [10,11]. The dataset was normalized using
creatinine as a reference feature and underwent transformation and scaling to achieve a
Gaussian distribution.

We conducted multivariate statistical analyses between the two cow groups, SCM and
CON, using both unsupervised and supervised methods, including principal component
analysis (PCA) and partial least squares discriminant analysis (PLSDA). In these analyses,
the most influential compounds are typically ranked using variable importance in projection
(VIP) plots, with metabolites demonstrating p < 0.05 and VIP > 1 being considered key
discriminators between the groups.

Additionally, model validation was performed using a cross-validation test, and a
2000 permutation test was implemented to confirm the model’s reliability [12]. Biomarker
profiles and metabolite set enrichment analyses (MSEA) were also conducted using Metabo-
Analyst. The quality of the biomarker sets was assessed using receiver operator charac-
teristic analysis (ROC, v4.0), generated through Monte Carlo cross-validation (MCCV). A
permutation test with 1000 repeats was employed to validate these ROC curves.

For biomarker analysis, we selected top metabolites of high importance and con-
structed area under the curve (AUC) analyses for both time points. Linear and logistic
regression analyses were applied to several significant metabolites. Finally, perturbed
metabolic pathways identified from MSEA were deemed statistically significant if they met
a Holm-corrected p value of <0.05.

3. Results

A total of 82 urinary metabolites were consistently identified and measured in all cows
in this study. Our findings demonstrated significant differences in urinary metabolites
between pre-SCM cows and healthy cows at 8 wks and 4 wks before parturition. At each
sampling time (8 wks and 4 wks prepartum), 27 metabolites distinguished the pre-SCM
only and CON groups, as shown in Tables 3 and 4. Only four metabolites from each week
exhibited FDR-adjusted p values below q < 0.005. Pre-SCM cows had a body condition
score (BCS) of 3.70 at 8 wks and 3.92 at 4 wks, while control cows had a BCS of 3.78 at 8 wks
and 3.95 at 4 wks.

Table 3. Concentration of urinary metabolites (MEAN ± SEM) in pre-subclinical mastitis cows
(pre-SCM, n = 10) and healthy controls (CON, n = 15) at −8 wks prior to parturition as identified by
LC-MS/MS.

Metabolites (µM)
MEAN ± SEM

Fold Change SCM/CON p-Value
Pre-SCM 1 (n = 10) CON 2 (n = 15)

Creatinine 13,903 ± 1679 8732 ± 1477 1.59 up 0.01
Glycine 302 ± 169 196 ± 149 1.54 up 0.78
Alanine 265 ± 60 171 ± 52.8 1.55 up 0.48
Serine 103 ± 17.3 56 ± 15.2 1.84 up 0.11

Histamine 0.1315 ± 0.0244 0.0915 ± 0.0214 1.44 up 0.28
Proline 6.14 ± 1.56 5.54 ± 1.37 1.11 up 0.42
Valine 18.48 ± 3.41 8.04 ± 3 2.30 up 0.02

Threonine 84.4 ± 18.3 46.4 ± 16.1 1.82 up 0.2
Taurine 655 ± 211 420 ± 186 1.56 up 0.55

Putrescine 0.724 ± 0.144 0.299 ± 0.127 2.42 up 0.01
trans-Hydroxyproline 1.69 ± 0.598 1 ± 0.526 1.69 up 0.86

Leucine 12.4 ± 1.94 6.3 ± 1.7 1.97 up 0.01
Isoleucine 19.34 ± 6.6 7.83 ± 5.8 2.47 up 0.28

Asparagine 13.1 ± 1.79 8.47 ± 1.57 1.55 up 0.05
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Table 3. Cont.

Metabolites (µM)
MEAN ± SEM

Fold Change SCM/CON p-Value
Pre-SCM 1 (n = 10) CON 2 (n = 15)

Aspartic acid 174 ± 36.8 127 ± 32.4 1.37 up 0.43
Glutamine 347 ± 75.1 154 ± 66 2.25 up 0.15

Glutamic acid 107 ± 31.2 80 ± 27.5 1.34 up 0.64
Methionine 3.33 ± 0.29 2.7 ± 0.255 1.23 up 0.06
Histidine 108.2 ± 24.6 53.1 ± 21.6 2.04 up 0.17

alpha-Aminoadipic acid 135 ± 26.6 72 ± 23.4 1.88 up 0.25
Phenylalanine 16.38 ± 2.72 9.87 ± 2.4 1.66 up 0.09

Methionine-sulfoxide 3.81 ± 0.948 1.86 ± 0.834 2.05 up 0.17
Arginine 15.46 ± 2.05 8.15 ± 1.8 1.90 up 0.01

Acetyl-ornithine 76.1 ± 12.5 44 ± 11 1.73 up 0.08
Citrulline 8.54 ± 2.36 3.5 ± 2.07 2.44 up 0.07
Serotonin 1.79 ± 0.297 1.37 ± 0.262 1.31 up 0.44
Tyrosine 27.4 ± 5 16.4 ± 4.4 1.67 up 0.11

Asymmetric dimethylarginine 9.48 ± 1.21 2.61 ± 1.07 3.63 up <0.001
Total dimethylarginine 33.8 ± 4.03 18.3 ± 3.55 1.85 up 0.007

Tryptophan 36 ± 8.65 19.3 ± 7.61 1.87 up 0.28
Kynurenine 1.585 ± 0.449 0.967 ± 0.395 1.64 up 0.71
Carnosine 21.7 ± 4.39 15.5 ± 3.86 1.40 up 0.4
Ornithine 25.8 ± 4.44 14 ± 3.91 1.84 up 0.07

Lysine 82.1 ± 14.1 43.4 ± 12.4 1.89 up 0.08
Spermidine 0.2248 ± 0.0871 0.0746 ± 0.0766 3.01 up 0.05
Spermine 0.0868 ± 0.0171 0.0791 ± 0.015 1.10 up 0.43
Sarcosine 4.69 ± 1.17 1.27 ± 1.03 3.69 up 0.17
Tyramine 0.183 ± 0.042 0.111 ± 0.0501 1.65 up 0.26
Creatine 5098 ± 663 2354 ± 583 2.17 up 0.001
Betaine 265.2 ± 67.6 74.9 ± 59.4 3.54 up 0.02
Choline 92.8 ± 21.5 32.1 ± 18.9 2.89 up 0.007

Trimethylamine N-oxide 6150 ± 1895 3677 ± 1667 1.67 up 0.38
Methylhistidine 198 ± 52.3 370 ± 59.4 0.54 down 0.05

Lactic acid 125 ± 53.9 112 ± 47.4 1.12 up 0.93
beta-Hydroxybutyric acid 400 ± 471 416 ± 415 0.96 down 0.47

alpha-Ketoglutaric acid 25.7 ± 45.1 34.8 ± 39.7 0.74 down 0.47
Citric acid 856 ± 801 778 ± 684 1.10 up 0.84

Butyric acid 28.4 ± 14.7 29.5 ± 12.9 0.96 down 0.35
p-hydroxyhippuric acid 36.7 ± 14.1 37.9 ± 12.4 0.97 down 0.93

Succinic acid 30.3 ± 9.86 20.6 ± 8.67 1.47 up 0.69
Pyruvic acid 8.71 ± 1.79 6.33 ± 1.58 1.38 up 0.16

Isobutyric acid 7.23 ± 1.66 5.56 ± 1.46 1.30 up 0.59
Hippuric acid 14,438 ± 2073 13,225 ± 1823 1.09 up 0.65

Methylmalonic acid 29.4 ± 6.68 17.9 ± 5.87 1.64 up 0.31
Homovanillic acid 14.67 ± 1.46 8.83 ± 1.28 1.66 up <0.001
Indole acetic acid 67.5 ± 20.7 51.3 ± 18.2 1.32 up 0.96

Uric acid 5014 ± 883 4279 ± 776 1.17 up 0.44
Glucose 3369 ± 462 1955 ± 406 1.72 up 0.002

C0 2.516 ± 0.386 0.893 ± 0.339 2.82 up 0.01
C2 0.714 ± 0.0915 0.305 ± 0.0805 2.34 up 0.001

C3:1 0.0319 ± 0.00428 0.0258 ± 0.00376 1.24 up 0.02
C3 0.0402 ± 0.00722 0.037 ± 0.00635 1.09 up 0.33

C4:1 0.0871 ± 0.00819 0.0631 ± 0.00721 1.38 up 0.04
C4 0.58 ± 0.1096 0.129 ± 0.0964 4.50 up 0.002

C3OH 0.0855 ± 0.0092 0.0642 ± 0.00809 1.33 up 0.11
C5:1 0.251 ± 0.0226 0.147 ± 0.0199 1.71 up 0.001
C5 0.1598 ± 0.0273 0.0929 ± 0.024 1.72 up 0.18

C4OH 0.0898 ± 0.00984 0.0653 ± 0.00865 1.38 up 0.05
C6:1 0.057 ± 0.0122 0.0817 ± 0.0108 0.70 down 0.27
C6 0.072 ± 0.0134 0.0872 ± 0.0118 0.83 down 0.77

C5OH 0.1372 ± 0.0131 0.0849 ± 0.0115 1.62 up 0.002
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Table 3. Cont.

Metabolites (µM)
MEAN ± SEM

Fold Change SCM/CON p-Value
Pre-SCM 1 (n = 10) CON 2 (n = 15)

C5:1DC 0.0438 ± 0.00413 0.0377 ± 0.00363 1.16 up 0.23
C5DC 0.0469 ± 0.00595 0.0323 ± 0.00523 1.45 up 0.03

C8 0.0556 ± 0.00556 0.0356 ± 0.00489 1.56 up 0.003
C5MDC 0.0514 ± 0.00366 0.0466 ± 0.00322 1.10 up 0.02

C9 0.147 ± 0.023 0.106 ± 0.0203 1.39 up 0.21
C7DC 0.0437 ± 0.00899 0.0385 ± 0.00791 1.14 up 0.5
C10:2 0.0578 ± 0.00732 0.0437 ± 0.00644 1.32 up 0.19
C10:1 0.171 ± 0.0177 0.15 ± 0.0156 1.14 up 0.15
C10 0.135 ± 0.0125 0.104 ± 0.011 1.30 up 0.01

C12:1 0.14 ± 0.0387 0.127 ± 0.034 1.10 up 0.43
C12 0.1037 ± 0.00933 0.0943 ± 0.0082 1.10 up 0.01

1 pre-SCM = SCM = cows that were sampled before being classified as SCM. 2 CON = healthy cows.

Table 4. Metabolite concentration of urine metabolites MEAN ± SEM in pre-subclinical mastitis
(pre-SCM, n = 10) and healthy controls (CON, n = 15) at −4 wks prior to parturition as identified by
LC-MS/MS.

Metabolites (µM)
MEAN ± SEM

Fold Change SCM/CON p-Value
Pre-SCM 1 (n = 10) CON 2 (n = 15)

Creatinine 14,300 ± 1521 10,569 ± 1140 1.35 up 0.01
Glycine 105 ± 28.3 67.5 ± 21.2 1.56 up 0.1
Alanine 97.5 ± 11.7 82.5 ± 8.8 1.18 up 0.23
Serine 77 ± 10.39 69 ± 7.79 1.12 up 0.1

Histamine 0.0994 ± 0.0154 0.0642 ± 0.0116 1.55 up 0.12
Proline 3.63 ± 0.531 3.94 ± 0.398 0.92 down 0.44
Valine 11.1 ± 1.185 10.3 ± 0.888 1.08 up 0.28

Threonine 70.7 ± 10.08 50.9 ± 7.56 1.39 up 0.01
Taurine 439 ± 136 395 ± 102 1.11 up 0.71

Putrescine 0.915 ± 0.503 1.167 ± 0.377 0.78 down 0.84
trans-Hydroxyproline 1.22 ± 0.425 1.92 ± 0.318 0.64 down 0.3

Leucine 9.1 ± 0.99 9.13 ± 0.742 1.00 up 0.38
Isoleucine 7.72 ± 0.745 5.98 ± 0.558 1.29 up 0.007

Asparagine 13.46 ± 1.48 9.67 ± 1.11 1.39 up 0.01
Aspartic acid 190 ± 31.7 131 ± 23.7 1.45 up 0.17

Glutamine 285 ± 46.8 206 ± 35.1 1.38 up 0.04
Glutamic acid 78.6 ± 11.7 53.6 ± 8.8 1.47 up 0.09

Methionine 3.34 ± 0.252 3.25 ± 0.189 1.03 up 0.4
Histidine 76.6 ± 9.85 60.4 ± 7.38 1.27 up 0.05

alpha-Aminoadipic acid 79.9 ± 14.5 72.9 ± 10.8 1.10 up 0.31
Phenylalanine 13.1 ± 1.08 10.4 ± 0.81 1.26 up 0.03

Methionine-sulfoxide 3.12 ± 0.478 3.13 ± 0.358 1.00 up 0.83
Arginine 11.3 ± 1.316 10.1 ± 0.986 1.12 up 0.48

Acetyl-ornithine 57 ± 6.82 47.4 ± 5.11 1.20 up 0.08
Citrulline 3.47 ± 1.265 6.94 ± 0.948 0.50 down 0.17
Serotonin 1.66 ± 0.202 1.33 ± 0.151 1.25 up 0.13
Tyrosine 19.4 ± 2.38 20 ± 1.78 0.97 down 0.8

Asymmetric dimethylarginine 8.39 ± 1.024 6.26 ± 0.768 1.34 up 0.02
Total dimethylarginine 36.2 ± 3.36 26.4 ± 2.52 1.37 up 0.008

Tryptophan 19.8 ± 3.17 17.8 ± 2.38 1.11 up 0.58
Kynurenine 0.735 ± 0.0835 0.696 ± 0.0625 1.06 up 0.94
Carnosine 14.7 ± 1.61 11.1 ± 1.21 1.32 up 0.03
Ornithine 16.7 ± 2.1 15.5 ± 1.58 1.08 up 0.6

Lysine 59.7 ± 5.68 48.5 ± 4.26 1.23 up 0.07
Spermidine 0.0772 ± 0.0256 0.1113 ± 0.0192 0.69 down 0.36
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Table 4. Cont.

Metabolites (µM)
MEAN ± SEM

Fold Change SCM/CON p-Value
Pre-SCM 1 (n = 10) CON 2 (n = 15)

Spermine 0.1219 ± 0.0113 0.0596 ± 0.015 2.05 up 0.008
Sarcosine 3.04 ± 2.02 6.92 ± 1.51 0.44 down 0.04
Tyramine 0.133 ± 0.0237 0.113 ± 0.0188 1.18 up 0.82
Creatine 5737 ± 1558 6460 ± 1168 0.89 down 0.69
Betaine 134 ± 95.7 364 ± 71.7 0.37 down 0.06
Choline 18 ± 12.98 56.9 ± 9.73 0.32 down 0.05

Trimethylamine N-oxide 5083 ± 1353 1338 ± 1014 3.80 up 0.03
Methylhistidine 373 ± 33.7 246 ± 25.2 1.52 up 0.001

Lactic acid 256 ± 83.6 107 ± 62.6 2.39 up 0.13
beta-Hydroxybutyric acid 116 ± 60.2 135 ± 45.1 0.86 down 0.6

alpha-Ketoglutaric acid 129 ± 66.6 17.8 ± 49.9 7.27 up 0.07
Citric acid 1911 ± 723 91 ± 542 21.00 up 0.04

Butyric acid 11.59 ± 2.18 7.43 ± 1.63 1.56 up 0.09
p-hydroxyhippuric acid 44.9 ± 17.2 53.9 ± 12.9 0.83 down 0.96

Succinic acid 42.3 ± 14.7 17.9 ± 11 2.36 up 0.22
Pyruvic acid 21.87 ± 6.85 7.63 ± 5.13 2.87 up 0.08

Isobutyric acid 5.14 ± 0.753 2.71 ± 0.564 1.90 up 0.009
Hippuric acid 20,896 ± 3944 17,503 ± 2955 1.19 up 0.32

Methylmalonic acid 25.2 ± 4.18 10.5 ± 3.13 2.40 up 0.001
Homovanillic acid 13.55 ± 1.88 8.01 ± 1.41 1.69 up 0.03
Indole acetic acid 58.5 ± 9.75 36.4 ± 7.3 1.61 up 0.06

Uric acid 4707 ± 748 3036 ± 561 1.55 up 0.05
Glucose 387 ± 555 973 ± 416 0.40 down 0.35

C0 1.77 ± 0.167 1.15 ± 0.125 1.54 up 0.01
C2 0.685 ± 0.1239 0.685 ± 0.0928 1.00 up 0.75

C3:1 0.0501 ± 0.00367 0.047 ± 0.00275 1.07 up 0.9
C3 0.0492 ± 0.00432 0.0573 ± 0.00324 0.86 down 0.17

C4:1 0.0729 ± 0.0089 0.0767 ± 0.00667 0.95 down 0.86
C4 0.484 ± 0.0904 0.423 ± 0.0677 1.14 up 0.24

C3OH 0.0695 ± 0.00729 0.0714 ± 0.00546 0.97 down 0.83
C5:1 0.259 ± 0.0338 0.152 ± 0.0253 1.70 up 0.005
C5 0.155 ± 0.025 0.154 ± 0.0187 1.01 up 0.88

C4OH 0.0785 ± 0.00747 0.0739 ± 0.0056 1.06 down 0.52
C6:1 0.0691 ± 0.0081 0.0841 ± 0.00607 0.82 down 0.28
C6 0.0857 ± 0.0145 0.1026 ± 0.0108 0.84 down 0.61

C5OH 0.14 ± 0.0152 0.109 ± 0.0114 1.28 up 0.02
C5:1DC 0.0453 ± 0.00418 0.0349 ± 0.00313 1.30 up 0.07
C5DC 0.048 ± 0.00412 0.0282 ± 0.00309 1.70 up <0.001

C8 0.0483 ± 0.00476 0.0428 ± 0.00357 1.13 up 0.33
C5MDC 0.0483 ± 0.0046 0.0482 ± 0.00345 1.00 up 0.79

C9 0.152 ± 0.0188 0.11 ± 0.0141 1.38 up 0.04
C7DC 0.0488 ± 0.00611 0.0281 ± 0.00458 1.74 up 0.005
C10:2 0.0466 ± 0.00574 0.0514 ± 0.0043 0.91 down 0.96
C10:1 0.204 ± 0.0213 0.176 ± 0.016 1.16 up 0.23
C10 0.12 ± 0.0151 0.136 ± 0.0113 0.88 down 0.84

C12:1 0.083 ± 0.0315 0.229 ± 0.0236 0.36 down 0.002
C12 0.0444 ± 0.0184 0.091 ± 0.0138 0.49 up 0.04

1 pre-SCM = SCM = cows that were sampled before being classified as SCM. 2 CON = healthy cows.

Multivariate statistical methods, including PCA and PLS-DA, were employed to cluster
and differentiate the two cow groups. The PCA analysis did not exhibit clear separation
between CON and pre-SCM cows at 8 wks before parturition; nevertheless, the PLS-DA
graph distinctly distinguished the two groups (Figure 1A,B). VIP scores were utilized to
assess variable significance in the PLS-DA. The VIP plot displayed the top 15 metabolites
that distinguished cows with SCM from healthy ones (Figure 1C). The metabolite with
the highest VIP score, 2.2, was asymmetric dimethylarginine (ADMA). Homovanillic acid
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(HVA) ranked second among the most important metabolites. Interestingly, this is the first
association of HVA with pre-SCM. Both ADMA and HVA levels consistently increased in
the urine of pre-SCM cows at 8 wks and 4 wks prepartum.
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Projection (VIP) score; (D) heatmap based on PLS-DA for variable examination. 

Figure 1. (A) Principal Component Analysis (PCA) differentiating CON from pre-SCM metabolite
profiles 8 wks pre-parturition; (B) partial Least Squares-Discriminant Analysis (PLS-DA) classification
of CON vs. pre-SCM metabolites (p > 0.05); (C) top 15 metabolites by Variable Importance in Projection
(VIP) score; (D) heatmap based on PLS-DA for variable examination.

Figure 2 shows the predictive performance of urinary metabolites identified as po-
tential SCM biomarkers. With an AUC = 0.88 and p = 0.02 for the top five metabolites
from the VIP plot, these five metabolites demonstrated good predictive performance pa-
rameters (Figure 2A). Overall, the multivariate analysis produced the highest area under
the ROC (AUROC) curve for the top ten most significant features (Figure 2B). To create a
high-performing panel of predictive biomarkers, we chose specific metabolites that were
easily validated. For each prepartum sampling period, a default linear support vector
machine (SVM) model and a logistic regression algorithm were constructed. Both had a
permutation test value of p ≤ 0.05 after 1000 randomized permutations (Figure 2C,D).
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lights the metabolites that had the greatest impact in distinguishing these two groups. Six 
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Figure 2. (A) Area Under the Curve (AUC) for five most significant metabolites from VIP; (B) AUC for
optimal marker model via feature selection, focusing on 10 top metabolites; (C) Linear Support Vector
Machine (SVM) biomarker panel (Asymmetric Dimethylarginine, Proline, Leucine, and Homovanillic
Acid) performance (AUC = 0.88, p = 0.02); (D) Receiver Operating Characteristic (ROC) curve analysis
with 10-fold cross-validation for four amino acids (AUC = 0.71, p = 0.04).

Our multivariate analysis, in contrast, demonstrated a more pronounced differen-
tiation of pre-SCM and CON cows at 4 wks prior to calving (Figure 3A,B). Figure 3C,D
highlights the metabolites that had the greatest impact in distinguishing these two groups.
Six acylcarnitines (ACs) showed lower levels in pre-SCM cows at 4 wks, as indicated
by the VIP plot, while two organic acids (OAs), alpha-ketoglutaric acid and citric acid,
exhibited high VIP scores of >1.5 in pre-SCM. The top five metabolites from the VIP plot
yielded an AUC of 0.95 (p = 0.009), and the model with the best classification, based on
cross-validation, included all ten high-scoring metabolites (Figure 4A,B). We selected four
metabolites for linear SVM and regression analysis due to their consistent performance
throughout the model validation analysis (Figure 4C,D). The logistic regression model
yielded a statistically significant result (p = 0.05), while the linear SVM model produced a
highly significant result (p = 0.03).
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The findings from the quantitative enrichment analysis (QEA) conducted in Metabo-
Analyst 4.0 are presented in Figure 5. At week 8 before parturition, no metabolic pathways
exhibited significant alterations with a Holm value of p < 0.05 (Figure 5a). However, at
4 wks prior to calving, only one pathway associated with spermidine and spermine biosyn-
thesis showed statistical significance (Holm p < 0.05) (Figure 5b). Additionally, urinary
metabolites including spermine, methionine, spermidine, ornithine, and putrescine were
significantly different (Holm p = 0.02) between the two groups of cows at 4 wks, while no
significant metabolic pathways were identified at 8 wks before calving.
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Figure 4. (A) Area Under the Curve (AUC) for the five most significant metabolites from Variable
Importance in Projection (VIP); (B) AUC for the optimal biomarker model via feature selection,
focusing on the top 10 metabolites; (C) Linear Support Vector Machine (SVM) model’s AUC for
Asymmetric Dimethylarginine, Proline, Leucine, and Homovanillic Acid (AUC = 0.88, p = 0.03);
(D) AUC for the logistic regression model analyzing these metabolites (AUC = 0.83, p = 0.05).
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Figure 5. Overview diagrams showcasing the outcomes of quantitative enrichment analysis (QEA)
performed via Metabolite Set Enrichment Analysis (MSEA) at two distinct intervals: (a) 8 wks and
(b) 4 wks prepartum. The significance bar for p values illustrates the degree of enrichment significance
across various metabolite collections at these intervals. At 8 wks (a), a prominent red section towards
the top, marked by a p value of 0.03 (3 × 10−2), indicates a statistically significant enrichment.
Conversely, at 4 wks (b), a yellow section towards the bottom, denoted by a p value of 1.0 (1 × 100),
indicates an absence of significant enrichment.
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4. Discussion

In this study, our aim was to investigate whether prepartum urinary metabolites
could serve as predictive markers for subclinical mastitis (SCM) in postpartum dairy cows,
building on our previous research using serum metabolite biomarkers [9]. Specifically,
we sought to determine if dairy cows prone to SCM exhibit distinct urinary metabotypes
compared to healthy CON cows at 8 wks and 4 wks before calving, before the onset of
postpartum SCM diagnosis. Our findings demonstrated that pre-SCM cows displayed
unique urinary metabotypes that differentiated them from healthy (CON) cows as early as
8 wks and 4 wks prepartum. To differentiate between pre-SCM and healthy CON cows,
somatic cell count (SCC) measurements in pre- and post-partum milk were utilized. A
threshold of >200,000 SCC/mL of milk was applied for diagnosing SCM cows, while a SCC
value of <200,000 was used for identifying healthy cows [1].

4.1. Urinary AC Alterations in Pre-SCM Cows

Among the metabolite species that differentiated pre-SCM cows from CON cows,
urinary short-chain acylcarnitines (ACs) were particularly significant. Acylcarnitines play
a crucial role in transporting fatty acids into the mitochondria for β-oxidation [13]. Similar
findings were previously reported by our laboratory in the urine of pre-SCM and pre-ketotic
cows [6,14]. Elevated AC levels have been recognized as biomarkers for immune system
activation [15]. These compounds are by-products of incomplete mitochondrial fatty acid
oxidation and must be eliminated from the body due to their toxicity. Other studies have
observed increased blood AC levels in dairy cows infused with intramammary lipopolysac-
charide (LPS) [16]. In the same study, the authors noted that LPS administration led to
the suppression of apolipoprotein B genes, acetyl-CoA acyltransferase-2 (ACAA2), and
hydroxymethylglutaryl-CoA synthase (HMGCS2) in hepatocytes, which are involved in
β-oxidation, resulting in systemic accumulation of ACs. Indeed, our laboratory previously
reported that pre-SCM cows exhibited a chronic low-grade inflammatory state during the
dry-off period and the week preceding the postpartum disease diagnosis [4].

Interestingly, previous reports have indicated that individuals with high urinary
acylcarnitines (ACs) may have methylmalonic acidemia (MMAemia) [17]. In our study,
pre-SCM cows exhibited higher concentrations of methylmalonate in their urine and
bloodstream, particularly −4 wks before parturition. In both humans and cattle, MMAemia
is commonly caused by genetic errors or a deficiency in vitamin B12. Methylmalonate is
produced as a by-product of branched-chain amino acid (BCAA) catabolism. It may be
associated with defects in methylmalonyl-CoA mutase (MUT) or vitamin B12 synthesis,
which hinder its entry into the Krebs cycle. Consequently, the body is unable to metabolize
amino acids such as valine, isoleucine, threonine, methionine, and fatty acids, resulting in
the accumulation of methylmalonic acid in the systemic circulation [18].

4.2. Changes in Urinary Amino Acids in Pre-SCM Cows

Urinary levels of branched-chain amino acids (BCAAs), including valine, leucine, and
isoleucine, were found to be elevated in the pre-SCM group compared to healthy cows at
both prepartum time points in our study. Similar findings were reported by our lab in a
previous study involving pre-SCM and pre-lame cows [6,19]. Interestingly, BCAAs were
also found to be higher in the serum of the same cows 8 wks before parturition.

These findings suggest that, for reasons yet unknown, the host fails to fully utilize
BCAAs, resulting in their excretion in the urine. This phenomenon may resemble the patho-
genesis of diabetic kidney disease (DKD) in humans. Previous research has demonstrated
that BCAAs can increase the production of reactive oxygen species (ROS) in cultured
peripheral blood mononuclear cells (PBMCs) by activating NADPH oxidase, mitochondria,
and the Akt-mTOR signaling pathway [20]. BCAAs also stimulate the NF-kB pathway in
these cells, leading to the release of proinflammatory cytokines such as interleukin 6 (IL-6)
and tumor necrosis factor (TNF), as well as intracellular adhesion molecule-1 (ICAM-1)
or CD40L, promoting PBMC migration. Based on these findings, it is hypothesized that
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elevated BCAA concentrations may contribute to proinflammatory responses and oxidative
stress in various diseases. We suspect that the high concentrations of BCAAs in the blood
and urine of our pre-SCM cows contribute to a systemic inflammatory state, as previously
reported by our lab in pre-SCM cows [4].

One possible explanation for the excretion of BCAAs and several other amino acid (AA)
species in urine, rather than their reabsorption into the systemic circulation, could be an
increase in proteocatabolism in skeletal muscles to support the inflammatory response [21].
This could result in an excess of BCAAs that exceeds the resorptive capacity, or a deficiency
of electrolytes that could bind with BCAAs. The release of proinflammatory cytokines like
TNF or the translocation of LPS into the systemic circulation during chronic inflammatory
states can lead to skeletal muscle protein loss due to increased muscle proteolysis and
decreased muscle protein synthesis [22]. This hypothesis is supported by our finding that
two urinary AAs, histidine and methyl-histidine, were elevated in pre-SCM cows 4 wks
before parturition. These AAs have been associated with increased proteolysis of muscle
protein [23]. In humans, increased histidine proteolysis and urinary excretion are linked
to higher concentrations of IL-6, C-reactive protein (CRP), and elevated levels of ROS [23].
Similar findings have been reported in rodents [24]. Histidine exhibits anti-inflammatory
effects in response to LPS challenge, including ROS scavenging and inhibition of IL-8 and
NF-kB secretion [25]. Conversely, high urinary excretion of histidine and methyl-histidine
may indicate a host response to a potential subclinical bacterial infection of the udder
during the dry-off period.

Another notable finding was the elevated urinary concentrations of arginine (at 8 wks
prepartum) and two closely related functional components, ADMA and TDMA (total
dimethylarginine), in the urine of pre-SCM cows. These findings align with our previous
observations in pre-SCM and pre-lameness cows [6], where we detected increased arginine
levels in the serum of pre-SCM cows at 4 wks prepartum. Arginine, an essential amino
acid, plays a crucial role in nitric oxide (NO) production, polyamine synthesis, proline
formation, and immune system stimulation [26]. Arginine catabolism has been shown to
increase during inflammatory conditions.

Interestingly, arginine has been found to attenuate LPS-induced inflammation in mam-
mary epithelial cells by reducing the release of IL-1β, IL-6, and TNF, and enhancing mTOR
signaling [27]. Furthermore, arginine infusion in cows during early lactation has been
associated with lower levels of TNF and Hp, increased IgM concentrations, enhanced total
protein content, and improved antioxidant capacity [28]. In a sheep study, LPS-induced
inflammation was linked to increased arginine depletion in the liver and spleen [29]. The in-
creased urinary excretion of arginine in pre-SCM cows may contribute to a proinflammatory
state aimed at combating potential subclinical mastitis.

Notably, ADMA has gained significant attention due to its ability to inhibit nitric
oxide synthase (NOS) activity [30]. Nitric oxide synthase is the enzyme responsible for
converting arginine into nitric oxide (NO) and L-citrulline. ADMA is produced through the
asymmetric demethylation of arginine residues in specific proteins and is released during
proteolysis. Elevated levels of free ADMA in the systemic circulation have been identified
as a risk factor for morbidity and mortality in humans [31]. This risk is associated with the
inhibition of NO secretion, which plays a crucial role in host defense and serves as a major
killing mechanism for macrophages. The excretion of ADMA in urine may represent a host
response to eliminate this compound, which inhibits immune cell killing activity.

Regarding our findings, the concentrations of choline and betaine in the urine of
pre-SCM cows were higher at 8 wks postpartum. Only urinary choline exhibited higher
levels in these cows at 4 wks prior to parturition. Choline, an essential nutrient and amine,
participates in acetylcholine synthesis and serves as a methyl group donor in the liver and
kidneys [32]. Choline is also involved in phosphatidylcholine production [33]. Researchers
investigating choline in murine macrophages observed increased choline uptake during
the polarization of primary bone marrow macrophages with LPS [34].
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Choline uptake has also been associated with IL-1-dependent inflammation medi-
ated by macrophages. Both choline and betaine have demonstrated anti-inflammatory
properties. For instance, a study revealed that injecting mice with 50 mg/kg of choline in-
traperitoneally prior to LPS administration resulted in reduced systemic levels of TNF [35].
Additionally, the same authors demonstrated that choline inhibited TNF release in human
macrophages.

Betaine, which plays a role in one-carbon metabolism and acts as a methyl group
donor, has been shown to suppress the NF-κB pathway and its associated genes, including
TNF, vascular cell adhesion molecule-1, intracellular cell adhesion molecule-1, inducible
nitric oxide synthase, and cyclooxygenase-2 [36].

It may seem peculiar that the host excretes anti-inflammatory compounds in the urine.
However, it should be noted that both choline and betaine exhibit higher concentrations in
the serum of the same cows at −8 wks prepartum (unpublished results). These findings
support our previously proposed hypothesis that the host’s metabolic response, as reflected
in the urinary excretion of choline and betaine, supports a proinflammatory response
against the presence of potential subclinical infection in the udder.

4.3. Changes in the Urinary Carbohydrate and Organic Acid Species in Pre-SCM Cows

The concentration of glucose in the urine of pre-SCM cows exhibited an elevation at the
onset of the dry-off period (8 wks prepartum) compared to 4 wks prepartum. Serum glucose
concentrations tended to be higher in the pre-SCM cows at 8 wks prepartum (unpublished
results). Despite playing a crucial role as an energy substrate for the host, elevated glucose
levels have been associated with impaired immune functions and increased susceptibility to
bacterial infections. For instance, impaired natural killer (NK) cell functions were reported
in type 2 diabetes patients compared to healthy controls and prediabetic patients [37].
Recent studies also demonstrated impaired neutrophil migration to the site of inflammation
in the lungs of diabetic (hyperglycemic) rats [38]. Furthermore, chronic hyperglycemia has
been shown to increase neutrophil basal ROS production and susceptibility to infection
due to decreased neutrophil responses [39]. Considering the potential detrimental effects of
high blood glucose concentrations on immune responses, particularly neutrophil and NK
cell functions, it appears that the host increases urinary excretion to prevent glucose-related
impairment of immune responses.

To the best of our knowledge, this study is the first to report elevated concentrations
of urinary homovanillic acid (HVA) in pre-SCM cows. Homovanillic acid, a downstream
metabolite of tyrosine, exhibited increased levels at both sampling times, with stronger pre-
dictive abilities at −8 wks prepartum. Elevated HVA is a well-established urine biomarker
for various human tumors, metabolic disorders, and neurological disorders [40]. It is a
catabolite of catecholamines, particularly dopamine. Catecholamines are considered coping
hormones in stressful situations and significant activators of lipolysis and glycogenolysis
for energy support [41]. Homovanillic acid has been found to activate the immune system
in humans, and lower concentrations correlate with host survival [42]. The reason for the
increased HVA in the urine of pre-SCM cows remains unclear, suggesting the diverse range
of mastitis pathomechanisms.

At 4 wks prepartum, there was a substantial disparity in urinary citrate concentra-
tion between pre-SCM cows (21-fold higher) and CON cows. Citrate is an important
metabolite in the Krebs cycle, produced in mitochondria and then transferred to the cytosol
of macrophages, where it is considered essential for the pro-inflammatory response [43].
Under normal conditions, cytosolic citrate is converted into acetyl-CoA and oxaloacetate.
Acetyl-CoA is involved in fatty acid synthesis, while oxaloacetate contributes to the produc-
tion of reactive oxygen species (ROS), crucial in combating pathogenic bacteria. Research
is increasingly highlighting the significance of citrate in regulating immune cell response.
Citrate has been linked to macrophage production of several key proinflammatory media-
tors, including nitric oxide (NO), ROS, and prostaglandin E2 (PGE2) [44]. In fact, inhibiting
the citrate carrier protein (CIC) significantly decreases the production of NO, ROS, and
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PGE2 [45]. Furthermore, LPS treatment has been shown to increase mitochondrial CIC in
LPS-induced macrophages [45]. The reasons why pre-SCM cows excrete exceptionally high
amounts of citrate in the urine remain important questions for this study. The answer is yet
to be determined. However, this finding supports our hypothesis that pre-SCM cows are
attempting to mount an inflammatory response, and the significant urinary excretion of
citrate, known for its inhibitory effects on proinflammatory mediators, suggests an effort to
maintain the inflammatory response within specific limits.

Notably, there were significant differences in urinary polyamine concentrations be-
tween the cow groups. Pre-SCM cows exhibited higher levels of spermidine and putrescine
at 8 wks prepartum compared to CON cows. Additionally, pre-SCM cows had elevated lev-
els of urinary spermine at 4 wks prepartum. Polyamines, including spermidine, putrescine,
and spermine, derived from ornithine, play vital physiological roles in mammals [46]. They
contribute to DNA and protein synthesis, cell proliferation, and differentiation. Moreover,
polyamines act as ROS scavengers, safeguarding DNA, proteins, and lipids from oxidative
damage. These compounds are known for their anti-inflammatory and antioxidant proper-
ties [47]. Some studies have investigated the effects of polyamines on acute, subacute, and
chronic inflammation, revealing significant anti-inflammatory activity in these models [48].
Our data supports the notion that pre-SCM cows excrete higher amounts of polyamines,
which possess anti-inflammatory properties, in their urine compared to CON cows. Based
on our findings, it appears that pre-SCM cows release various anti-inflammatory metabo-
lites in their urine. This aligns with our hypothesis that pre-SCM cows are attempting to
mount an inflammatory response while simultaneously excreting multiple metabolites that
may regulate and control the inflammatory process in the systemic circulation.

5. Conclusions

In summary, pre-SCM cows displayed altered concentrations of urinary metabolites
associated with acylcarnitines, amino acids, carbohydrate, and organic acid metabolism.
The increased excretion of acylcarnitines and clearance of several amino acids, such as
valine, leucine, isoleucine, histidine, methyl-histidine, arginine, as well as choline and
betaine, might contribute to a systemic inflammatory response triggered by a subclinical
udder infection. Other metabolites, including ADMA, TDMA, glucose, and citrate, were
excreted in the urine, potentially exerting inhibitory effects on immune cells and limiting
the cow’s response to the disease agent(s). Our findings suggest that various metabolites
are excreted in the urine to mitigate the inflammatory response, while others are retained to
support it. Multivariate analysis demonstrated distinct separation between the cow groups
at 4 wks prepartum, but not at 8 wks prepartum. Two useful panels of urinary metabolites
were constructed to predict SCM, exhibiting high prediction accuracy. At 8 wks prepartum,
ADMA, MMA, spermidine, and citrate, while at 4 wks prepartum, ADMA, leucine, proline,
and HVA were identified as potential metabolites for predicting the risk of SCM starting
one week prior to the dry-off period.
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