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Abstract: Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To
gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage
osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography–mass spectrometry
metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid
pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage. The detected
alterations in amino acids and lipids highlighted key differences in bioenergetic resources, matrix
homeostasis, and mitochondrial alterations in OA-derived cartilage compared to healthy cartilage.
Moreover, the metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes,
highlighting the heterogenous nature of OA metabolism and the diverse landscape within the joint in
patients. The results of this study demonstrate that human cartilage has distinct metabolomic profiles
in healthy and end-stage OA patients. By taking a comprehensive approach to assess metabolic
differences between healthy and osteoarthritic cartilage and within osteoarthritic cartilage alone,
several metabolic pathways with distinct regulation patterns were detected. Additional investigation
may lead to the identification of metabolites that may serve as valuable indicators of disease status or
potential therapeutic targets.

Keywords: osteoarthritis; cartilage; metabolomics; mass spectrometry

1. Introduction

Osteoarthritis (OA) is the leading cause of disability worldwide. Since 1999, the number
of global cases has increased by an astonishing 113%, equating to ~528 million individuals
affected in 2019 [1,2]. In the United States alone, 32.5 million adults have OA, costing
USD 185 billion annually [3–6]. At the heart of OA’s insidious progression lies the gradual
breakdown of articular cartilage (AC) and other joint tissues. The imbalanced activity
between matrix anabolism and catabolism contributes to the observed changes in AC,
other tissues, and fluids affected by OA (i.e., underlying bone, synovium, synovial fluid).
Previous studies examined altered metabolism in various OA-associated tissues and their
cell types, such as chondrocytes, to investigate disease-associated metabolic activity [7–9].
However, significant limitations of many studies are that they were performed in vitro
and/or lacked healthy human controls, thereby hindering a complete understanding of the
role metabolism plays in OA development.

Moreover, the complex nature of OA can manifest differently between individuals.
Specifically, symptom severity, rate of progression, response to treatment, pain perception
as well as other factors can vary from person to person [10–12]. Therefore, a “one-size-
fits-all” approach to the treatment and prevention of OA is limited. More recent studies
describe OA as a group of symptoms encompassing multiple distinct phenotypes and
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endotypes rather than a single disease [13]. Previously, phenotype was defined as a single
or collection of disease characteristics that explain differences between patients and their
outcomes, such as symptom severity [11–13]. Conversely, endotype is defined functionally
and pathologically by a molecular mechanism noting that different mechanisms can lead
to the same manifestation, such as end-stage OA [14]. Examining OA phenotypes and
endotypes may shed light on the epidemiological origins and development of OA, unveil
biomarkers, and lead to targeted interventions for sub-populations of OA individuals, all
of which have potential to improve patient outcomes.

Metabolomics, the study of small molecule intermediates called metabolites [15],
is advantageous for generating and investigating OA metabolic endotypes because it
detects thousands of metabolites. This enables the generation of biochemical signatures
that represent the overall physiological state of the tissue. To our knowledge, two prior
studies used a similar approach to examine synovial fluid metabolism from OA individuals.
Here, researchers characterized different regulation patterns, or endotypes, based on
detected differences in biochemical signatures between healthy and OA individuals [16,17].
However, this same approach has yet to be applied to osteoarthritic cartilage. To begin
filling these gaps in knowledge, we compared the metabolome of radiography-confirmed
end-stage OA cartilage (Kellgran–Lawrence grades III and IV) with that of healthy cartilage
using liquid chromatography–mass spectrometry (LC-MS) metabolomics.

Thus, the primary objective of this study was to identify disease-associated OA
metabolomic profiles to shed light on the pathological mechanisms underlying OA. The
secondary objective was to examine and classify endotypes of OA. Furthermore, we used
tandem LC-MS (LC-MS/MS) for the biochemical identification of key metabolites. This
has the potential to identify novel biomarkers and drug targets to slow, halt, or reverse
OA progression. With this approach, we aimed to uncover specific metabolic endotypes
and metabolite identities to serve as potential indicators of disease status or therapeutic
intervention across sub-populations of OA individuals.

2. Materials and Methods
2.1. Articular Cartilage Sample Obtainment

Under IRB approval, 35 femoral heads from end-stage OA patients were obtained
following total joint arthroplasty from local musculoskeletal clinics. Partial patient infor-
mation including age, sex, and BMI was provided (Supplemental Table S1). However,
radiographic scans were not obtained due to the IRB approval only permitting partial pa-
tient information to be shared. Post-mortem cartilage samples were obtained from donors
without joint disease (articular engineering) to serve as healthy controls for comparison.

2.2. Metabolite Extraction and Mass Spectrometry Analysis

The cartilage samples were shaved from the femoral head prior to metabolite extrac-
tion. All cartilage samples (n = 35 OA, n = 11 healthy) were extracted using a previously
established protocol [18]. All cartilage samples were weighed prior to extraction to nor-
malize metabolite intensity off cartilage weight. Notably, the weights of healthy cartilage
were consistently measured (100 mg), while the weights of OA cartilage were variable, as
they were obtained from end-stage OA patients, each of whom had different amounts of
intact cartilage (minimum = 16.8 mg, maximum = 223.3 mg, average = 73.0 mg). Next, the
cartilage shavings were submerged in 3:1 methanol/water and homogenized using a tissue
homogenizer (SPEX Sample Prep 1200 GenoLyte, Fisher Scientific, Metuchen, NJ, USA).
Homogenization included 15 cycles of 20 s and resting periods of 2 min. Next, the samples
were briefly vortexed and stored at −20 ◦C overnight to promote protein precipitation. The
following day, the samples were vortexed again and centrifuged for 10 min at 16,100× g at
4 ◦C, and the supernatants were collected and dried via vacuum concentration.

The dried supernatants were then resuspended with 1:1 acetonitrile/water, stored
at −20 ◦C for 30 min, and then centrifuged again for 10 min at 16,100× g at 4 ◦C. Simi-
larly, the supernatants were dried via vacuum concentration and then prepared for liquid
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chromatography–mass spectrometry (LC-MS) by resuspending with 1:1 acetonitrile/water.
Additionally, 4 pooled samples (n = 1 healthy, n = 3 OA) were generated for identification
purposes. For the healthy pool, aliquots of 5 µL from each healthy extract were combined.
For the OA pools, 3 pooled samples were generated in the same way, combining aliquots
of 5 µL from 10 randomly selected OA extracts per individual pool.

The extracted cartilage, both healthy and OA, underwent mass spectrometry analysis
as previously described [19]. In brief, an Aquity UPLC Plus interfaced through an elec-
trospray ionization source to a Waters Synapt XS was used. A Cogent Diamond Hydride
HILIC column (150 × 2.1 mm) at a flow rate of 0.400 µL/min was used to separate the
metabolites in 19 min over an elution gradient (A = 95/5% water/acetonitrile, B = 95/5%
acetonitrile/water). Every 10 injections, blank samples containing mass spectrometry-grade
water were injected to minimize the spectral drift and assess the LC-MS performance. The
cartilage extracts and the blank samples underwent standard LC-MS, whereas the pooled
samples underwent liquid chromatography–tandem mass spectrometry (LC-MS/MS) at
a constant high-energy ramp of 30–50 V for secondary ionization to derive metabolite
identifications. All samples—including cartilage extracts, pools, and blanks—were ran at
the same time consecutively.

2.3. Statistical and Metabolomic Profiling

The LC-MS data, consisting of mass-to-charge ratios (m/z), relative metabolite abun-
dance, and retention time, were processed using MSConvert [20] and XCMS [21]. Prior
to data analysis, the metabolites associated with each cartilage sample were normalized
by the pre-extraction-recorded cartilage shaving weight. Previously established analysis
pipelines were used [19,22] and executed in MetaboAnalyst [23], where the data underwent
an integrity check to remove noise and avoid overfitting, interquartile range normalization,
log transformation, and autoscaling (mean-centered/standard deviation of each metabolite
feature). In brief, hierarchical clustering analysis (HCA), principal component analysis
(PCA), and partial least-squares discriminant analysis (PLS-DA) were used to visualize
dissimilarities in the metabolomic profiles between healthy and OA cartilage, as well as
examine OA endotypes. T-test, fold change, and volcano plots were used to assess the
significance and magnitude of changes. Moreover, these populations of metabolite fea-
tures were differentially regulated between the groups, and those identified by these tests
underwent pathway enrichment analysis using the MetaboAnalyst’s Functional Analysis
feature, which utilizes the mummichog algorithm to predict networks of functional activity
from metabolite features of interest. The pathway library Human MFN was used as the
primary reference library to match metabolite features to putatively identified metabolites
(mass tolerance: 5 parts per million (ppm); positive mode, version 1). Significance for
pathway analyses and all other statistical tests was determined using a false discovery rate
(FDR)-corrected significance level of p < 0.05.

2.4. Metabolite Identification

A major hurdle in LC-MS-based metabolomics is metabolite identification [24]. To
address this challenge, the pooled samples were subjected to LC-MS/MS involving frag-
mentation, allowing for the analysis of parent and daughter fragment ions. These data
were manually analyzed to confirm the metabolite identifications as follows. Firstly, all
LC-MS/MS data from the pooled samples were imported, peak-picked, and aligned using
Progenesis QI (Nonlinear Dynamics, Newcastle, UK, version 3.0). The utilization of Proge-
nesis improves the efficiency of identification and uses a computational framework that
allows for the exploration of thousands of putative metabolite identifications across various
databases. Here, the Human Metabolome Database (HMDB) [25] was utilized to compare
the theoretical fragmentation patterns to the acquired fragmentation patterns of parent and
daughter ions. For a metabolite identity to be deemed valid and subsequently investigated
manually, we required it to receive a fragmentation score and overall progenesis score
greater than 12 and 60 out of 100, respectively. These score criteria were based on mass
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error, isotope distribution, and retention time. Once the identified metabolites were nar-
rowed based on these set scores and parameters, they were matched against populations
of LC-MS-based metabolite features distinguished by statistical analyses comparing OA
and healthy cartilage, as well as OA endotypes. To minimize false identifications, an error
threshold of 10 ppm between observed and Progenesis-identified metabolites was enforced.

3. Results
3.1. Global Metabolomic Profiles of Osteoarthritis and Healthy Cartilage Unveil Altered Cellular
Mechanisms Associated with Disease

In total, 10,853 metabolite features were detected by LC-MS across all cartilage samples.
To visualize and assess metabolomic differences between healthy and OA cartilage, we used
unsupervised (HCA, PCA) and supervised (PLS-DA) multivariate tests. HCA, visualized
by a dendrogram and measured using Euclidean distance, displayed the clear separation
of healthy and OA cartilage (Figure 1A). A similar trend was observed when using PCA
and PLS-DA, where a near-perfect separation of the groups was displayed, demonstrating
metabolomic profiles reflective of the disease status of the cartilage (Figure 1B,C).
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Figure 1. The metabolomic profiles of human cartilage from healthy and osteoarthritis patients are
metabolically distinct. (A) Hierarchical clustering analysis found that healthy and osteoarthritic
cartilage samples cluster separated from each other. (B) Principal component analysis, an unsuper-
vised test, found a minimal overlap of principal components 1 and 2, accounting for 44.4% of the
variability in the dataset. (C) Partial least-squares discriminant analysis, a supervised test, showed
complete separation of healthy and diseased cartilage samples, with components 1 and 2 accounting
for 36.9% of the variability in the dataset. (D) T-test analysis detected 2842 metabolite features, with a
false discovery rate-adjusted p-value less than 0.05. (E) Volcano plot analysis, using fold change and
statistical significance, distinguished differentially regulated metabolites between healthy and diseased
cartilage. Specifically, 1010 metabolite features were more abundant in diseased cartilage compared
to healthy cartilage (log2(FC) > 2, p < 0.05), whereas 1399 were more abundant in healthy cartilage
compared to diseased cartilage (log2(FC) < −2, p < 0.05). Orange = osteoarthritis. Blue = healthy.

Next, t-test and volcano plot analyses were performed to distinguish dysregulated pop-
ulations of metabolite features between healthy and OA cartilage. The populations distin-
guished by both analyses were then analyzed using the MetaboAnalyst’s Functional Analy-
sis feature to find biological pathways that differed in regulation across the groups. Volcano
plot analysis found 1010 metabolite features that were more abundant in OA cartilage com-
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pared to healthy cartilage (Figure 1D). These metabolite features mapped to numerous lipid-
related pathways (omega-3 and -6 fatty acid metabolism, fatty acid activation and oxidation,
polyunsaturated and saturated fatty acid beta-oxidation, glycosphingolipid metabolism),
the carnitine shuttle, leukotriene metabolism, and others (Table 1, Supplemental Table S2).
Conversely, volcano plot analysis also found 1399 metabolite features that were more abun-
dant in healthy cartilage compared to OA cartilage (Figure 1D). These features mapped to
the urea cycle, purine metabolism, glycerophospholipid metabolism, vitamin metabolism
(K, E), squalene and cholesterol biosynthesis, aminosugar metabolism, and various amino
acid metabolic pathways (methionine, cysteine, histidine, glycine, serine, alanine, threonine,
tryptophan) (Table 1, Supplemental Table S2). The t-test distinguished 2842 metabolite fea-
tures that were significantly dysregulated between the groups (FDR p < 0.05) (Figure 1E).

Table 1. Metabolic pathways associated with healthy and diseased cartilage identified by volcano
plot analyses. All reported pathways have an FDR-corrected significance level < 0.05.

Group Regulation Pathway

Osteoarthritis FC > 2, p < 0.05 Carnitine shuttle

Osteoarthritis FC > 2, p < 0.05 De novo fatty acid biosynthesis

Osteoarthritis FC > 2, p < 0.05 Fatty acid activation

Osteoarthritis FC > 2, p < 0.05 Fatty acid metabolism

Osteoarthritis FC > 2, p < 0.05 Fatty acid oxidation

Osteoarthritis FC > 2, p < 0.05 Fatty acid oxidation, peroxisome

Osteoarthritis FC > 2, p < 0.05 Glycosphingolipid biosynthesis—ganglioseries

Osteoarthritis FC > 2, p < 0.05 Glycosphingolipid biosynthesis—globoseries

Osteoarthritis FC > 2, p < 0.05 Leukotriene metabolism

Osteoarthritis FC > 2, p < 0.05 N-glycan degradation

Osteoarthritis FC > 2, p < 0.05 Omega-3 fatty acid metabolism

Osteoarthritis FC > 2, p < 0.05 Omega-6 fatty acid metabolism

Osteoarthritis FC > 2, p < 0.05 Phosphatidylinositol phosphate metabolism

Osteoarthritis FC > 2, p < 0.05 Phytanic acid peroxisomal oxidation

Osteoarthritis FC > 2, p < 0.05 Polyunsaturated fatty acid biosynthesis

Osteoarthritis FC > 2, p < 0.05 R group synthesis

Osteoarthritis FC > 2, p < 0.05 Saturated fatty acid beta-oxidation

Healthy FC < −2, p < 0.05 Aspartate and asparagine metabolism

Healthy FC < −2, p < 0.05 Glycerophospholipid metabolism

Healthy FC < −2, p < 0.05 Glycine, serine, alanine and threonine metabolism

Healthy FC < −2, p < 0.05 Histidine metabolism

Healthy FC < −2, p < 0.05 Methionine and cysteine metabolism

Healthy FC < −2, p < 0.05 Purine metabolism

Healthy FC < −2, p < 0.05 Squalene and cholesterol biosynthesis

Healthy FC < −2, p < 0.05 Tryptophan metabolism

Healthy FC < −2, p < 0.05 Urea cycle/amino group metabolism

Healthy FC < −2, p < 0.05 Vitamin E metabolism

Healthy FC < −2, p < 0.05 Vitamin K metabolism

Additionally, features distinguished by volcano plot analysis (Supplemental Table S3)
and t-test (Supplemental Table S4) were matched to putative identifications made using
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LC-MS/MS to unveil metabolic indicators of disease. Putatively identified metabolites
that were statistically significant in both t-test and volcano plot analyses and were more
abundant in healthy cartilage compared to OA cartilage included N-acetyl-leukotriene
E4, demethylphylloquinone, 7C-aglycone, androsterone sulfate, and others (Supplemental
Figure S1A). The majority of the identified metabolites distinguished by these analyses were
more abundant in healthy cartilage, with the exception of guanidinoethyl methyl phosphate,
cervonyl carnitine, erythromycin propionate, and glycocholic acid (Supplemental Figure
S1B). Collectively, these findings unveiled specific metabolites and metabolic pathways
that showed altered cellular mechanisms in OA and reflect the disease status of cartilage.

3.2. Endotype Characterization Supports the Heterogenous Nature of Osteoarthritis

To examine the heterogenous nature of OA metabolism and better understand dif-
ferences in the diverse metabolic landscape within OA, we examined metabolomic endo-
types. Clustering techniques—HCA (Figure 2A) and ensemble clustering (Supplemental
Figure S2)—were utilized to identify OA endotypes across all cartilage samples. The ap-
plication of both methods aimed to minimize subjectivity in delineating OA cartilage
endotypes and determine OA participants that consistently clustered together. These anal-
yses unveiled four distinct endotypes in the OA participants. Considering patient-specific
factors like age, the ratio of males to females, and the overall number of participants
within each endotypes, we found no clear pattern related to participant demographics that
correlated with these four endotypes (Supplemental Table S1).

Once the endotypes were distinguished and patient-specific factors were examined,
we used PCA and PLS-DA to gain additional insight into these endotypes. This revealed
a limited overlap between the endotype groups (Figure 2B,C). Notably, endotype 4 ex-
hibited considerable variability, portrayed by a substantial ellipse. In contrast, endotypes
1–3 showed a closer metabolomic resemblance, where proximity of smaller and tighter clus-
tered ellipses was observed. The subsequent ANOVA analysis identified 2506 metabolite
features that were significantly different between endotypes, with FDR-corrected p < 0.05
(Figure 2D). This subset of features was then matched to putative identifications made using
the LC-MS/MS data. The identifications consisted of lipid and lipid-like metabolites includ-
ing cervonyl carnitine, lucidenic acid A, 6-epi-7-isocucurbic acid glucoside, various phos-
phatidylcholine species, and others (Supplemental Figure S3A, Supplemental Table S5).
Additionally, metabolites related to arachidonic acid and leukotriene metabolism were
identified, including arachidonic acid, panaxydol linoleate, leukotriene F4, and N-acetyl-
leukotriene E4 (Supplemental Figure S3B, Supplemental Table S5).

Additionally, this subset of statistically significant metabolite features was further
examined using median-metabolite-intensity heatmap analysis normalized to healthy
cartilage to find dissimilarities in metabolomic regulation across the four OA endotype
groups compared to healthy cartilage (Figure 2E). For this analysis, the median intensity
for each metabolite feature was calculated, and this same calculation was then extended
to each endotype group to observe and compare major differences in metabolomic reg-
ulation between endotypes. Metabolite features within heatmap clusters 1 and 2, which
exhibited higher abundances across endotypes compared to healthy cartilage, mapped
to 16 statistically significant pathways including leukotriene metabolism, selenoamino
acid metabolism, the carnitine shuttle, and numerous lipid-related pathways (Table 2,
Supplemental Table S6). Heatmap clusters 3 and 4, comprising metabolites whose levels
were lowest in endotype 4 and highest in other endotypes, mapped to 16 statistically sig-
nificant pathways including vitamin A metabolism, phytanic acid peroxisomal oxidation,
lysine and tyrosine metabolism, keratan sulfate degradation, N-glycan degradation, lineo-
late metabolism, butanoate metabolism, and various lipid-related pathways. Metabolites
composing heatmap cluster 5 showed relatively lower levels across endotypes compared to
healthy samples and mapped to seven statistically significant pathways including purine
metabolism, leukotriene metabolism, urea cycle, aminosugar metabolism, and various
amino acid pathways (methionine, cysteine, tryptophan, aspartate, asparagine). Lastly,



Metabolites 2024, 14, 183 7 of 14

heatmap cluster 6 consisted of metabolites with mixed regulation patterns across endotypes;
however, no statistically significant pathways were detected. All pathways reported had
an FDR-corrected p < 0.05. Collectively, these findings underscore the heterogenous nature
of OA metabolism among patients with OA and provide compelling evidence to support
the diverse landscape of metabolic regulation associated with this disease.
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Figure 2. Metabolomic assessment of osteoarthritic cartilage classifies unique patient endotypes.
(A) Hierarchical clustering of cartilage from patients with osteoarthritis showing that they clustered
into 4 distinct endotypes. (B) These endotypes were further examined and visualized by principal
component analysis. Principal components 1 and 2 accounted for 35% of the variability in the dataset
and showed a moderate overlap of the osteoarthritis endotypes. (C) Partial least-squares discriminant
analysis slightly refined the separation of the groups with components 1 and 2, accounting for 30.8%
of the variability in the dataset. (D) ANOVA analysis detected 2506 metabolite features with a false
discovery rate-adjusted p-value less than 0.05. (E) Metabolite features distinguished by ANOVA were
visualized using a median metabolite intensity heatmap, where the osteoarthritis endotypes were
normalized to healthy cartilage. Heatmap clusters of co-regulated metabolite features (C1–C6) that
were differentially regulated across the OA endotypes were then subjected to pathway analyses to
pinpoint distinct metabolomic endotypes across osteoarthritic cartilage. Columns represent endotype
groups, and rows indicate metabolite features. Warmer colors (yellow) indicate higher metabolite
abundance, whereas cooler colors (blue) indicate lower metabolite abundance. Endotype colors
correspond to endotypes as follows: pink—endotype 1; green—endotype 2; purple—endotype 3;
blue—endotype 4.
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Table 2. Metabolic pathways associated with osteoarthritis endotypes classified by median intensity
heatmap analysis. No significant pathways were detected in cluster 6. All pathways reported has an
FDR-corrected significance level < 0.05. Clusters defined in Figure 2E.

Cluster Pathway

1 Fatty acid activation

1 Saturated fatty acids beta-oxidation

1 De novo fatty acid biosynthesis

1 Fatty acid metabolism

1 Omega-6 fatty acid metabolism

1 Carnitine shuttle

1 R group synthesis

1 Fatty acid oxidation

1 Fatty acid oxidation, peroxisome

1 Leukotriene metabolism

2 Fatty acid oxidation

2 Polyunsaturated fatty acid biosynthesis

2 De novo fatty acid biosynthesis

2 Phytanic acid peroxisomal oxidation

2 R group synthesis

2 Selenoamino acid metabolism

3 Phytanic acid peroxisomal oxidation

3 Omega-6 fatty acid metabolism

4 Glycosphingolipid biosynthesis—globoseries

4 Lysine metabolism

4 Tyrosine metabolism

4 Polyunsaturated fatty acid biosynthesis

4 Glycosphingolipid biosynthesis—ganglioseries

4 Keratan sulfate degradation

4 N-glycan degradation

4 Linoleate metabolism

4 Vitamin A (retinol) metabolism

4 Butanoate metabolism

4 Trihydroxycoprostanoyl-CoA beta-oxidation

4 Glycerophospholipid metabolism

4 Omega-3 fatty acid metabolism

4 Starch and sucrose metabolism

5 Purine metabolism

5 Leukotriene metabolism

5 Urea cycle/amino group metabolism

5 Methionine and cysteine metabolism

5 Tryptophan metabolism

5 Aminosugar metabolism

5 Aspartate and asparagine metabolism
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4. Discussion

While altered metabolism is increasingly recognized as a crucial factor in the devel-
opment of OA, further data are needed to understand the role of aberrant metabolism in
OA pathophysiology. This study found distinct human cartilage-derived metabolomic
profiles in healthy and end-stage OA patients. Through a comprehensive analysis aimed
at discerning differences in the metabolome of healthy and OA cartilage, we found that
several metabolites and pathways associated with matrix metabolism, lipid metabolism,
mitochondrial function, vitamin metabolism, and amino acid metabolism were differen-
tially regulated in healthy and OA cartilage. Moreover, investigation of metabolic diversity
within the metabolome of OA cartilage alone mapped to distinct metabolomic endotypes,
displaying the heterogeneous nature of OA. Considering these metabolomic findings, a
greater understanding of altered cartilage metabolism in OA may lead to the identification
of candidate biomarkers and drug targets to slow, halt, or reverse cartilage damage in
end-stage OA.

4.1. Matrix Metabolism

OA cartilage exhibited greater evidence of altered matrix metabolism compared to
healthy cartilage. Specifically, keratan sulfate degradation and N-glycan degradation were
upregulated in OA cartilage compared to healthy cartilage. Keratan sulfate, a type of
glycosaminoglycan (GAG), plays a vital role in cartilage matrix homeostasis and mainte-
nance. The homeostatic GAG content in both synovial fluid (SF) and cartilage is indicative
of joint health, whereas an increase in GAGs within the SF suggests increased cartilage
turnover. This is subsequently reflected by a decrease in GAG content within the cartilage
itself [26–28]. Furthermore, alterations in N-glycan degradation likely reflect changes in
joint lubrication, as N-glycans are an important component of lubricin, a glycoprotein
that lines cartilage surfaces and serves as a key joint lubricant with chondroprotective
properties [29].

4.2. Lipid and Mitochondria-Related Metabolism

Several lipid-related pathways were upregulated in OA cartilage compared to healthy
cartilage and were differentially regulated across OA endotypes. Notably, the present study
identified several significant lipid-related pathways that were previously linked to OA,
including the carnitine shuttle, arachidonic acid metabolism, omega-3 and -6 metabolism,
glycosphingolipid metabolism, and glycerophospholipid metabolism. Cartilage relies
on bone and SF for lipid transport, underscoring the critical role of lipid metabolism
in maintaining cartilage homeostasis. Arachidonic acid (AA), leukotriene F4, N-acetyl-
leukotriene E4, and panaxydol linoleate were identified using the LC-MS/MS data, were
present at higher concentrations in OA cartilage compared to healthy cartilage, and differed
in abundance across the OA endotypes (Supplemental Figures S1 and S3). AA, a type of
omega-6 polyunsaturated fatty acid known to be associated with inflammation, is typically
found at lower levels in healthy cartilage, and its level increases as OA progresses [30].
Additionally, elevated AA levels were detected in OA SF [16,31] and synovium [32], and
more broadly, the severity of synovitis and histological changes in OA were correlated with
the serum levels of omega-3 and -6 [33,34].

The detection of perturbed lipid pathways and a handful of identified lipid species
in OA cartilage may reflect adaptive responses in mitochondrial function and biofuel
utilization in response to OA. While healthy cartilage relies on both glucose and lipids as
energy sources, OA cartilage exhibits a greater dependence on lipids [35,36]. This metabolic
switch to lipid utilization can lead to the accumulation of lipids, the increased production
of reactive oxygen species and nitric oxide, and decreased ATP production, leading to
eventual tissue breakdown and death [37–40].

Central to this metabolic switch is the carnitine shuttle, which plays a key role in
regulating the oxidative status by transporting lipids across the mitochondrial membrane
to generate ATP. The upregulation of the carnitine shuttle in OA cartilage compared to
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healthy cartilage and across OA endotypes is supported by previous studies which detected
not only the carnitine shuttle but also elevated levels of acylcarnitine and other carnitine
species [17] in the SF of OA patients. Moreover, cervonyl carnitine, a type of acylcarnitine,
was identified using the LC-MS/MS data; its levels were significantly higher in all OA
cartilage samples compared to healthy cartilage and differed across the OA endotypes
(Supplemental Figures S1 and S3). Cervonyl carnitine is often produced as a result of
a disorder or disease (i.e., cancer, diabetes, cardiovascular disease) and disrupts energy
production [41]. It has been well documented that OA perturbs energy production in
cartilage; therefore, the detection of this species in the present study could be a result of
receiving cartilage from donors with radiography-confirmed OA.

We previously detected cervonyl carnitine in SF from patients who sustained a trau-
matic knee injury [19]. Here, we hypothesized that a metabolic switch toward lipid utiliza-
tion and the involvement of mechanisms like the carnitine shuttle were necessary to meet
the heightened energy demands post-injury and that ongoing analysis of these species may
help manage post-traumatic OA. Thus, the detection of cervonyl carnitine in OA cartilage
and in SF post-injury further highlights its potential as a marker that can be monitored
over time to assess β-oxidation and joint health, while also potentially predicting the onset
and progression of OA. Furthermore, cervonyl carnitine warrants further investigation
as a potential biomarker and druggable target for the purpose of slowing, halting, or
reversing OA.

4.3. Vitamin Metabolism

Vitamin E metabolism was notably upregulated in OA cartilage compared to healthy
cartilage. Vitamin E has antioxidant properties, which could prove beneficial in counter-
acting the heightened oxidative stress experienced by the joints during OA [42]. Addi-
tionally, vitamin A was dysregulated across OA endotypes. The relationship between OA
and vitamin A, including the vitamin A derivative all-trans retinoic acid, has garnered
attention due to the key role of this molecule in skeletal development and cartilage mainte-
nance [43,44]. Specifically, all-trans retinoic acid can regulate type X collagen and matrix
metalloproteinase-13, driving a hypertrophic phenotype [44,45]. Moreover, elevated vita-
min A metabolite levels have been detected in SF, serum, and cartilage from OA individuals,
suggesting vitamin A potential role in OA within cartilage [43].

In contrast, vitamin K metabolism was downregulated in OA cartilage compared
to healthy cartilage. These findings align with prior research that explored the relation-
ship between OA and vitamin K. Vitamin K is important for its role as a cofactor for the
carboxylation of vitamin K-dependent proteins, including matrix Gla proteins, osteocal-
cin, and Gas-6 [46]. These proteins are present in the joints and play a key role in the
maintenance of cartilage and bone. Their absence or deficiency can lead to an increased
incidence and progression of knee OA [46–48]. Specifically, alterations in vitamin K levels
parallel the abnormalities observed in OA disease progression, encompassing aspects such
as hypertrophic and apoptotic chondrocytes, cartilage mineralization, and endochondral
ossification [49,50].

4.4. Amino Acid Metabolism

Amino acid metabolism was significantly downregulated in OA cartilage compared
to healthy cartilage. While histidine metabolism was not differently regulated across
endotypes, its pronounced downregulation in OA cartilage compared to healthy cartilage
aligns with findings of a previous study that identified declining trends in serum histidine
levels as OA advances [51]. Additionally, the ratio of branched-chain amino acids to
histidine has emerged as a potential indicator of disease progression [52]. In contrast,
various amino acids including tryptophan, methionine, cysteine, aspartate, and asparagine
were upregulated in healthy cartilage compared to OA cartilage, as confirmed by pairwise
and endotype comparisons.
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This pattern mirrors similar observations made in our prior work comparing SF
metabolism in healthy and early- and late-stage OA patients, indicating that these amino
acid pathways were upregulated in healthy SF [16]. Focusing solely on OA cartilage, these
same amino acid pathways displayed different regulation patterns across the identified OA
endotypes. This aligns with previous literature, indicating that the levels of these amino
acids tend to decrease as OA progresses, being highest in healthy cartilage, moderately
high in early-stage OA, and diminishing in end-stage OA [53,54]. Furthermore, specific
amino acids like glycine and alanine, both of which are abundant in collagen, have been
putatively identified as potential markers to distinguish osteoarthritic cartilage from healthy
cartilage [7]. This observed dysregulation of amino acids may indicate their potential role
in responding to the disease and could reflect the degree of joint damage. Nevertheless,
further research is required to underpin the relationship between amino acid metabolism
and OA.

4.5. Limitations

This study included healthy cartilage samples to examine disease-associated metabolic
changes; however, it is not without limitations. Firstly, the sample size of this study was
not uniform, as 11 healthy cartilage and 35 OA cartilage samples were obtained. Secondly,
relevant clinical covariates (e.g., age, BMI, sex, prior medical history) and the time of death
(to calculate the time between death and sample extraction) were not available for the
obtained healthy cartilage samples. Furthermore, patient sex and age, with the exception of
three patients, were provided for OA donors, yet the BMI was not provided. Considering
the partial information provided for both healthy and OA cartilage samples, age-, BMI-,
and sex-matching analyses were not performed, nor can this information be used to shed
light on driving factors that differentiate OA endotypes.

5. Conclusions

The results of this study provide clear evidence of OA-induced metabolic perturbations
in human articular cartilage. Considering the heterogenous nature of OA, the detection
of metabolic differences between healthy and OA individuals and within OA individuals
alone can be further extended to pinpoint the diverse landscape of OA. With this approach,
we uncovered specific metabolomic patterns and identified metabolites that may serve as
valuable indicators of disease status or therapeutic targets. The expansion of this study will
delineate joint-level metabolic activity in cartilage and how that is reflected by or associated
with the metabolism of other musculoskeletal tissues and fluids.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo14040183/s1, Figure S1: Identified metabolites differ in abundance
between healthy and osteoarthritic cartilage. Figure S2: Ensemble clustering of osteoarthritis partici-
pants revealed distinct metabolic endotypes. Figure S3: Identified metabolites differ in abundance
across osteoarthritis endotypes. Table S1: Participant information including donor number, assigned
anonymous identifier, age, sex, and osteoarthritis endotype group. Table S2: All metabolic pathways
determined from MetaboAnalyst when comparing healthy and diseased cartilage using volcano
plot analyses. Populations of metabolite features are defined on Figure 1C. Table S3: Putatively
identified metabolites that differ in abundance between healthy and diseased cartilage distinguished
by volcano plot analysis. Identifications were made by performing liquid chromatography tandem
mass spectrometry (LC-MS/MS). For all identified, information includes observed and theoretical
mass-to-charge ratios, parts per million (ppm) error, accepted compound ID and description, adduct,
chemical formula, total score out of 100, and fragmentation score. Identifications with error greater
than 20 ppm, total score < 60, and a fragmentation score < 12 were excluded. Table S4: Putatively
identified metabolites that differ in abundance between healthy and diseased cartilage distinguished
by t-test analysis. Identifications were made by performing liquid chromatography tandem mass
spectrometry (LC-MS/MS). For all identified, information includes observed and theoretical mass-
to-charge ratios, parts per million (ppm) error, accepted compound ID and description, adduct,
chemical formula, total score out of 100, and fragmentation score. Identifications with error greater
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than 20 ppm, total score < 60, and a fragmentation score < 12 were excluded. Table S5: Putatively
identified metabolites that differ in abundance between osteoarthritis endotype groups distinguished
by ANOVA analysis. Identifications were made by performing liquid chromatography tandem
mass spectrometry (LC-MS/MS). For all identified, information includes observed and theoretical
mass-to-charge ratios, parts per million (ppm) error, accepted compound ID and description, adduct,
chemical formula, total score out of 100, and fragmentation score. Identifications with error greater
than 20 ppm, total score < 60, and a fragmentation score < 12 were excluded. All metabolite features
with an FDR-corrected p-value > 0.05 distinguished by ANOVA when comparing all four osteoarthri-
tis groups. Table S6: All metabolic pathways determined from MetaboAnalyst when comparing
osteoarthritis endotypes using median metabolite intensity heatmap analysis. Clusters defined on
Figure 2E. Table S7: Raw data from XCMS.
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