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Abstract: Type 2 diabetes (T2D) is a global public health issue characterized by excess weight, abdom-
inal obesity, dyslipidemia, hyperglycemia, and a progressive increase in insulin resistance. Human
population studies of T2D development and its effects on systemic metabolism are confounded by
many factors that cannot be controlled, complicating the interpretation of results and the identifica-
tion of early biomarkers. Aged, sedentary, and overweight/obese non-human primates (NHPs) are
one of the best animal models to mimic spontaneous T2D development in humans. We sought to
identify and distinguish a set of plasma and/or fecal metabolite biomarkers, that have earlier disease
onset predictability, and that could be evaluated for their predictability in subsequent T2D studies in
human cohorts. In this study, a single plasma and fecal sample was collected from each animal in a
colony of 57 healthy and dysmetabolic NHPs and analyzed for metabolomics and lipidomics. The
samples were comprehensively analyzed using untargeted and targeted LC/MS/MS. The changes in
each animal’s disease phenotype were monitored using IVGTT, HbA1c, and other clinical metrics,
and correlated with their metabolic profile. The plasma and fecal lipids, as well as bile acid profiles,
from Healthy, Dysmetabolic (Dys), and Diabetic (Dia) animals were compared. Following univariate
and multivariate analyses, including adjustments for weight, age, and sex, several plasma lipid
species were identified to be significantly different between these animal groups. Medium and
long-chain plasma phosphatidylcholines (PCs) ranked highest at distinguishing Healthy from Dys
animals, whereas plasma triglycerides (TG) primarily distinguished Dia from Dys animals. Random
Forest (RF) analysis of fecal bile acids showed a reduction in the secondary bile acid glycoconjugate,
GCDCA, in diseased animals (AUC 0.76[0.64, 0.89]). Moreover, metagenomics results revealed several
bacterial species, belonging to the genera Roseburia, Ruminococcus, Clostridium, and Streptococcus,
to be both significantly enriched in non-healthy animals and associated with secondary bile acid
levels. In summary, our results highlight the detection of several elevated circulating plasma PCs
and microbial species associated with fecal secondary bile acids in NHP dysmetabolic states. The
lipids and metabolites we have identified may help researchers to differentiate individual NHPs
more precisely between dysmetabolic and overtly diabetic states. This could help assign animals
to study groups that are more likely to respond to potential therapies where a difference in efficacy
might be anticipated between early vs. advanced disease.

Keywords: type 2 diabetes (T2D); metabolomics; plasma; feces; dysmetabolic and diabetic; non-
human primates (NHPs); LC/MS; lipids; triglycerides; phosphatidylcholine; bile acids; latent multi-
variate modeling; OPLS-DA; random forest; machine learning; LOD; mTIC
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1. Introduction

Type 2 diabetes (T2D) is a chronic metabolic disease, characterized by progressive loss
of insulin secretion and hyperglycemia, ultimately resulting in adverse clinical complica-
tions. T2D has become a major global health problem: a consequence of high-calorie diets
and sedentary lifestyles, factors that contribute to escalating healthcare costs. The World
Health Organization (WHO) estimates that there are approximately 422 million people
across the globe with diabetes, and 1.5 million deaths each year directly attributed to this
disease. Moreover, the prevalence of prediabetes—a dysmetabolic condition with a high
risk of progression to T2D—has been steadily increasing over the past two decades and is
approximately two to three times higher than that of diabetes, with a yearly conversion rate
of 5–10% [1]. Identification of early onset plasma or feces biomarkers and the development
of more sensitive, pre-clinical risk prediction models in NHPs can potentially be very
helpful in their translatability and application to studies of human cohorts. Dysregulated
fatty acid metabolism and tissue lipid accumulation is associated with the development
of insulin resistance and T2D [2–4]. However, there is often a latency between excessive
hepatic fat accumulation and clinical symptom manifestations, which is associated with
disease pathogenesis. Current stratification metrics for individuals at risk of developing
T2D in the general population are based on well-established factors such as age, BMI,
fasting glucose, blood pressure, family history, and glycated hemoglobin (HbA1c) levels [5].
The most typical lipid-based risk factors for assessing T2D development are HDL, LDL,
and TG levels. Elevated circulating branched chain amino acid (BCAA) concentrations
are well established as being correlated with human obesity and diabetic animal models
of the disease [6–9]. A meta-analysis of metabolomics studies that identified metabolites
associated with pre-diabetes and T2D highlighted several lipid classes: triglycerides, phos-
pholipids, and sphingomyelins, as well as aromatic amino acids. Glycine and glutamine
are inversely associated with the risk of T2D [10]. However, interpretation of their relative
predictive value depends on being able to account for many confounding environmental
factors, which are frequently challenging to overcome in studies of human cohorts.

NHPs are a particularly suitable animal model for studying disorders like obesity
and diabetes [11] and are considered the gold standard for research into the study of the
pathophysiology of obesity and diabetes [12,13].

NHPs present fewer confounding variables as they are housed in a controlled envi-
ronment, have regular feeding times and feces collection schedules, and their body weight
and food and liquid consumption are routinely monitored. Like in humans, T2D is most
common in older, sedentary, obese NHPs. They share some of the same metabolic dis-
ease characteristics as humans: development of progressive changes in obesity, insulin
resistance, and dyslipidemia [14].

The trajectory from an early dysmetabolic (i.e., pre-diabetic) state to overt T2D can
often be managed pharmacologically, and/or through lifestyle changes such as diet and
exercise. Hence, sensitive, prognostic metabolomic markers and modeling tools for NHPs
would be useful for earlier classification of potentially at-risk animals, and for detecting
early metabolite changes that could also positively impact disease management, resulting
in fewer co-morbidities. In addition to a strong genetic association between obesity
and T2D, lifestyle, nutrition, and the host’s microbiome can all have critical roles in
disease development.

This cohort of animals was followed for many years and routinely evaluated every
3–6 months for their metabolic state based on clinical chemistries, IVGTT, and body weight.
Once we were certain of the metabolic state of each animal, one-time plasma and feces
samples were collected. The aim of this pre-clinical study was to assess whether we could
accurately categorize individual NHPs, based on their metabolite/lipid profiles, into pre-
determined metabolic states. If successful, future metabolomics and metagenomics studies
of plasma and feces samples could be particularly valuable for regularly monitoring NHP
progression between healthy and dysmetabolic to overtly diabetic states. Moreover, the
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identification of prognostic biomarkers in these matrixes could reveal important informa-
tion about the efficacy of new treatments.

Therefore, our objectives were to first test and adjust for confounding factors; to deter-
mine whether one-time collection and analysis of plasma and feces provided a relatively
simple way to accurately categorize the animals based on metabolite and lipid profiles; to
assess differences in disease classification between plasma and feces, and calculate which
metabolites/lipids had the highest correlation with HbA1c; lastly, we evaluated whether
metabolomics and metagenomics analyses of feces samples were associated with T2D.

We analyzed the ultra-high-performance liquid chromatography–tandem mass spec-
trometry (UHPLC MS/MS) results of plasma and fecal sample extracts from 57 NHPs:
17 Healthy, 16 Dys, and 24 Dia. The most important metabolites for classifying each disease
state were identified after rigorous data pre-processing; adjustment for confounders; the
application of multiplicity correction to compensate for the error rate of post-hoc data
analysis; machine learning; and metabolite chemical similarity enrichment analyses [15].
Furthermore, for a subset of animals, we performed metagenomics analyses of their fe-
cal microbiome samples to reveal whether the abundance of distinct bacterial taxonomic
groups were positively associated with fecal metabolite data (such as bile acids), and
supported the animals’ disease status classification.

2. Materials and Methods
2.1. Animal Housing and Husbandry

All animals (16 Dys, 24 Dia, and 17 Healthy) were housed at Crown Bioscience
Louisiana (New Iberia, LA, USA), in individual Group 5 stainless steel wire-bottomed
cages (as defined by the Guide for the Care and Use of Laboratory Animals of the Insti-
tute for Laboratory Animal Research/National Academies of Science), in rooms with an
ambient temperature of 22–26 ◦C, a relative humidity of 40–70%, and a 12 h light–dark
cycle. Samples were collected in accordance with the “Institutional Animal Care and Use
Committee-approved standard operating procedures”. Animals were fed ad libitum twice a
day on Purina LabDiet—5037, Jumbo Monkey Chow. In addition to standard maintenance
(not high fat, high cholesterol, or high fructose) pelleted chow, fresh fruit was provided
daily, and State-supplied water was always freely available.

2.2. One-Time Plasma and Feces Collection

This colony was monitored as part of a long-term observational NHP study—“Animal
Holding and Phenotyping of Dysmetabolic State in Rhesus Macaques”—and the animals
were routinely (and continually) evaluated for their metabolic state based on clinical
chemistries. Given the chronicity, repeated measures, and laboratory test over time, we
were confident of the accuracy of their diabetic status. There was a limited time win-
dow to collect one-time blood and fecal samples from each animal in this colony for
metabolomics/lipidomics analysis. Due to their different collection schedules, the samples
were collected over a two-month period. The date, time, and metabolic state of each animal
was documented during sample collection. The animals were fasted overnight and sedated
with Ketamine prior to whole blood collection into K2EDTA tubes (BDTM P800), which was
then centrifuged and the plasma was transferred into 1.5 mL Eppendorf tubes, frozen, and
stored at −20 ◦C prior to shipment for analysis.

For feces collection, the NHPs were not fasted. In the morning, feces samples were
passed by the animals onto clean trays containing absorbent pads. Approximately 3–5 g of
solid feces sample were transferred into sterile 50 mL Falcon tubes with sterile forceps and
were then immediately frozen and stored at −80 ◦C before shipment for analysis.

2.3. Animal Phenotype Characterization

All animals were enrolled in the institutional environmental enrichment program and
monitored throughout the study in consultation with the institution’s clinical veterinarian
for any signs of change in their physiological and/or psychological state, as well as changes
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to their physical appearance and health, e.g., body weight, hair coat quality, loss of appetite,
and gastrointestinal changes.

The NHP colony was monitored every 3 to 6 months to assess their phenotype/metabolic
state using several parameters, including intravenous glucose tolerance tests (IVGTT), body
weight, serum chemistries, and hematology profiles. In healthy animals, typically two
spikes in insulin levels were observed: an insulin mobilization spike, followed by an insulin
de-granularization spike [16]. In healthy animals the mean HbA1C levels are not expected
to change significantly with aging [17]. As NHPs become diabetic, however, a second
insulin spike gradually disappears. The colony was monitored over time for progression
from a Healthy to Dys/Dia disease state, and grouped into one of three metabolic states,
based on the following HbA1c ranges [18]: Healthy (HbA1c < 4.5%); dysmetabolic (Dys)
(HbA1c 4.5–6%); and diabetic (Dia) (HbA1c > 6%).

2.4. Sample Processing and LC-MS Data Acquisition

Sample processing and data acquisition details for NHP plasma and fecal samples are
available from the NIH West Coast Metabolomics Center (WCMC) and can be accessed
under each specific “Data Dictionary Fiehn laboratory NIH West Coast Metabolomics Cen-
ter” file (see Supplemental files for each panel). The metabolite panels were analyzed using
validated chromatography/mass spectrometry methods as described on the West Coast
Metabolomic Center (WCMC) Core facility website. Briefly, untargeted biogenic amine
analysis through HILIC-QTOF MS/MS was performed on plasma extracts with a SCIEX
TripleTOF® 6600 Quadrupole Time-Of-Flight (QTOF) mass analyzer. Untargeted complex
lipid analysis (CSH-QTOF MS/MS) was performed with an Agilent 6530B Accurate Mass
Q-TOF LC/MS System. Lipids were detected by ESI(+) and/or ESI(−) combined. Targeted
analyses of bile acids in plasma and feces were performed using a Waters UPLC/AB SCIEX
QTRAP 6500 with targeted MRM panels.

2.5. Metabolite Panels
2.5.1. Targeted Panels

For plasma, the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Aus-
tria) was used for targeted, quantitative analysis of metabolites, according to the manufac-
turer’s instructions.

A targeted bile acid panel was processed and analyzed at the WCMC. The panel
included: Taurodehydrocholate, Tauro-ω-Muricholic acid, Tauro-α-Muricholic acid, Tauro-
β-Muricholic acid, Tauroursodeoxycholic acid, Taurocholic acid, ω-Muricholic acid, Gly-
coursodeoxycholic acid, Glycohyodeoxycholic acid, α-Muricholic acid, Glycocholic acid,
β-Muricholic acid, Taurochenodeoxycholic acid, Taurodeoxycholic acid, Cholic acid, Ur-
sodeoxycholic acid, Glycochenodeoxycholic acid, Glycodeoxycholic acid, Taurolithocholic
acid, Chenodeoxycholic acid, Deoxycholic acid, Glycolithocholic acid, and Lithocholic acid.

The LLOQ (lower limit of quantitation) and ULOQ (upper limit of quantitation) for
each compound was obtained from WCMC. For each metabolite, measurements below the
LLOQ were imputed as one half of its LLOQ. The post-imputed concentration data was
subsequently scaled and log-transformed prior to downstream statistical analyses.

2.5.2. Untargeted Metabolite Panels

A plasma lipids panel was analyzed at the WCMC using CSH-QTOF MS/MS. Nor-
malized relative intensities were reported for unknown structures, and a total of 394 lipids
were annotated that had been identified by accurate mass, RT, and matching the WCMC’s
mass spectral library of approximately 400,000 MS/MS spectra, using their LipidBlast
database [19]. Our plasma lipid panel included 394 lipids that were divided into sev-
eral lipid classes, including (see Supplementary Table S1) 93 triglycerides (TG), 127 phos-
phatidylcholines (PC), 30 sphingomyelins (SM), 23 lysophosphatidylcholines (LPC), 29 fatty
acids (FA), 27 phosphatidylethanolamines (PE), 25 ceramides (Cer), 12 diacylglycerols (DG),
10 cholesterol esters (CE), 10 acylcarnitines (AC), 4 lysophosphatidylethanolamines (LPE),
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3 glucosylceramides (GlcCer), and cholesterol. The BinBase [20] database (a large open-
access reference library of metabolite annotations based on LC-MS/MS retention times and
mass spectral data) was used for matching to untargeted, HILIC-based LC-QTOF-MS results.

2.6. Untargeted and Targeted Data Processing

We determined the assay performance for each platform based upon the repeatability
of several pooled QC samples (Figure S1, Supplementary). Untargeted lipidomics and
HILIC-based LC-QTOFMS data were processed using MS-DIAL 2.84 software [21].

Data processing, filtering, normalization, and untargeted data transformation steps
prior to identification and statistical analysis are summarized below:

• Filtered contaminating peaks in blank samples from biological data files.
• Excluded extreme outlier technical replicates in QC samples.
• Calculated the RSD% of QC samples, and flagged metabolites showing RSD > 30%
• Measurements below detection were imputed with one half of the lowest observed

peak intensity.
• Batch/injection order was corrected using QC samples.
• Data were normalized using the sum of the known metabolites or “mTIC”
• Post-normalized peak intensities were scaled and/or log transformed.

2.7. Metabolomics and Lipidomics Statistics Analysis and Modeling

Statistical analyses were performed on a post hoc basis. Potential confounder variables
such as age, body weight (BW), and sex [22] were adjusted prior to identifying differentially
expressed metabolites.

Our plasma lipid panel was divided into 13 lipid classes, including 93 TGs, 127 PCs,
and 30 SMs (see Supplementary Table S1). We initially used detrending [23] to diminish
the influence of sex, age, and body weight on plasma lipid data. We then applied both mul-
tivariate Partial Least Squares Discriminant Analysis (OPLS-DA) [24,25] and a univariate
Student’s t-test to distinguish between plasma lipids associated with different animal group
phenotypes: Healthy, Dys, and Dia. OPLS-DA is particularly useful with high-dimensional
biomarker data, such as lipidomics, that possess significant biomarker correlation. It was
therefore particularly useful for analyzing our lipid data. Lipids were subsequently ranked
by their Variable Influence in Projection (VIP) score [26], where a higher VIP score indicates
a greater influence on discriminating phenotypes. Univariate two-sample t-tests were
conducted to obtain the statistical significance for each lipid, followed by multiplicity
correction. Hence, a list of significantly different lipids that discriminated between Healthy,
Dys, and Dia animal groups was determined by a combination of univariate and multivari-
ate approaches [27,28]. We filtered the list of lipids further by applying FDR < 0.05, fold
change > 1.5, and a VIP score of >1. We subsequently used Generally Applicable Gene-set
Enrichment (GAGE) analysis [29], using the VIP score as input to select lipid classes that
best differentiated between Healthy, Dys, and Dia animals.

For fecal bile acid data, we utilized propensity score matching (PSM) [27] to balance
sex, age, and body weight, assigning each NHP sample a propensity score. With the
propensity score as input, we applied multivariate analysis using Weighted Random Forest.
We applied univariate analysis with a weighted t-test for classification of the animal groups.
Metabolites were ranked by their variable importance (VIMP) score, generated by the
RF algorithm, where a higher VIMP score reflected greater importance in discriminating
between animal groups. Univariate analysis was performed to determine the statistical
significance for each metabolite. A combination of both the VIMP and the statistical
significance was subsequently used to select metabolites that best differentiated between
Healthy, Dys, and Dia animal groups.

2.8. Metagenomics Analysis

For consistency with some of the bile acid metabolomics data, the Dys/Dia fecal
samples were pooled for metagenomics analysis. Feces samples were sequenced at Di-
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versigen (New Brighton, MN, USA), a CRO that performs metagenomics analyses and
comprehensive genomic profiling of microbial populations using high-coverage shotgun
DNA sequencing, on the Illumina HiSeq™ Sequencing System (San Diego, CA, USA). DNA
extraction was performed with the QIAGEN (Hilden, Germany) DNeasy® PowerSoil Kit®.
The fastq files received from Diversigen were subsequently processed using an internal
pipeline including adapter trimming; removal of PhiX control and human contaminating
reads; and metagenomic taxonomic profiling. The MUSiCC metagenomic framework [30]
for the normalization and accurate profiling of microbial gene abundances was applied to
the taxonomy data prior to the downstream association analyses with T2D disease status.
All statistical analyses were performed in the R-language.

3. Results
3.1. Clinical and Demographic Adjustments for Animal Confounding Factors

The rationale for applying detrending to our plasma data was backed up by the
literature. Plasma TG levels and risks of metabolic disease are influenced by age [31]. There
is also a significant correlation between plasma TG and obesity [32]. Since our results
showed a borderline significant correlation between TG and age, and between TG and
body weight (BW), detrending effectively reduced these influences prior to classification of
the animals’ phenotypes (Healthy, Dys, and Dia) based on their lipid profiles. Moreover,
subsequent OPLS did not incorporate weighted scores from PSM, so after detrending we
only applied OPLS to lipidomics data. As for the fecal bile acid data, the correlation of
body weight, age, and sex with fecal bile acids is not very clear. PSM was appropriate for
rectifying confounding factors and was used in conjunction with Weighted Random Forest.

A summary of the demographic variables for the three animal groups, the number of
animals per group, as well as some of the demographic and key clinical variables, including
HbA1c levels, are summarized in Table 1. Of the 57 animals, when categorized by sex, the
mean TG levels across all three groups of animals were 301.43 mg/dl for females (total of
16 animals) and 176.41 mg/dl for males (total of 41 animals). When both female and male
animals were grouped together by phenotype, the mean TG levels were 360.5 mg/dL (Dia,
24 animals); 157.1 mg/dl (Dys, 16 animals); and 62.0 mg/dL (Healthy, 17 animals). Since
age, sex, and body weight were not balanced between the three animal groups, statistical
strategies were applied to adjust for these confounding factors.

Table 1. A summary table (prior to confounder adjustment) of key clinical and anthropometric
measurements: body weight (BW); total triglycerides (TG); N = number of animals. Age, BW, glucose,
HbA1c, TG, and LDL/HDL ratio are all expressed as the mean with standard deviation (SD).

Characteristic
Dia Dys Healthy

N = 24 N = 16 N = 17

Demographics
Female, Male 8, 16 5, 11 3, 14
Age 19.8 (4.6) 15.5 (3.2) 15.3 (5.8)
BW, kg 13.5 (4.0) 15.3 (3.6) 11.8 (3.5)

Clinical assessment
Glucose, mg/dL 164.9 (40.1) 75.7 (31.7) 62.5 (5.2)
HbA1c, % 10.0 (2.2) 6.2 (1.6) 4.4 (0.3)
TG, mg/dL 360.5 (284.5) 157.1 (85.0) 62.0 (36.8)

Our results showed a borderline significant correlation (Spearman) coefficient of 0.26
(p = 0.05) between TG levels and age, and 0.23 (p = 0.1) between TG levels and body weight
(BW). We therefore employed detrending to minimize the influence of sex, age, and body
weight on the plasma lipid data and propensity score matching (PSM) to adjust for the
fecal bile acid data.
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3.2. Plasma Lipids and Fecal Metabolites Independently Aid in Animal Disease Phenotype Classification

Prior to more in-depth data analyses, unsupervised PCA analysis of high-dimensional
data served as the first step in detecting variance between the different animal groups.
Separate PCA plots were generated for complex lipids in Figure 1a and bile acids in
Figure 1b, the two main classes of metabolites for plasma and feces, respectively. The
PCA plots were rotated in the direction where best separation could be observed. The
plasma lipids’ PCA results suggested that the combination of Healthy and Dys groups
was more effective than either group alone in uncovering the biggest separation between
Healthy/Dys and Dia animals. Conversely, and despite the increased noise level in the
fecal bile acid data, by combining both primary and secondary bile acids, PCA analysis in
Figure 1b revealed that Healthy and Dia samples cluster separately and that Dys samples
were spread evenly across Healthy and Dia groups. This was validated by subsequent
Random Forest data analysis.
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Figure 1. PCA plots of (a) plasma lipids and (b) fecal bile acids. Healthy (green), Dys (blue), and Dia
(red) solid dots.

3.3. Combined Univariate and Multivariate Results Reveal Specific Plasma Lipids That Are
Differential between Healthy, Dys, and Dia Animals

OPLS-DA and two sample t-test results were combined to identify lipids that best
distinguished between Healthy, Dys, and Dia groups. Using a GAGE-based approach,
we computed the statistical significance of the association between lipid classes and T2D
status. Our plasma lipid panel included 394 lipids that were divided into 13 lipid classes,
including 127 PCs, 93 TGs, and 30 SMs. However, only 9 of the 13 lipid classes had at least
1 significant lipid. A total of 369 lipids were detected in Healthy and Dys samples and
organized into the 9 lipid classes (see Supplementary Table S1). Within each class, the total
number and percentages of significantly different lipids between Healthy and Dys samples
are summarized. Compared to Healthy sample extracts, only phosphatidylcholines (PCs),
as a class, were significantly (GAGE p-value = 0.0129) elevated in Dys samples. The 42 lipids
(21 lipids belonged to the PC class) that contributed most significantly to differentiating
Healthy from Dys samples are listed in descending VIP order in Table S2. Conversely, from
the 85 differential lipids (see Table S3 for full list), we observed 54 TGs to be predominantly
different between the Dys and Dia groups.

Following univariate and multivariate analyses of all lipids, a graphical summary
of these results in the form of volcano plots revealed the top ten annotated VIP-ranked
lipids, with the highest classification power for the Dys state (Figure 2a). These included
LysoPC (18:2); long-chain PCs such as PC (37:6), PC (38:3), and PC (35:3); and TG (54:8).
Conversely, and perhaps not unexpectedly, the top 10 VIP-ranked annotated lipids with
the highest classification power for the Dia state (Figure 2b) mainly included TGs such as



Metabolites 2024, 14, 159 8 of 16

TG (58:10), TG (56:8), TG (58:9), TG (54:7), and TG (54:6). The numbers and percentages of
significantly differential lipids and the class significance between Dys and Dia groups are
summarized in Supplementary Table S4. The results revealed that the number of lipids that
differentiate Dia from Dys is approximately twice the number of those that differentiate
Dys from Healthy.
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univariate and multivariate analyses. Red dots reveal the most significant features (i.e., the top ten
annotated VIP-ranked lipids) for (a) Healthy vs. Dys and (b) Dys vs. Dia samples. The horizontal
blue lines represent an FDR of 0.05, while the vertical blue lines indicate an FC of 1.5 and 1/1.5.

Using the VIP score rankings as input, we observed that PCs were significantly
elevated in Dys animals compared to Healthy animals and that TGs were unchanged.
Conversely, TGs were significantly elevated in Dia compared to Dys animals, but PCs
were not (Table 2). These observations are consistent with a previously reported clinical
lipidomics study of Finnish men [33], where PCs (as a class of lipids) were not significantly
different between Dys and Dia patients. NHP TGs were not significantly different between
Healthy and Dys animals, but rather, our results revealed that PCs were associated with
pre-diabetes, followed by persistent elevated TG levels in Dys-to-Dia progressors. None
of the remaining plasma lipid classes were significantly different between animal groups
(Tables S1 and S4).

Table 2. GAGE pathway analysis based on number (N) of lipids belonging to PC and TG lipid classes.
* p < 0.05, *** p < 0.001.

Disease State Class N p-Value

Healthy vs. Dys PC 127 0.0142
TG 93 0.6353 *

Dys vs. Dia PC 127 0.7640
TG 93 <0.001 ***

3.4. Strong Association between HbA1c and Plasma Long-Chain Polyunsaturated TGs

HbA1c levels are an important diagnostic tool for evaluating insulin resistance and
disease severity [18]. Since palmitic acid has previously been positively correlated with
HbA1c levels in T2D subjects [34], we sought to determine whether HbA1c levels, treated
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as a continuous variable, correlated with specific lipids on our list. We observed positive
correlations (>0.70) between HbA1c and eight unsaturated, long-chain TGs and one DG
(Figure 3) that were linearly associated with disease severity.

Metabolites 2024, 14, x FOR PEER REVIEW 9 of 17 
 

 

Disease State Class N p-Value 

Healthy vs. Dys PC 127 0.0142  
TG 93 0.6353 * 

    

Dys vs. Dia 
PC 127 0.7640 
TG 93 <0.001 *** 

3.4. Strong Association between HbA1c and Plasma Long-Chain Polyunsaturated TGs 
HbA1c levels are an important diagnostic tool for evaluating insulin resistance and 

disease severity [18]. Since palmitic acid has previously been positively correlated with 
HbA1c levels in T2D subjects [34], we sought to determine whether HbA1c levels, treated 
as a continuous variable, correlated with specific lipids on our list. We observed positive 
correlations (>0.70) between HbA1c and eight unsaturated, long-chain TGs and one DG 
(Figure 3) that were linearly associated with disease severity. 

 
Figure 3. Pearson correlation plots (>0.70) of HbA1c% and various long-chain polyunsaturated 
DGs or TGs. The data was detrended by age, sex, and body weight. A and B denote structural ste-
reoisomers of DG and TG. The blue lines represent fitted regression lines (cor) between HbA1c% 
and various TG lipids. 

3.5. Fecal Secondary Bile Acids Can Distinguish Healthy from Dys/Dia Animals and are 
Associated with T2D 

Following propensity score matching that adjusted for BW, age, and sex, a weighted 
Random Forest classification algorithm was applied to fecal bile acid data to enable clas-
sification of different animal groups (Table 3). The classification accuracy between Healthy 
and Dys (AUROC = 0.67) was higher than that between Dys and Dia (AUROC = 0.59). 

Table 3. Disease classification accuracy in fecal bile acids using Random Forest analysis. 

Animal Phenotype AUROC [95% CI] 
Dys vs. Dia 0.59 [0.40, 0.79] 

Healthy vs. Dys 0.67 [0.47, 0.87] 
Healthy vs. Dys/Dia 0.76 [0.64, 0.89] 
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DGs or TGs. The data was detrended by age, sex, and body weight. A and B denote structural
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and various TG lipids.

3.5. Fecal Secondary Bile Acids Can Distinguish Healthy from Dys/Dia Animals and Are
Associated with T2D

Following propensity score matching that adjusted for BW, age, and sex, a weighted
Random Forest classification algorithm was applied to fecal bile acid data to enable classifi-
cation of different animal groups (Table 3). The classification accuracy between Healthy
and Dys (AUROC = 0.67) was higher than that between Dys and Dia (AUROC = 0.59).

Table 3. Disease classification accuracy in fecal bile acids using Random Forest analysis.

Animal Phenotype AUROC [95% CI]

Dys vs. Dia 0.59 [0.40, 0.79]
Healthy vs. Dys 0.67 [0.47, 0.87]

Healthy vs. Dys/Dia 0.76 [0.64, 0.89]

Moreover, when data from Dys and Dia animals were combined into a single Dys/Dia
group vs. Healthy, we observed a higher classification accuracy (AUROC = 0.76) over
either Dys or Dia alone. This result revealed that the fecal bile acids of Dys animals
have a metabolic profile more similar to those of Dia animals than to those of healthy
controls. Metabolites that contributed the most to predicting Healthy from Dys/Dia group
association were ranked by their variable importance (VIMP) score, obtained from the
Random Forest model.

The higher the importance score, the more influential this variable was when dis-
tinguishing Dys/Dia from Healthy. GCDCA and GCA were the most important fecal
metabolites used to distinguish between different groups of animals (Figure 4). Univariate
weighted t-tests revealed directionality and that GCDCA was most significantly reduced in
diseased animals (FDR < 0.001). A boxplot of these results (Figure 5) shows the distribution
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of log-transformed GCDCA abundances across Healthy and diseased animals. Table S5
lists bile acids that were significantly reduced in Dys/Dia animals.
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Through univariate AUROC analysis, we observed that for the fecal metabolomics data
layer, the metabolites that were most predictive of Healthy and Non-Healthy (Dys/Dia)
disease classification were several secondary bile acids: TCA, TUDCA, TCDCA, GCA, and
GCDCA. They were all enriched in healthy subjects (see Table S6).

3.6. Metagenomics Results Reveal Several Bacterial Species to Be Associated with T2D

Analysis of the metagenomics data layer revealed that Roseburia, Ruminococcus, Clostrid-
ium, and Streptococcus were reduced in Dys/Dia animals (Table 4).
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Table 4. Univariate descriptive statistics (i.e., AUROC and the associated 95% confidence intervals for
predicting T2D status) reveal several bacterial species to be significantly reduced in Dys/Dia animals.

Species AUROC [95% CI] Dys/Dia vs. Healthy

Roseburia inulinivorans 0.31 [0.13, 0.50] Down
Clostridium bartlettii 0.28 [0.10, 0.46] Down
Ruminococcus obeum 0.28 [0.07, 0.49] Down

Streptococcus pasteurianus 0.26 [0.09, 0.43] Down
Streptococcus lutetiensis 0.26 [0.08, 0.44] Down

Fecal bile acid concentrations were associated with the abundance of distinct bacterial
taxonomic groups. Through inductive reasoning, we inferred that the abundance levels of
these species were positively associated with the abundance levels of secondary bile acids
and that they supported the classification of animals into the different groups created based
on our metabolomics results. In an illustrative example, the boxplot of Clostridium bartlettii
species’ taxonomic abundance between the two disease groups is provided in Figure 6.
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4. Discussion

Like obesity and the development of insulin resistance, T2D progression in NHPs has
a similar trajectory to that in human populations. Our principal aim was to determine if
specific plasma and fecal metabolites/lipids from a colony of NHPs could be leveraged to
classify which animals were healthy and which had developed pre-diabetes or diabetes. In
addition to major anthropometric risk factors such as age, lifestyle, and diet, a prevailing
feature of T2D development is increased insulin resistance, diet-induced obesity, and
chronic accumulation of plasma lipids. The mechanisms by which specific lipid classes
drive underlying disease progression, however, remain poorly understood. Several altered
fatty acids and lipid classes have previously been reported to help improve the classification
of human individuals at risk of developing diabetes. These include phospholipids (mainly
PC and PE), TGs, DGs, cholesterol esters, ceramides, and sphingomyelins. Elevated
plasma ceramides are known to correlate with dysmetabolic health and lower insulin
sensitivity [35,36].

Both phospholipids and TGs exhibit some of the strongest associations with the
risk of pre-diabetes and T2D development [10,37–39]. Conversely, decreased plasma
lysophosphatidylcholine (LysoPC) levels are inversely or negatively associated with obesity,
pre-diabetes, and T2D [40–44]. High serum levels of several sphingomyelins have also been
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shown to have a BMI-dependent association with metabolic syndrome and increased risk
of T2D [45,46].

A large, population-based lipidomics profiling study of Finnish men adjusted their
results for BMI and age so that any associations between metabolite/lipid levels and the
development of T2D were not obscured by the imbalance of BW, age, and sex [47,48]. They
identified and validated a signature of several plasma TGs, DGs, and phosphatidylcholines
in participants progressing to T2D, including TG(17:1/18:1/18:2), PC(32:1), PC(34:2e),
PC(36:1), and LysoPC(18:2). The authors used this signature to build a model for predicting
early onset of prediabetes [33]. Interestingly, we observed several of the same PCs identified
in the Finnish study participants to be significantly different in the NHPs, with VIP scores
indicating that they contribute to differentiating between Healthy and Dys states (Table
S1). However, in our study the lipids with the highest VIP scores greater than 2.0 were
PC(35:3), PC(38:3), PC(37:6), PC(33:1), PC(35:1), PC (42:6), PC(36:4), PC (37:3), LPC (18:2),
and TG(54:8). To what extent any of these differential lipids are present solely due to
the metabolism of animal chow is unknown. Therefore, one must exercise care in over-
interpreting the significance of detecting individual NHP plasma lipids. Even though acute
changes to individual lipids and metabolites may not always be the same as in human
cohorts, the molecular adaptations in metabolic pathways that lead to T2D should be
the same.

In our study, elevated plasma TG levels were influenced by age. There was also a
significant correlation between plasma TG and obesity (Table 1). We therefore applied
detrending/propensity score matching for confounder adjustment. We uncovered distinct
classes of lipids that were orthogonal to clinical attribute information. They helped with
high-confidence disease state classification of the animals. Following data adjustment, we
also observed that early onset of diabetes (Dys) was defined by significantly elevated PC
levels compared to those of Healthy animals. A persistently elevated and significantly dif-
ferent TG lipid signature was observed in T2D progressors (Table 2). None of the remaining
plasma lipid classes were significantly different between pairs of animal groups. Several
TGs were positively correlated with HbA1c. For example, TG (58:10)—a polyunsaturated,
longer-chain TG—was highly correlated with HbA1c (Figure 3), even after adjusting for
BMI. Moreover, GAGE analysis confirmed that PCs were the most highly significant cluster
of plasma lipids for differentiating between Healthy and Dys/Dia animals, whereas TGs
differentiated the most between Dys and Dia animals.

Based on results of metagenomics and 16S rRNA gene sequencing, gut microbiome
profiles have previously been associated with T2D outcomes in human populations [49,50].
By leveraging Mendelian Randomization (MR) analysis in a microbiome-wide association
study, Sanna et al. was able to find a causal, host-driven genetic effect causing increased
production levels of the SCFA, butyrate [51]. Connors et al. [52] have previously used
paired gut microbiome and fecal–bile acid pool samples, obtained from a well-characterized
cohort of pediatric CD patients, to identify a list of bacterial species belonging to butyrate-
producing genera—Roseburia, Ruminococcus, Clostridium, and Streptococcus—that appear to
play a key role in the conversion of primary to secondary bile acids.

The role of bile acid production and its association with T2D has been investigated
by Sun et al. [53]. Their metagenomics and metabolomics results for newly diagnosed
diabetic patients treated with metformin revealed altered bile acid metabolism of GUDCA,
an FXR antagonist. A study of gut microbiota and intestinal FXR in mice revealed that
GUDCA acted as an intestinal FXR antagonist that led to the improvement of metabolic
endpoints in obese mice [54]. A study of the gut microbiome and its association with
T2D involving individuals in urban Africa [49] suggested the possibility that modifying
bacterial composition in the gut could be a viable strategy for improving glucose control.

We sought to confirm whether there were any potential interactions between the gut
microbiome and the metabolites that might account for the three-group classification of
animals. Our fecal metabolomics bile acids data had revealed that Dys animals had a more
similar metabolic profile to Dia animals than to healthy controls (Section 3.5 of this paper).
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To be consistent with the fecal metabolomics analyses performed in this study, we also
combined Dys and Dia animals into a single Dys/Dia group for the metagenomics analysis.

A few bacterial species (Roseburia inulinivorans, Clostridium bartlettii, Ruminococcus
obeum, Streptococcus pasteurianus, and Streptococcus lutetiensis) were associated with T2D
secondary bile acid abundance in non-healthy (i.e., Dys/Dia) animals (Table 4), and were
found to have the same directionality of disease association as GCDCA, which was signifi-
cantly enriched in non-healthy animals (Figure 5). This finding appears to suggest that a
potential mechanism by which the NHP microbiome contributes to the development of
T2D is through regulation of the conversion between some primary and secondary bile
acids. Our VIMP results showed that glycoursodeoxycholic acid (GCDCA) and glycocholic
acid (GCA) are the most important bile acids that could distinguish Heathy from Dys/Dia
animals. Moreover, our results, although preliminary, suggest that future experiments on
fecal bile acids and metagenomics could be extended to include a complex metabolic trait
like diabetes (i.e., for correct classification of Dys/Dia animals as opposed to healthy ones).

Matching metabolomics and metagenomics data were available for only about one
quarter of all the animals. Instead of performing correlative analysis directly between the
metagenomics and the metabolomics data layers, we employed an inductive reasoning
approach to identify positively associated bacteria–metabolite pairs through their indirect
correlation with each disease group. More specifically, we first used all the available animal
data for metagenomics and metabolomics to calculate the univariate descriptive statistics
(i.e., AUROC and the associated 95% confidence intervals for classifying Healthy and
Dys/Dia states), which were subsequently used to rank the metabolites and the bacteria
species within their respective data layers. Next, the directionality of disease association for
the top-ranking metabolites and bacterial genera/species were tabulated. The top-ranking
disease-associated metabolites and bacteria species were considered a pair if both were
enriched within a particular animal group. By inference, the corresponding bacteria and
metabolite were believed to be positively interacting with each other by jointly driving the
differences between Healthy and Dys/Dia animals. Such an ‘induced’ association between
the bacteria taxa and the metabolites has been previously described in Crohn’s disease,
where fecal bile acid data correlated with taxa from metagenome data [52].

In summary, several unsaturated, long-chain TGs were linearly associated with disease
severity. Specifically, unsaturated TGs were highly activated in the plasma of Dia animals.
In addition, our study found secondary bile acids to be downregulated in Dys/Dia animals.
Combined with the results of our metagenomics analysis, the hypothesized interaction
between microbiomes and the activity of bile acids in NHPs appears to be supported by
our data.

5. Conclusions

Metabolites from plasma and feces offer independent information, suggesting dif-
ferent roles of fecal and plasma metabolites in understanding the etiology of T2D. Our
results suggest prognostic value in performing both metabolomics and lipidomics analyses
of plasma and feces. By integrating causal inference and machine learning techniques
and applying them to our plasma metabolomics data, we were able to uncover distinct
classes of metabolites, orthogonal to clinical attribute information, that helped with high-
confidence disease state classification of the animals. Overall, based on our RF results,
plasma metabolite profiles were more accurate in classifying an animal’s disease status at
the time of collection, whereas fecal metabolite profiles, collected at roughly the same time
as plasma, were a more accurate classifier of the potential for each animal to progress to
a Dys/Dia state. As such, plasma and fecal metabolite profiles provide complementary
information about the predisposition of a sedentary NHP animal model to develop T2D.

Hence, multi-omics approaches that integrate both host and microbial responses
should facilitate a clearer overall understanding of how host–microbiome dynamics can
be leveraged with ML and multivariate regression methods to pave the way for more
precise differentiation of the progression from dysmetabolic to overtly diabetic states in
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NHP models of T2D. Ultimately, these approaches could translate into more informed
treatment stratification of human volunteers that are more likely to respond to potential
new treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14030159/s1, Figure S1: Data pre-processing flow chart
for untargeted panel; Table S1: The total number (N) of each class of detected lipids between Dys
and Healthy samples; Table S2: Significant lipids by descending VIP order contributing the most to
differentiating Healthy from Dys states. Structural stereoisomers are denoted by A, B and C; Table S3:
Selected lipids (in descending VIP order) contributing to differentiating Dia from Dys. * FDR < 0.05;
fc > 1.5|fc < (1/1.5) and vip > 1; Table S4: The number and percentage of significantly different lipids
belonging to each class between Dys and Dia samples. FDR < 0.05; fc > 1.5|fc < (1/1.5) and vip > 1;
Table S5: Conjugated bile acids are significantly reduced in Dys/Dia animals; Table S6: Fecal bile
acids significantly changed in Dys/Dia animals. Univariate descriptive statistics (i.e., AUROC and
the associated 95% confidence intervals for predicting T2D status).
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