
Citation: Jia, D.; Zhang, H.; Liu, T.;

Wang, R. Exercise Alleviates Aging of

Adipose Tissue through Adipokine

Regulation. Metabolites 2024, 14, 135.

https://doi.org/10.3390/metabo

14030135

Academic Editor: Vassilis Mougios

Received: 6 February 2024

Revised: 19 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Review

Exercise Alleviates Aging of Adipose Tissue through
Adipokine Regulation
Dandan Jia 1,* , Huijie Zhang 1, Tiemin Liu 2 and Ru Wang 1,*

1 School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health,
Shanghai University of Sport, Shanghai 200438, China; 2321518039@sus.edu.cn

2 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University,
Shanghai 200438, China; tiemin_liu@fudan.edu.cn

* Correspondence: jiadandan@sus.edu.cn (D.J.); wangru@sus.edu.cn (R.W.); Tel./Fax: +86-21-65507356 (D.J.)

Abstract: Adipose tissue undergoes changes with aging, leading to increased adiposity, inflammatory
cell infiltration, reduced angiogenesis, heightened oxidative stress, and alterations in its metabolic
function. Regular exercise has been recognized as a powerful intervention that can positively
influence adipose tissue health and mitigate the effects of aging. However, the molecular mechanisms
underlying the benefits of regular exercise on aging adipose tissue function remain poorly understood.
Adipokines released through regular exercise play a potential role in mitigating adipose tissue aging,
enhancing the metabolism of glucose and lipids, reducing inflammation and fibrosis, and promoting
fat browning and thermogenesis. This review comprehensively summarizes the benefits of regular
exercise in addressing the age-related decline in adipose tissue function. Utilizing relevant examples
of this approach, we address the possibility of designing therapeutic interventions based on these
molecular mechanisms.
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1. Introduction

The prevalence of obesity, coupled with its profound influence on the demographic
composition of the global population, has experienced a notable and concerning escalation
over the last four decades. The most recent national prevalence figures for the years
2015–2019, following Chinese criteria, indicate rates of 3.6% for obesity in children under
6 years, 7.9% for obesity in children and adolescents aged 6–17 years, and 16.4% for obesity
in adults (≥18 years) [1]. The study revealed a connection between obesity and the aging
process. However, the prevalence of obesity in older people has dramatically increased
in recent years, with more than 30% of individuals aged 60 and over being overweight or
obese [2]. Further research is imperative to comprehend the morphological and molecular
alterations associated with age in adipose tissue (AT), aiming to address and combat
age-related metabolic diseases.

Aging adipose depots exhibit heightened infiltration of inflammatory cells, enlarged
lipid droplets, and an increased prevalence of senescent cells [3]. These age-related changes
in AT result in a reduced basal metabolic rate, impaired insulin responsiveness, elevated
ectopic deposition of lipids, and consequent lipotoxicity. Emerging evidence suggests that
exercise (e.g., resistance exercise, endurance exercise) is a highly effective intervention in
alleviating obesity and plays a significant role in individual metabolism, as evidenced by
its impact on the morphology and function of adipose depots [4–9]. Moreover, circulating
factors induced by exercise (e.g., swimming exercise, voluntary wheel-running exercise),
known as exerkines, are involved in the metabolism of AT in response to aging [7,10–13].
The goal of this review is to offer a comprehensive overview of the benefits of regular exer-
cise in counteracting age-related declines in AT function. This includes addressing issues
such as adipose expansion, decreased vascularity and mitochondrial function, fibrosis, and
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inflammatory cell infiltration. The relevance of regular exercise in mitigating metabolic
disorders associated with aging AT will also be discussed.

2. Morphological Changes in Aged Adipose Tissue

AT, an extraordinarily flexible and heterogeneous organ, plays a crucial role in regulat-
ing immune responses, body temperature, energy balance, insulin sensitivity, and overall
physiological functions [14]. AT exhibits an extraordinary capacity to adapt to a range of
internal and external signals, owing to its high degree of plasticity [14]. Nevertheless, a
newfound understanding of the cellular and functional remodeling of white adipose tissue
(WAT) and brown adipose tissue (BAT) during aging has surfaced in recent years. Adipose
plasticity becomes compromised with age, as indicated by heightened visceral adiposity,
reduced lipolysis and thermogenesis, and an inability to maintain body temperature during
cold stress [15,16]. Current endeavors focus on investigating the potential underlying
mechanisms behind age-related alterations in AT, including hypertrophy, adipogenesis,
hypoxia, angiogenesis, fibrosis, inflammation, mitochondrial biogenesis, and function [17]
(Figure 1).
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Figure 1. The morphological changes in aging adipose tissue. Adipose plasticity becomes compromised
with age, leading to adipocyte hypertrophy, a decline in adipogenesis, decreased angiogenesis, increased
fibrosis, pro-inflammatory macrophage infiltration (M1 macrophage, Neutrophil, Th1, CD8+), and
decreased anti-inflammatory macrophage infiltration (M2 macrophage, Eosinophil, Th2, T reg).

2.1. Hypertrophy and Adipogenesis Declines

AT exhibits a significant degree of plasticity and plays a role in influencing metabolism
during both health and aging in response to various physiological stimuli. These stim-
uli include obesity, diabetes, fasting, fatty liver, cardiometabolic disease, cold exposure,
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local hyperthermia, and prolonged exercise [14,17]. With advancing age, the plasticity
of adipose tissue becomes compromised [18], affecting the ability of preadipocytes to
self-renew and the replication of adipocyte progenitors in the stromovascular fraction
(SVF) [19]. Adipocytes undergo expansion as body weight increases with age. Hyper-
trophic adipocytes exhibit reduced expression of fat identity genes, compromising their
ability to store excess lipid and releasing inflammatory adipokines that exacerbate the
adipose tissue microenvironment [20]. Excessive enlargement of WAT and inadequate an-
giogenesis result in cellular hypoxia, triggering a pro-inflammatory response. This cascade
effect diminishes adipogenesis, promotes fibrosis, and hampers metabolic flexibility and
thermogenesis in aging and age-related diseases [21–23]. BAT, characterized by multilocu-
lar fat droplets and abundant mitochondria, serves as a thermogenic energy-expending
tissue. It regulates body temperature through the mediation of mitochondrial uncoupling
protein 1 (UCP1) in response to aging and age-related diseases [24,25]. The activation of
brown or beige adipocytes contributes to alleviating metabolic disorders [26].

With advancing age, the decline in adipogenic potential can be associated with cellular
senescence, as indicated by elevated markers of senescence in WAT depots, such as p16Ink4a

and senescence-associated beta-galactosidase activity [27]. The activation of the senescent
pathway may compromise adipogenesis. Adipose-derived stem cells from older donors
exhibited heightened expression of p16Ink4a, which significantly contributes to reduced
cellular differentiation [28]. However, cellular senescence, among other aging-related
processes, influences the endocrine function of AT. Functional WAT releases various factors
that contribute to maintaining energy homeostasis, such as leptin, resistin, chemerin, and
adiponectin. Furthermore, the secretion of these adipokines is affected by the aging process.

2.2. Hypoxia and Angiogenesis Disorder

The excessive enlargement of WAT and inadequate angiogenesis create a hypoxic
environment in cells in response to obesity. This condition leads to a pro-inflammatory
response and disorder in angiogenesis. With aging and obesity, the reduced availability of
oxygen can trigger cellular hypoxia and inflammation, contributing to local and systemic
metabolic dysfunction. Hypoxia-inducible factors (HIFs) play a role in various cellular
functions, including glucose utilization, angiogenesis, apoptosis, extracellular matrix (ECM)
remodeling, recruitment of macrophages, and fibrosis [29,30]. The hypertrophic growth
associated with aging results in reduced oxygen diffusion, exacerbated by insufficient
compensation from the vasculature. Despite the absence of angiogenesis, HIF-1α seems
to be upregulated in aged AT. However, the instability of the HIF-1α protein can pose
a challenge to quantification [31,32]. Furthermore, HIF-1α plays a role in mitochondrial
biogenesis and function in aged AT. Mitochondrial complex IV (CIV) activity and assembly
are already suppressed in white adipocytes of middle-aged mice, involving a HIF1α-
dependent decline of essential CIV components, such as COX5B [31].

2.3. Fibrosis

Fibrosis has been recognized as a hallmark of dysfunctional AT in aging and obesity. It
is a common pathological consequence of ECM dysregulation and arises from an imbalance
between the synthesis and degradation of ECM fibrillar components [32]. However, the
excessive deposition of collagen in AT triggers persistent and chronic inflammation, ulti-
mately disrupting AT homeostasis and exacerbating metabolic dysfunction in aging and
obesity [33,34]. Importantly, AT fibrosis is linked to insulin resistance in individuals with
obesity [35,36]. The regulation of AT fibrosis involves hypoxia, which induces the transcrip-
tion of ECM components and alters cellular redox status to impact collagen crosslinking
enzymes such as lysyl oxidase [36]. Furthermore, unresolved inflammation is frequently
linked to the progression of fibrosis in various pathological conditions [37]. Mechanistically,
the activation of macrophage toll-like receptor 4 (TLR4) recruits macrophage-inducible
C-type lectin, stimulating pathways involved in ECM production and degradation, as
well as fibroblast proliferation and differentiation [38]. Additionally, the accumulation
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of fibrosis in subcutaneous WAT is associated with resistance to weight loss one year
after bariatric surgery [39]. BAT can selectively release various cytokines to counteract
fibrosis when transplanted into WAT, achieved by upregulating lipogenesis and fatty
acid metabolism [40].

2.4. Inflammation

Adipose tissue exhibits an enrichment of proinflammatory macrophages in response
to both obesity and aging [41]. During the aging process, visceral adiposity is frequently
linked to changes in AT leukocytes, inflammation, and metabolic dysfunction. In con-
trast to obesity, the accumulation of inflammatory factors with age is not dependent on
macrophage abundance, as evidenced by the lack of increase in the number of macrophages
with age. Indeed, aging regulates macrophage polarization by activating TLR4 signaling
and influencing transcript levels of inflammatory IL-6 and monocyte chemoattractant
protein 1 (MCP-1). Aging is additionally linked to an expansion of resident immune cells
in AT, including B and T cells, which exhibit distinct transcriptional profiles compared
to age-related splenic B and T cells [42,43]. Studies have demonstrated that mice lacking
fat-resident regulatory T cells are safeguarded against age-related insulin resistance, al-
though they remain vulnerable to insulin resistance and metabolic diseases associated with
obesity [43]. Furthermore, inhibiting NLRP3-dependent B cell accumulation can reverse
metabolic impairment in aged AT [42].

3. Therapeutic Approaches to Enhance Aging Adipose Tissue
3.1. Cold Exposure

Environmental cold exposure triggers the formation of mitochondria-rich and ther-
mogenic beige adipocytes in WAT, a process known as browning [44,45] (Figure 2). It has
been reported that cold exposure is a remarkably potent stimulus for enhancing insulin
sensitivity and glucose and lipid metabolism. This occurs through the reduction of large
lipid droplet accumulation, clearance of serum triacylglycerol, promotion of FFA oxidation,
and the delivery of long-chain fatty acids. These actions contribute to increased expression
of UCP1, improvement of mitochondrial biogenesis and function, and enhancement of
browning in white adipocytes within WAT [44,46,47]. BAT is characterized by its capacity to
dissipate energy as heat through the action of UCP1, which is activated by the sympathetic
nervous system (SNS) during activities such as exercise or exposure to cold [8,48,49]. Nev-
ertheless, triggering the senescence pathway in young beige progenitors induces premature
cellular senescence and hinders their potential to form cold-induced beige adipocytes.
On the contrary, genetically or pharmacologically reversing cellular aging through the
p38/MAPK-p16Ink4a pathway in aged mouse or human beige progenitor cells rejuvenates
cold-induced beiging [50].

3.2. Local Hyperthermia Therapy

Earlier research has demonstrated that cold exposure or activation of adrenergic signal-
ing can be a beneficial method for promoting the generation of beige adipose tissue [26,51].
Conversely, these treatments have limited applications due to associated cardiovascular
risks [52–55]. Recent studies have highlighted that local hyperthermia therapy could offer
promising scientific benefits and serve as a potential therapeutic approach for aging-related
diseases [56,57]. The underlying molecular mechanism behind these positive outcomes of
hyperthermia therapy involves the expression of heat shock protein 72 (HSP72), a classic
stress-responsive protein that plays a role in stabilizing intracellular proteins. This mech-
anism is supported by evidence demonstrating enhanced glucose tolerance and insulin
resistance, improved mitochondrial function, and a reduction in lipid accumulation [58].
Recent studies have suggested that local hyperthermia therapy stimulates thermogenesis,
enhances fat metabolism, and boosts the activation of beige adipose tissue through the
activation of the HSF1-A2B1 transcriptional axis [59]. Heat shock factor 1 (HSF1) plays
a regulatory role in modulating the levels of PGC-1α both transcriptionally and post-
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transcriptionally in response to obesity and aging, contributing to the maintenance of
cellular homeostasis. Additionally, non-lethal hyperthermia-induced perturbations up-
regulate HSF1 and result in mitohormesis, yielding beneficial outcomes in the context of
aging [60–63] (Figure 3).
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obesity. Cold exposure is implicated in the prevention and management of obesity, as evidenced
by the increased expression of UCP1, reduced accumulation of large lipid droplets, enhanced mito-
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3.3. Regular Exercise

Epidemiological studies unequivocally demonstrate that physical inactivity is a sig-
nificant contributor to abdominal adiposity. Nevertheless, regular exercise has long been
recognized as a therapeutic approach for managing obesity and diabetes, leading to a
reduction in abdominal adiposity and mitigating metabolic syndrome. Serving as a valu-
able strategy in primary care and community health, regular exercise proves beneficial in
addressing aging and age-related diseases. The enduring enhancement in glucose clearance
induced by long-term exercise training persists for a considerable duration.

In summary, regular exercise (e.g., resistance training, moderate-intensity endurance
training) plays a crucial role in counteracting the development of obesity and diabetes
stimulated by aging [64]. The research indicates that engaging in physical activity can lead
to a reduction in food intake, low-grade inflammation, and lipogenesis, thereby alleviating
insulin resistance in response to both obesity and aging [65]. In elderly individuals (aged
65 years and over) who engage in prolonged endurance exercise (15 consecutive days of
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biking for 7–9 h/day at 63% and 65% of maximal heart rate), there was an increase in
macrophage content and mitochondrial respiration in adipose tissue [66]. A 12-month
exercise program revealed that prolonged exercise training (a combination of aerobic and
strength training for a minimum of 150 min per week) may signify a certain degree of
remodeling in adipose tissue among older patients (age 41–81 years) with coronary artery
disease and diabetes [67]. Furthermore, both endurance (high-intensive interval exercise
performed on an ergometer bicycle, 3 times a week for 45 min) and resistance exercise (a
45-min interval-type, medium-load, high-repetition, time-based training, 3 times a week)
decrease the mass of epicardial adipose tissue in individuals with abdominal obesity but
also mitigate obesity-induced cardiac fat accumulation [68]. Nevertheless, the precise
mechanism by which exercise ameliorates metabolic disorders induced by aging and
obesity remains not fully identified.
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Figure 3. Local hyperthermia therapy improves WAT browning in aging-induced obese. Local
hyperthermia therapy stimulates the activation and production of beige adipocytes in individuals
over the age of 65 with obesity, enhancing metabolic performance. This includes reductions in
lipid accumulation and body mass, improvements in diabetic neuropathic symptoms, enhanced
glucose tolerance, increased insulin sensitivity, and the promotion of mitochondrial biogenesis and
thermogenesis. These effects are achieved through the activation of the HSF1-A2BA-PGC-1α pathway.
Red arrows indicate an increase (up arrow) or a decrease (down arrow).

4. The Potential Role of Regular Exercise in Aged Adipose Tissue

Regular exercise, such as resistance ladder-climbing exercise, running-wheel exercise
at a constant speed of 18 m/min for 60 min daily, 5 d/wk for 8 wk, has been shown to in-
duce significant alterations in the morphology and function of AT, particularly in response
to metabolic diseases. These changes include an increase in fat browning, a reduction in
adipocyte hypertrophy, and improvements in glucose and lipid metabolism in AT [69–72].
Moreover, 2-week running-wheel exercise training not only triggers a phenotypic transfor-
mation of AT, shifting it from primarily storing energy as white adipocytes to thermogenic
beige adipocytes, especially in the context of obesity and diabetes. Additionally, it enhances
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processes such as FFA oxidation, insulin sensitivity, alleviation of oxidative stress, as well
as the promotion of mitochondrial biogenesis and function [10,73] (Figure 4).
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Figure 4. Regular exercise mitigates metabolic syndrome. Consistent physical activity promotes
the activation and generation of beige adipocytes in individuals over the age of 65 with obesity
by regulating associated exerkines and adipokines. Ultimately, this process enhances metabolic
performance, leading to notable benefits such as decreased inflammation and body mass, heightened
energy expenditure, improved glucose tolerance, increased insulin sensitivity, and the stimulation of
mitochondrial biogenesis and UCP1-dependent thermogenesis. BDNF, brain-derived neurotrophic
factor; FGF21, fibroblast growth factor 21; Metrnl, meteorin-like protein; SFRP5, secreted-frizzled-
related protein 5. Up arrow signifies an increase, while down arrow indicates a decrease.

4.1. White Adipose Tissue

WAT, being a highly prevalent form of AT, is distributed throughout nearly every
region of the body [74]. Nevertheless, the functional decline of AT in the context of
obesity and diabetes is involved in a reduction in AT plasticity. This is evident in the
significant decrease in AT metabolism and alterations in phenotype to meet the demands
of the organism [14]. The maladaptive remodeling of AT, marked by heightened fibrosis
proliferation and a pro-inflammatory response, is triggered by a breakdown in angiogenesis
and local hypoxia [75,76]. As a result, adipose tissue becomes insulin-resistant, inflamed,
fibrotic, and dysfunctional, particularly in the context of aging.

Numerous studies have demonstrated that exercise (e.g., high-intensity interval tread-
mill training 3 times per week for 60 min each session over 8 months, or walking combined
with arm aerobics 3 times per week for 4 months) has a profound impact on systemic
metabolism by adapting to various tissues, including the heart [77–79], liver [80], skeletal
muscle [81,82], and AT [7,64,83–86]. AT depots, which play crucial roles in metabolism,
are implicated in mitochondrial biogenesis, glucose metabolism, and FFA oxidation and
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uptake in response to exercise. These depots include inguinal WAT, perigonadal WAT, and
interscapular BAT [5]. Routine aerobic exercise (e.g., 6–8 weeks of swimming or treadmill
training at 75–85% of VO2,max for 60 min per day, 5 days per week) brings about a significant
reduction in WAT and a substantial increase in BAT in both mice and humans. This effect is
achieved through the stimulation of various growth factors and cytokines, fostering the
proliferation and differentiation of brown preadipocytes [87,88]. In WAT, regular exercise
(e.g., swimming exercise training for 90 min daily, 5 days/week for 4 weeks, or resistance
training 3 times a week for 60 min each session over 6 weeks) leads to a considerable
decrease in adipocyte size [89], an increase in mitochondrial biogenesis [90–92], regula-
tion of adipokine secretion [93,94], and an overall enhancement of whole-body metabolic
health [95]. Furthermore, 12-month treadmill exercise training (starting at 3 m/min for
5 min, increasing to 4.8 m/min for 5 min, and reaching a maximum of 7.2 m/min for
20 min, with a 0% slope) induces adaptability in WAT, as indicated by elevated FFA oxi-
dation and a reduction in the impact of inflammation, achieved through the regulation of
pro/anti-inflammatory gene expression and the infiltration of macrophages [96]. Further-
more, exercise training contributes to the improvement of mitochondrial biogenesis and
thermogenesis by facilitating the transformation of white adipocytes into beige adipocytes
in WAT, counteracting the effects of aging and obesity [96].

4.2. Brown Adipose Tissue

BAT, a specialized heat-generating organ rich in mitochondria, is crucial for main-
taining body temperature in cold conditions [97]. Mitochondrial biogenesis and function
in BAT play a pivotal role in thermoregulation and metabolic processes. Regular exer-
cise has been shown to enhance UCP1 content, mitochondrial respiration and activity,
and upregulate genes associated with mitochondrial biogenesis in BAT [5]. Consistent
physical activity (voluntary wheel-running training for 4 weeks) significantly reduces fat
mass and body weight gain, enhances energy expenditure, and elevates UCP1 expression
in BAT by activating the AMP-activated protein kinase (AMPK) signaling pathway [98].
UCP1, responsible for dissipating the proton motive force as heat, augments the energy
metabolism of mitochondria in BAT, contributing to adaptive non-shivering thermogenesis
(NST) [97]. The presence and function of BAT are reported to be diminished by metabolic
diseases [99] and aging [100–103]. Nonetheless, functional BAT has been shown to reduce
oxidative stress, alleviate pathological cardiac hypertrophy, and enhance cardiac function
by promoting the release of exerkines such as FGF-21 and IL-6 [104,105].

Endurance exercise training or physical activity in young sedentary adults enhances
BAT volume, playing a significant role in regulating glucose metabolism in an intensity-
dependent manner. This study demonstrates that the BAT response becomes stronger with
increasing exercise intensity [8]. Furthermore, voluntary wheel-running training induces
alterations in lipid metabolism in AT by modifying the lipidomes of both WAT and BAT.
This is evident in the reduction of specific molecular species of phosphatidic acid (PA),
phosphatidylcholines (PC), phosphatidylethanolamines (PE), and phosphatidylserines
(PS) in WAT, and the increase in specific molecular species of PC and PE in BAT. There
is also a decrease in the majority of triacylglycerols (TAGs) in both WAT and BAT [4].
Additionally, physical activity or exercise training (e.g., endurance exercise, resistance
exercise) enhances mitochondrial activity, glucose uptake, insulin sensitivity, and ther-
mogenesis in BAT [7,72,84,106–109]. Cardiolipin (CL), a mitochondrial phospholipid, is
essential for mitochondrial metabolism and structural integrity [110–114]. Moreover, CL
serves as a key effector in the thermogenic programs of brown and beige adipocytes and
is involved in insulin sensitivity in AT [115]. Conversely, the depletion of CL in brown
and beige adipocytes impairs thermogenesis and glucose metabolism, resulting in reduced
insulin sensitivity [115].
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4.3. Beige Adipose Tissue

In addition to BAT, cells within WAT undergo adaptive thermogenesis in response to
cold exposure or prolonged exercise training and are referred to as beige adipocytes. The
development of beige adipocytes is regulated by factors such as PR domain containing
16 (PRDM16), peroxisome proliferator-activated receptor gamma (PPARγ), and CCAAT-
enhancer-binding proteins (C/EBP) [116]. Beige cells represent an inducible profile of
thermogenic adipocytes that can be activated by various stimuli, enhancing their capacity
for fuel oxidation and thermogenesis. These stimuli include exercise, cold exposure, local
hyperthermia therapy, and β-adrenergic intervention [59,116–118]. Research has shown
that sustained physical activity and exercise induce the beiging of WAT by modulating the
secretion of brain-derived neurotrophic factor (BDNF), irisin, PGC-1α, interleukin-6 (IL-6),
and meteorin-like protein (Metrnl) [95,119,120]. Moreover, exercise activates signaling path-
ways associated with beiging in WAT, including the Wnt/β-catenin signaling pathway—a
novel pathway crucial for driving the adipocyte population required for beiging. Ad-
ditionally, exercise influences PGC-1α-related pathways, which mediate mitochondrial
biogenesis and function [121].

Regrettably, aging results in a reduction in the mass of BAT in adult
humans [122–124], and it diminishes cold and exercise-induced beiging in aged mice. This
is evidenced by a decrease in the expression of transcriptional markers associated with
beige adipocytes [50,116,125,126]. The number of senescent cells increases while the dif-
ferentiation of beige adipocytes decreases in aged mice and middle-aged humans. This is
indicated by elevated transcriptional factors of senescence in WAT, including p16Ink4a, p21,
and insulin-like growth factor binding protein 5 (IGFBP5). Furthermore, this phenomenon
leads to an increase in glucose content and mitophagy, coupled with an incapacity to
regulate the adaptation of body temperature in response to cold exposure. These findings
demonstrate that cellular senescence plays a pivotal role in the age-induced decline of
beige adipocyte generation [50,127–129]. The study revealed that sustained stimulation
of β-adrenergic agonists induces beiging in middle-aged mice [16,130]. Various factors
act as transcriptional regulators influencing differentiation in adipose tissues in response
to aging.

5. Effect of Exercise-Induced Adipokine in Aged Adipose Tissue

Aging induces structural, compositional, and functional changes in AT, characterized
by reduced adipogenesis, alterations in the immune cell profile, and increased inflamma-
tion [131]. As the largest endocrine gland, AT releases various cytokines that regulate
metabolic responses, encompassing pre-production, adipogenesis, glucose and lipid home-
ostasis, inflammation, and several other physiological functions [132]. Aging exerts a
negative regulatory impact on the secretion of adipokines, as evidenced by an increase
in proinflammatory adipokines (e.g., leptin, resistin, chemerin, retinol-binding protein 4,
lipocalin 2, CCL2, IL-1β, IL-6, IL-12, IL-18, and TNF-α) [133–138], coupled with a decline
in anti-inflammatory mediators (e.g., adiponectin, vaspin, secreted-frizzled-related protein
5, omentin-1, and C1q/TNF-related proteins) [139–142] (Table 1). Nevertheless, regular
exercise can enhance the secretion of adipokines and mitigate the morphology and function
of AT in response to metabolic diseases. This includes promoting fat browning, reduc-
ing adipocyte hypertrophy, improving FFA oxidation, insulin resistance, and enhancing
mitochondrial homeostasis in aging AT [69–72].

Adipokines such as adiponectin and spexin, which decrease with aging in AT, play
a crucial role in insulin resistance and are associated with the onset of diabetes and other
metabolic disorders [64,143,144]. Aging adipose tissue impacts the secretion of adipokines,
promoting a chronic state of low-grade systemic inflammation [139]. The exerkine IL-
6, when exposed to acute inflammatory stress, is significantly increased with aging in
AT. The age-dependent secretion of IL-6 is regulated by the autocrine/paracrine action
of IL-1β in aged AT [145]. BAT, fulfilling endocrine functions, also releases hormones
known as batokines, which play a role in regulating energy balance, glucose uptake, lipid
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metabolism, and thermogenesis [146–148]. Batokines are exercise-related humoral factors
originating from BAT, exerting local autocrine or paracrine effects. These factors include
peptides, metabolites, lipids, or microRNAs [11]. Multiple studies demonstrate that exercise
training or physical activity induces the differentiation of white adipocytes into functionally
equivalent brown adipocytes, enhancing BAT function. Additionally, brown adipose tissue
plays a role in mediating exercise performance [95,146,147]. Nevertheless, treadmill exercise
training enhances energy metabolism in response to cold exposure, as demonstrated by the
promotion of mitochondrial biogenesis, reduction in oxidative stress, and increased exercise
capacity [84]. Moreover, the study reveals that small extracellular vesicles secreted from
BAT not only promote metabolism within BAT but also regulate cardiomyocyte survival
and participate in the response to exercise and myocardial ischemia/reperfusion injury.
This is evidenced by the suppression of the proapoptotic MAPK pathway [7].

Table 1. The impact of adipokine in aged AT.

Adipokines Main Mechanism Main Biological Action Target Refs

Leptin Srebp-1c/FGF21/
PGC-1α

Regulates FA biosynthesis and
mitochondrial biogenesis AT Kobayashi, M., et al. [149]

Resistin CRP/IL-6/TNF-α Associates with aging-related
cardiovascular disease Heart Gencer, B., et al. [135]

Chemerin PRDM16/CPT1/
DIO2

Regulates formation and
function of BAT BAT Zhang, Y., et al. [136]

RBP4 JNK/TNF/IL-1β
Causes insulin resistance and
inflammation by activating

innate immunity
AT Moraes-Vieira, P. M., et al. [137]

LCN2 mTORC1/ERK Regulates mitochondrial
bioenergetics BAT Su, H., et al. [138]

IL-6 IL-1β/TNF-α Impact age-associated
inflammatory diseases AT Starr, M. E., et al. [145]

Adiponectin ARG1/TNF Mediates the anti-inflammatory
effects of niacin AT Graff, E. C., et al. [150]

Vaspin ANGPTL4/DNA
methylation

Reduces inflammation and
activists BAT BAT Weiner, J., et al. [140]

SFRP5 JNK/Wnt Regulates inflammation and
obesity-related complication AT Koutaki, D., et al. [142]

CTRPs AMPK/Akt, ERK Mitigates heart failure by
improving inflammation Heart Shanaki, M., et al. [151]

Omentin-1 AMPK/Akt Improves cardiovascular disease
by mitigating inflammation Heart Xu, F., et al. [152]

CRP, C-reactive protein; RBP4, retinol binding protein 4; LCN2, lipocalin 2; SFRP5, secreted-frizzled-related
protein 5; CTRPs, C1q/TNF-Related Proteins; ARG1, arginase 1; CPT1, carnitine palmitoyltransferase 1.

6. Conclusions

Aging of adipose tissue is linked to alterations in structure, composition, and function,
encompassing changes in adipokine secretion, reduced adipogenesis, shifts in immune
cell profile, heightened cellular senescence, increased insulin resistance, elevated inflam-
mation, and enhanced fibrosis. As the largest endocrine gland, adipose tissue releases
a variety of cytokines that regulate metabolic responses. Adipokines released through
regular exercise play potential roles in mitigating metabolic diseases, improving glucose
and lipid metabolism, reducing inflammation and fibrosis, and promoting fat browning
and thermogenesis in adipose tissue. Here, we provide a comprehensive review of the
potential effects of regular exercise on aged adipose tissue by regulating associated ex-
erkines and adipokines. Ultimately, this process enhances metabolic performance, leading
to notable benefits such as decreased inflammation and body mass, heightened energy
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expenditure, improved glucose tolerance, increased insulin sensitivity, and the stimulation
of mitochondrial biogenesis and thermogenesis. Thus, the potential exists for designing
therapeutic interventions based on these molecular mechanisms.
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