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Abstract: Long-term exposure to noise can cause irreversible hearing loss. Considering that there is
no effective drug treatment, it is important to seek preventive treatment for noise-induced hearing
loss (NIHL). Although astragaloside IV (AS-IV) protects against NIHL by reducing serum inflam-
matory factors, there is scarce information on the regulation of inflammatory factors by AS-IV to
prevent NIHL. We investigated the hearing thresholds and relationship between the serum levels
of inflammatory cytokines and intestinal microbiota of c57bl/6j mice exposed to noise (103 dB SPL
4 h·d−1) for 7 days, treated with or without AS-IV. Our results revealed a lower hearing threshold
and lower serum levels of TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ in the mice treated with AS-IV.
Additionally, AS-IV increased the abundance levels of the phylum Firmicutes, class Bacillus, order
Lactobacillus, and family Lactobacillus (p < 0.05), and decreased those of the phylum Bacteroidetes and
order Bacteroidales (p < 0.05). Lactobacillus and Bacilli negatively correlated with TNF-α, TNF-γ, and
IL-1β; Erysipelotrichaceae negatively correlated with INF-γ; and Clostridiales positively correlated
with IL-1β. In conclusion, AS-IV reduces the elevation of hearing thresholds in mice, preventing
hearing loss in mice exposed to noise, and under the intervention of AS-IV, changes in the levels of
inflammatory factors correlate with intestinal flora. We suggest that AS-IV improves intestinal flora
and reduces inflammation levels in c57bl/6j mice exposed to noise.

Keywords: astragaloside IV; noise; hearing loss; intestinal flora; auditory brainstem response;
inflammatory factors

1. Introduction

Approximately 5% of the global population is affected by noise-induced hearing loss
(NIHL), which imposes an enormous economic and health burden on individuals and
society [1]. Furthermore, occupational noise-induced deafness is the second most common
occupational disease and affects approximately 16% of workers [2]. According to a sys-
tematic review, the noise-induced permanent threshold shift after 10 years of exposure at
Lex,8h = 100 dB of 3–6 kHz is 27 dB [3]. A recent study on manufacturing workers has shown
that the mean prevalence of high-frequency NIHL is 41.64% [4]. Although current research
on NIHL drug therapy includes anti-inflammatory (such as dexamethasone [5], methylpred-
nisolone [6], and curcumin [7]), antioxidant (such as resveratrol [8] and salicylate Trolox [9]),
and antiapoptotic drugs (such as all-trans retinoic acid [10] and AM-111 [11]), there are no
specific drugs for NIHL [1]. In clinical practice, hearing aids [12] and cochlear implants [13]
are generally supportive treatments for permanent hearing loss, but the patients can neither
fundamentally repair damaged or missing hair cells (HCs), nor they can achieve complete
reconstruction of hearing function. Because hearing cells are considered terminal cells,
they cannot regenerate once severely damaged [14]. Therefore, it is important to clarify
the pathological mechanism of NIHL and seek effective preventive drugs for NIHL. In
this study, we used the noise intensity of production work (Lex,8h ≤ 100 dB(A)) [3] with
broadband noise in which harm to the auditory system may be less than an octave band to
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construct a NIHL model [15]; the noise should cause NIHL or pathological manifestations
of outer hair cells but not cause too serious damage to avoid the excessive use of high doses
of AS-IV.

Inflammatory infiltration and HC deficiency are important contributors to the patho-
genesis of NIHL [16,17]. In particular, at an early stage of the development of NIHL, the
levels of IL-6, TNF-α, IL-1β, and other inflammatory factors are increased [18]. One study
showed that the average loss of outer hair cells (OHCs) in mice exposed to 120 dB SPL for
1 h was 29.3% [19], and another study showed that the highest loss of OHCs was over 60%
in mice exposed to noise at 105 dB SPL for 2 h [20]. Noise stimulates HCs, making them
active, producing an increase in mitochondria [21], and leading to superoxide production
and reactive oxygen species (ROS) production [22]. The destruction of cochlear hair cells
can lead to permanent noise-induced hearing loss [23–25]. Therefore, in this study, we
considered that hearing loss had occurred or was about to occur when the pathological
changes of outer hair cell loss and shedding occurred, and then ABR was used to judge the
hearing state of the mice at that time [26,27].

Recent studies have shown that oral administration of AS-IV at a dose of 200 mg/kg·d−1

may reduce the elevation of hearing thresholds by decreasing the expression of ROS and
active-caspase-3 in a noise-exposed guinea pig model [28]. Furthermore, AS-IV has signifi-
cant pharmacological effects, such as an anti-inflammatory effect on cartilage degeneration
in patients with osteoarthritis [29], an antioxidant effect that inhibits the NLRP3/caspase-1
axis to inhibit NLRP3 inflammasome-mediated pyroptosis [30], and an immunomodulatory
effect by regulating the T-cell receptor signaling pathway and Th17 cell differentiation [31].
AS-IV can alleviate E. coli-induced peritonitis by regulating neutrophil migration [32].
However, the specific mechanism by which AS-IV prevents noise-induced deafness is still
unclear.

Although AS-IV (molecular formula, C41H68O14) is a saponin with poor absorption,
and the absolute bioavailability of AS-IV in rats with oral administration is 3.66% [33], the
abundance of gut microorganisms and fecal metabolites is altered by AS-IV, which may con-
tribute to their antifibrotic and cardioprotective effects [34]. One study showed that 105 dB
SPL noise exposure affected gut microbiota and metabolic disorders in rats [35]. Long-term
low-intensity noise exposure can increase the abundance of Firmicutes and diminish that of
Bacteroidetes in intestinal flora, and it can induce cognitive decline in mice [36]. Moreover,
chronic noise exposure significantly reduces the abundance of Rikenellaceae, Ruminococ-
caceae, Anaerobia, Lachnospira, and Odoribacter in the microbial community and significantly
increases the levels of IL-6, NF-κB, iNOS, and NGAL in the mouse intestine [37].

According to a previous study, AS-IV might reduce noise-induced increases in hearing
threshold by reducing inflammatory factors [38,39], and AS-IV could improve disease prog-
nosis by ameliorating intestinal flora with optimizing intestinal metabolites [40]. However,
the correlation between inflammatory factors and intestinal flora of mice in which NIHL
is protected by AS-IV remains poorly understood [39,41]. Therefore, the present study
aimed to initially explore the mechanism by which AS-IV reduces NIHL damage through
synergistic alterations in gut microbiota and inflammation.

2. Materials and Methods
2.1. Animals Groups

Eighteen 6-week-old specific-pathogen-free male c57bl/6j mice, weighing approxi-
mately 14–16 g, were purchased from the GuangDong Medical Laboratory Animal Center
(License No. SCXK 2022-0002, GDMLAC, Foshan, China). The mice were housed in the
Laboratory Animal Center, Guangdong Pharmaceutical University under the following con-
ditions: temperature of 20 ± 0.5 ◦C, relative humidity of 55% ± 5%, and a light/dark period
of 12 h. All experimental procedures were approved by the Animal Ethics Committee of
Guangdong Pharmaceutical University (No. gdpulacspf2022124). The mice were randomly
divided into three groups, namely the control group, the noise-exposed group, and the AS-
IV group, with six mice in each group. AS-IV (>98%, Macklin, Shanghai, China) with 0.05%
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sodium carboxymethylcellulose was prepared as suspension and administered by gavage
at 100 mg/kg body weight once a day until the end of experimental exposure [38,39]. The
6-week-old mice were purchased and subjected to a week of environmental acclimation,
with the first ABR and the beginning of exposure to noise and AS-IV at 7 weeks of age, the
end of noise exposure at 8 weeks of age, and the last ABR at 10 weeks of age.

2.2. Noise Exposure and Procedures

The mice were placed in a small metal cage (7 × 7 × 10 cm) in a self-built noise
exposure box (50 × 50 × 40 cm). The noise was broadband noise with a frequency of 20 Hz–
20 kHz [42]. A broad-spectrum loudspeaker (FEI L0 YD3-2001; Guangzhou, China) was
positioned 10 cm above the metal cage. The loudspeaker received noise transmitted from a
computer and through a power amplifier for cyclic playback. The noise-exposed group was
exposed to 103 dB SPL noise for 7 days in a row for 4 h a day (LEX,8h = 100.0 dB) [3]. The
control mice were kept in a quiet room with less than 40 dB SPL, while other conditions
were the same as those in the noise-exposed group.

2.3. Auditory Brainstem Response (ABR) Audiometry

Aiming to determine the hearing level, the hearing thresholds of the c57 mice were
measured before noise exposure and 14 days after the end of exposure. The c57 mice were
anesthetized by intraperitoneal injection of 40 mg/kg of 1% sodium pentobarbital. ABR
audiometry was conducted using the Neuro-Audio device from Neurosoft (Ivanovo, Russia)
and was recorded using the supporting system (NEURO-AUDIO.NET). The temperature
of the c57 mice was maintained using a heating pad. Left and right reference electrodes
were inserted subcutaneously behind each tested ear, and the recording electrodes were
inserted into the vertex. The tested ears of the mice were presented with click and tone
burst stimuli (4, 8, and 16 kHz) through a pair of in-ear headphones. The signal started at
100 dB; the stride was 10 dB initially and 5 dB when approaching the threshold. The results
were set as 512 repetitions of the stimulus superposition waveform, the stimulus frequency
was 20 times per second, the low-frequency filter was 100 Hz, and the high-frequency
filter was 2000 Hz. The minimum sound stimulus intensity that could cause wave III and
a reproducible waveform was defined as the response threshold to evaluate the hearing
impairment of mice in each group [43–45].

2.4. Observation of Cochlear Hair Cells

After the mice were sacrificed, the tissues around the acoustic bulla of the temporal
bone were removed, and the cochlea was isolated, fixed in 4% paraformaldehyde, and
decalcified with 0.5 M EDTA to suitable hardness. The basilar membrane was dissected
under a stereoscopic microscope (SZ760; Cnoptec, Chongqing, China). The isolated basilar
membrane was permeabilized with 0.1% Triton X-100 (Amresco, Washington, DC, USA)
for 30 min, stained with bovine serum albumin to prepare Actin-Tracker Green (Beyotime,
Shanghai, China) for 70 min, and washed with phosphate-buffered saline two to three
times. Pictures were taken under a benchtop microscope (EVOSTM M5000; Thermo Fisher
Scientific, Waltham, MA, USA).

2.5. Analysis of Inflammatory Indicators

Blood was collected using the orbital blood collection method [46], and mouse serum
was obtained after centrifugation. An ELISA kit (MEIMIAN, Yancheng, China) was used
to detect TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ content in mouse serum. We created a
concentration absorbance standard curve based on the standard sample and calculated the
concentration of the inflammatory substances in the sample according to the standard curve.

2.6. Analysis of the Microbiota

Mouse fecal samples were obtained by stimulating the tail and stored in sterile cen-
trifuge tubes at −80 ◦C, which were used to identify the 16S rRNA gene sequence. Then,
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the DNA of the corresponding genome was extracted following the instructions of the kit
manufacturer. Integrity, purity, and concentration of DNA were determined by 1% agarose
gel electrophoresis and an ultramicrophotometer. Polymerase chain reaction was used to
amplify genomic DNA. A database was constructed and sequenced using the previous
methods [47]. Then, based on valid sequencing data, Operational Taxonomic Uni clustering
and species analysis were conducted, and annotation was performed to obtain species
information and distribution of the microbiota in each group. The microbiota histogram
was used to analyze the composition of the microbiota at the phylum, class, order, family,
and other levels.

2.7. Statistical Analysis

All data were analyzed using GraphPad Prism version 9.0.0 for Windows (GraphPad
Software, La Jolla, CA, USA) and expressed as the mean ± standard deviation. Analysis of
single-factor differences between groups was achieved using one-way analysis of variance,
Brown–Forsythe and Welch ANOVA tests. Multiple pairwise comparisons were based
on the least-significant-difference method. Correlation analysis was conducted using the
Spearman test. The significance level was set at α = 0.05.

3. Results
3.1. AS-IV Improves Hearing in Noise-Exposed Mice

We assessed the level of hearing in the mice using ABR. The hearing thresholds of the
mice increased after noise exposure (click: 21.3 dB vs. 42.5 dB, p < 0.0001; 4 kHz: 26.9 dB vs.
54.4 dB, p < 0.0001; 8 kHz: 23.8 dB vs. 37.7 dB, p < 0.0001; and 16 kHz: 27.1 dB vs. 43.3 dB,
p = 0.0002, indicating increases of 21.2 dB, 27.5 dB, 13.9 dB, and 16.2 dB, respectively). After
taking AS-IV, the hearing threshold of the mice was lower than that of the noise-exposed
group at click, 4 kHz, 8 kHz, and 16 kHz.

The hearing thresholds of the mice in the AS-IV group at click, 4 kHz, 8 kHz, and
16 kHz were 13.1 dB, 16.4 dB, 11.7 dB, and 10.8 dB, respectively, which were lower than
those in the noise-exposed group (p < 0.05) (Table 1).

Table 1. Hearing threshold results of mice in the control, noise-exposed, and noise + AS-IV groups
before and after noise exposure (x ± s, dB SPL).

Group No. of
Ears

Pre-Exposure Post-Exposure

Click 4 kHz 8 kHz 16 kHz Click 4 kHz 8 kHz 16 kHz

Control 12 25.3 ± 5.5 31.1 ± 2.9 20.8 ±
12.5 22.1 ± 8.5 21.3 ±

5.7 26.9 ± 6.8 23.8 ± 7.9 27.1 ± 8.7

Noise 12 19.7 ± 6.0 25.6 ± 6.8 16.2 ± 3.6 16.7 ± 5.0 42.5 ±
6.1 a

54.4 ± 11.6
a

37.7 ± 7.1
a

43.3 ± 9.1
a

Noise +
AS-IV 12 23.3 ± 5.5 27.4 ± 6.7 14.9 ± 6.8 18.5 ± 5.2 29.4 ±

10.1 bc
38.1 ± 10.7

bc
26.0 ± 8.3

b
32.5 ± 10.6

b

F 3.03 2.82 1.63 2.15 24.18 23.26 11.07 9.11
p value 0.062 0.074 0.212 0.133 <0.001 <0.001 <0.001 <0.001

a p < 0.05, control vs. noise. b p < 0.05, noise + AS-IV vs. noise. c p < 0.05, control vs. noise + AS-IV.

3.2. AS-IV Reduces the Loss of OHCs in Noise-Exposed Mice

The OHCs of the control group mice were arranged neatly without any cell loss.
After 14 days of noise exposure, the cochlear OHCs of the noise-exposed group showed
significant deformation; the damage to the OHCs (Figure 1) was more serious in the noise
group, whereas the damage to OHCs giving AS-IV was small or absent. The OHC loss in
the mice from the AS-IV group was lower than that in the noise-exposed group. Combined
with the ABR results, our findings indicate that AS-IV can alleviate hearing loss.
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Figure 1. Fluorescence image of middle turns of mouse hair cells (scale bar, 50 µm; the arrows point
to the missing outer hair cells).

3.3. AS-IV Reduces the Levels of Inflammatory Factors in Noise-Exposed Mice

The levels of TNF-α, TNF-γ, IL-6, IL-1β, and IFN- γ were significantly increased in
the noise-exposed group compared with the control group (by 158.7%, 78.5%, 45.8%, 42.1%,
and 38.8%, respectively; p < 0.05). After treatment with AS-IV, the levels of TNF-α, TNF-γ,
and IL-1β were significantly decreased compared with those in the noise-exposed group
(p < 0.05) (Table 2).

Table 2. TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ content of each group of mice (x ± s, pg/mL).

Group No. of Mice TNF-α TNF-γ IL-6 IL-1β IFN-γ

Control 6 152.2 ± 15.7 33.1 ± 10.8 77.3 ± 15.7 71.9 ± 6.8 585.3 ± 50.0
Noise 6 393.8 ± 51.3 a 59.1 ± 8.3 a 112.7 ± 13.6 a 102.2 ± 13.0 a 812.4 ± 93.3 a

Noise + AS-IV 6 277.8 ± 86.7 bc 46.6 ± 6.9 bc 96.4 ± 17.4 83.5 ± 6.2 bc 820.4 ± 22.8 c

F 25.31 13.02 7.71 16.59 27.38
p value <0.001 <0.001 0.005 <0.001 <0.001

a p < 0.05, control vs. noise. b p < 0.05, noise + AS-IV vs. noise. c p < 0.05, control vs. noise + AS-IV.

3.4. AS-IV Alleviates the Disorder of Intestinal Flora in Noise-Exposed Mice

The dominant microbiota in the mice were Firmicutes (50.1%), Bacteroidetes (40.7%),
Verrucomicrobia (5.1%), Epsilonbacteraeota (2.5%), and Proteobacteria (1.3%). Noise exposure
resulted in decreases in the abundance of phylum Firmicutes, phylum Bacteroidetes, class
Bacilli, order Lactobacillales, order Bacteroidales, and family Lactobacillaceae (p < 0.05). How-
ever, administration of AS-IV increased the abundance levels of phylum Firmicutes, class
Bacilli, order Lactobacillales, and family Lactobacillaceae in the intestine of the noise-exposed
mice (p < 0.05) (Figure 2A–D).

Using principal coordinate analysis (PCoA) to evaluate the overall differences in the
gut microbiota structure of the mice caused by noise exposure, principal coordinates 1 and
2 explained 54.1% and 22.8% of the Bray–Curtis differences, respectively. The difference in
the microbiota structure was statistically significant between the noise-exposed group and
control group and between the noise group and the noise + AS-IV group. The difference
between the control group and the noise + AS-IV group was not significant (Figure 2E).

The results of linear discriminant analysis (LDA > 2) showed that in the control group,
the main enriched bacterial class was Deferribacteria, and the main bacterial species was
Mucispirillum_Schaedeleri. The main enriched bacterial phyla in the noise group were
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. The main enriched bacterial
species in the noise group were Ruminococcaceae_bacterium_Marseille, Alistipes_sp, and
gut_metagenome. The species Lachnospiraceae_Bacterium_A4 of the phylum Bacteroidetes and
the species Butyricimonas_synergistica of the phylum Firmicutes were enriched in the noise +
AS-IV group (Figure 2F).
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analysis of the three groups based on Bray–Curtis algorithm. (F) Only the taxa meeting an LDA
threshold > 2 are visualized. (G) LEfSe cladogram shows the most differentially abundant taxa for
the three groups.

3.5. Correlation Analysis between Gut Microbiota and Inflammatory Factors

We generated a correlation matrix through the Spearman correlation coefficient and
selected the top five bacterial communities in class, order, family, genus, and species
for correlation analysis with mouse serum inflammatory indicators. Among them, the
order Lactobacillales, family Lactobacillaceae, genus Lactobacillus, and class Bacilli were asso-
ciated with serum TNF-α, TNF-γ, and IL-1β. There was a strong negative correlation of
Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae with IFN-γ and a strong positive
correlation of Clostridia and Clostridiales with IL-1β (Figure 3).
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4. Discussion

We showed that AS-IV had beneficial effects on hearing, which has rarely been studied
before. Namely, not only did AS-IV reduce the inflammatory levels in the noise-exposed
mice and regulate their intestinal flora, but it also reduced the noise-induced loss of outer
hair cells and slowed noise-induced hearing loss.

We established an NIHL mouse model by exposing the mice to 103 dB SPL of white
noise for 4 h per day for 7 consecutive days and testing for relevant indicators. Furthermore,
we examined whether oral administration of AS-IV altered the hearing level of the mice
exposed to noise. Before noise exposure, the baseline hearing levels were determined
through ABR. The average hearing thresholds of the mice at click, 4 kHz, 8 kHz, and 16 kHz
were 19.7 ± 6.0 dB, 25.6 ± 6.8 dB, 16.2 ± 3.6 dB, and 16.7 ± 5.0 dB, respectively, consistent
with the existing studies [48]. After noise exposure, there was a significant increase in
the hearing threshold (p < 0.05). To explore the effect of noise exposure on mice HCs, we
detected the cochlear HCs of the mice using immunofluorescence with phalloidin, which
can bind specifically to the cytoskeleton of HCs. The results showed that the noise of
this intensity caused the loss of OHCs, while there was less damage to OHCs following
AS-IV treatment (Figure 1). This finding indicates that AS-IV prevents noise-induced OHC
outright loss and plays a protective role in hearing [49,50].
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In addition, we analyzed whether oral administration of AS-IV altered the serum levels
of inflammatory factors in the mice exposed to high-intensity noise. The results showed that
TNF-α, TNF-γ, IL-6, sIL-1β, and IFN-γ content in the serum increased (p < 0.05), consistent
with previous research [51–55]. The increase in the levels of TNF-α and IL-1β reflects
the activation of monocytes and macrophages, which transform into macrophages and
migrate below the basilar membrane, promoting inflammation and damage in the cochlear
HCs [56]. Moreover, strong noise enhances the increased production of Ca2+ through
cytokine TNF-α-mediated TRPV1 induction, while Ca2+ promotes the inflammation and
apoptosis of inner ear tissue and cells [55]. Moon S K et al. [57] found that IFN-γ increased
the sensitivity of HCs to lower-concentration Ca2+ cytotoxicity through the JAK1/1-STAT2
signaling pathway, which further promoted apoptosis of HCs. Marshall et al. [58] studied
TNF-α as a proinflammatory cytokine and its receptor, TNF-α receptor, and showed
that they play a key role in cell death mechanisms, including necrotic apoptosis and
apoptosis. In addition, our study showed that the increased expression levels of the
proinflammatory cytokines IL-1β and IL-6 in the mice exposed to noise were attenuated
after administration of AS-IV. IL-6 is a key inflammatory marker in many mouse models,
including the age-related hearing loss mouse model [59] and the COPD (chronic obstructive
pulmonary disease)-like inflammatory mouse model [60]. IL-6 also induces excessive
production of vascular endothelial growth factor, resulting in enhanced angiogenesis and
increased vascular permeability [61], which is associated with progressive hearing loss
in Meniere’s disease [62]. A study of pediatric otitis patients found a large amount of
inflammatory factor IL-1β in the ear effusion [63]. IL-1β is a proinflammatory cytokine
mainly produced by monocytes and macrophages, and it promotes cell apoptosis [64].
Similar to this research, Sai et al. [65] found that IL-1β content in HCs was significantly
increased when the miniature pigs were exposed to 120 dB. In addition, Zhang et al.’s [66]
research on Meniere’s disease indicated that the significantly increased content of IL-1β was
due to serum/glucocorticoid-inducible kinase-1 depletion, which led to the damage to ear
OHCs and the vestibular nerve. However, AS-IV decreased the protein levels of TNF-α and
IL-6 in adipocytes through the miR-21/PTEN/PI3K/AKT signaling pathway [67]. Other
studies have shown that AS-IV can interact with the gut microbiota and be decomposed
and used by the gut microbiota, inducing the production of various beneficial short-chain
fatty acids, which can reduce the degree of systemic inflammation [39,68].

The dominant groups in the mice intestinal flora included Firmicutes (50.1%) and
Bacteroidetes (40.7%). We showed that the proportions of Firmicutes, Bacilli, and Lactobacillales
decreased (p < 0.05) in mice after noise exposure, while the proportions of Firmicutes, Bacilli,
and Lactobacillales increased (p < 0.05) and the proportions of Bacteroidetes and Bacteroidales
decreased (p < 0.05) in the noise-exposed mice treated with AS-IV. Therefore, the preventive
effect of AS-IV was partially achieved by reversing the structure of the intestinal microbiota.
The gut microbiota of healthy humans mainly consists of Firmicutes (49%) and Bacteroidetes
(23%), where Firmicutes mainly include Clostridia, Bacilli, and Mollicutes, and Bacteroidetes
mainly include Bacteroidales and Flavobacteriaceae [69]. It has been shown that dietary factors
have a significant impact on Firmicutes, and Firmicutes can also produce butyrate salts, which
reduce the level of inflammation in the body [70]. Bacilli contain Bacillales and Lactobacillales,
and Lactobacillales were shown to play an important role in the microbial community in this
study. Our experiment showed that the relative abundance of Lactobacillales decreased after
noise exposure. Lactobacillales are probiotics that mediate the metabolism of tryptophan into
norharman and inhibit M1-type macrophages [71]. Qiulan et al. [72] found an increased
abundance of AI-IV and increased content of butyric acid and valeric acid in the intestine to
improve slow transit constipation. Our research results showed that Lactobacillales returned
to the level of the control group without any abnormal increase when taking AS-IV, and did
not cause microbial community disorders [73]. Bacteroidales is one of the most abundant
members of the mammalian gut microbiota and an important microbiota for synthesizing
sphingolipids in the intestine [74]. Moreover, sphingolipids mediate metabolic and immune
signaling events related to chronic inflammatory diseases such as autoimmune and chronic
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enteritis [75]. Bacteroidales mainly colonize the colon and use dietary oligosaccharides
such as arabinose and high galacturonic acid [76]. Their survival and reproduction in the
intestine depend on the monosaccharides they use and their interactions with butyrate
salts [77]. The changes in Bacteroidales abundance in this study may be related to the
alteration in intestinal butyrate content caused by AS-IV administration [72].

Furthermore, to explore the specific mechanisms, Spearman correlation coefficients
were used to investigate whether there was a correlation between inflammatory factors
in the serum of the noise-exposed mice and their gut microbiota. Our results indicated
that Lactobacillus negatively correlated with the mouse serum inflammatory factors TNF-α,
TNF-γ, and IL-1β (R = −0.59, p = 0.012; R = −0.66, p = 0.004; and R = −0.63, p = 0.006).
TNF-α and TNF-γ are proinflammatory cytokines secreted by macrophages, monocytes,
and T lymphocytes, which have the effects of promoting cell apoptosis and inflammation
through the activation of transcription factor NF-κB [78]. Lactobacillales are probiotics that
can inhibit the release of proinflammatory cytokines (such as TNF-α) and promote the
release of anti-inflammatory factors such as IL-10 [79]. TNF-α positively correlates with
sensorineural hearing loss [59]. A retrospective cohort study suggested that inhibiting
treatment with AS-IV can improve or even restore patient hearing [80]. This is because
TNF-α blockers can reduce cellular inflammatory response, reduce cochlear HC apoptosis,
and alleviate hearing loss [81]. After the use of AS-IV in this study, the abundance of
Lactobacillales increased, and inflammatory mediators decreased, providing a protective
effect on the body. It has been speculated that AS-IV may exert systemic anti-inflammatory
and antioxidant effects by increasing intestinal volume, thereby protecting hearing [82]. Our
results also showed a positive correlation between Bacteroidales and serum IL-6 (R = 0.57,
p = 0.015), consistent with some previous studies [83]. On the one hand, Bacteroidales
cause intestinal T cells and macrophages to produce IL-6 through the MyD88 pathway [84],
inducing systemic and local inflammation [85,86]. On the other hand, Bacteroidales recruit
colonic epithelial lymphocytes to maintain intestinal epithelial barrier function [84]. Our
findings suggest that noise can cause an increase in harmful gut microbiota. The use of
AS-IV in this experiment significantly reduced the increasing trend of Bacteroidetes. It
could be speculated that AS-IV may reduce the level of IL-6 in the body by reducing the
abundance of Bacteroidetes, thereby protecting the hearing system from damage.

5. Conclusions

Our study showed that AS-IV intervention in the intestinal microbiota of the noise-
exposed mice correlated with inflammatory factors, showing a positive correlation of
Bacteroidales with IL-6 (R = 0.57, p = 0.015) and a negative correlation with TNF-α and IL-1β
(R = −0.59, p = 0.012, and R = −0.63, p = 0.006). We confirmed that AS-IV protected the noise-
exposed mice against hearing loss (p < 0.05) by reducing the inflammatory indicators in the
circulatory system, which was correlated with gut microbiota. Therefore, we hypothesize
that AS-IV relies on changes in gut microbiota abundance to reduce inflammation levels in
the body and protect the hearing system from noise damage, which provides a reference for
the application of AS-IV in the prevention and treatment of some noise-induced diseases.
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