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Abstract: Obesity is a public health problem with a growing prevalence worldwide. In Mexico,
it is estimated that one out of three adults suffer from obesity. In these patients, the intestinal
microbiota (IM) undergoes pathological changes that are associated with a dysbiotic state; however,
the microbiota profile of adult subjects with obesity from western Mexico has not been described.
To assess this, fecal samples were obtained from 65 participants (Obese = 38; Control = 27). The
microbial composition was characterized by 16S rRNA amplicon sequencing. The IM of the group
with obesity revealed a clear decrease in richness and diversity (p < 0.001), as well as a significant
increase in proinflammatory bacterial groups, mainly genera belonging to the Negativicutes class,
Escherichia/Shigella, and Prevotella. Likewise, an increase in short-chain fatty acid-producing bacteria
was found, especially the genus Lachnoclostridium. Additionally, PICRUSt2 analysis showed a
depletion of vitamin B9 metabolism and an increase in saccharolytic pathways. The IM of patients
with obesity possesses a dysbiotic, proinflammatory environment, possibly contributing to lipogenesis
and adiposity. Thus, assessing the IM will allow for a better understanding of the pathophysiology of
metabolic diseases of high prevalence, such as obesity. These findings are described for the first time
in the adult population of western Mexico.

Keywords: gut microbiota; obesity; western Mexico; metagenomic prediction; 16S rRNA sequencing

1. Introduction

Obesity is one of the most prevalent health problems in the world. It is defined
as a chronic, multifactorial metabolic disorder resulting from the interaction between
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genetics and the environment. According to the World Health Organization (WHO), the
prevalence of obesity has almost tripled worldwide since 1975. It is estimated that more
than 1.9 billion adults (39% of the adult population) are overweight [1]. Of these, 650 million
are classified as obese, defined by a body mass index (BMI) that is greater than or equal
to 30 kg/m2. If these trends continue, by 2025, the global prevalence of this disease will
be 18% in men and will exceed 21% in women [1]. In the case of Mexico, 70% of Mexicans
are currently overweight, and approximately one-third of the population suffers from
obesity [2]. Obesity is associated with multiple comorbidities, including cardiovascular
disease (CVD), metabolic syndrome (MetS), and cancer [1].

Obesity is also a major risk factor for mortality; in fact, it is estimated that 3 million adults
die each year from this cause. After tobacco, it is considered the second most preventable
cause of premature death in the world [3]. In Mexico, a sedentary lifestyle and an unhealthy
diet are responsible for 20% of deaths in men and 32% in women [2].

In the last decade, a promising field of research has focused on the connection between
the intestinal microbiota (IM) and human health. The IM is a complex community of
microorganisms that colonize the human gastrointestinal tract. The number of microbes in
the IM can be as high as 100 trillion, and it contains approximately 100 times more genes
(microbiome) than there are in the human genome [4]. IM plays a relevant role in various
physiological processes in the body, including immune function, digestion, and insulin
sensitivity, as well as in neurological and behavioral functions. Several factors can modify
the gut microbiota, including host genetics, diet, age, mode of birth (cesarean or vaginal),
and antibiotic use [5].

The gut microbiota is especially sensitive to changes in dietary habits. In fact, it has
been suggested that 60% of the gut’s microbial composition is determined by the host’s
diet [6]. As an example, the Mediterranean diet (MD) is well known for its positive impact
on the IM’s α-diversity and metabolic activities [7]. The Mediterranean microbiota protects
against CVD and tumor pathologies due to its production of more SCFAs by fiber-degrading
bacteria [8]. Moreover, plant protein and high-fiber regimens, such as the MD, stimulate
the growth of probiotic species like Bifidobacteria, which are commonly inhibited under a
Western-style diet [9].

Advances in 16S rRNA gene sequencing techniques have contributed to a better un-
derstanding of the IM and its association with different pathophysiological conditions.
Dysbiosis is defined as a pathological modification of the gut microbiota (both structural
and functional), making it capable of inducing systemic inflammation through the increase
in proinflammatory bacterial communities [10]. Some diseases that are associated with
pathological disturbances of IM are inflammatory bowel disease, diabetes, allergies, autoim-
mune diseases, cardiovascular disease, hypertension, and, in particular, obesity [5]. In fact,
the composition of this bacterial community appears to be involved in energy metabolism,
playing an important role in the etiology and pathophysiology of obesity [11].

The association of gut bacteria and obesity was demonstrated by pioneering studies in
germ-free mice. On the one hand, Farias et al. demonstrated that conventional mice have
47% more adipose tissue than germ-free mice. Subsequently, a fecal transplantation from
a conventional to a germ-free mouse showed a 60% increase in adipose tissue, as well as
insulin resistance, and increased levels of leptin and serum glucose [12]. The composition
of the microbial profile appears to be different when compared between subjects with and
without obesity. Changes in almost all taxonomic categories have been reported in the
global literature, mainly at the phylum, family, genus, and even species level. It has also
been observed that individuals with a high percentage of body fat tend to show changes
in the diversity and richness of the IM, as well as a higher amount of proinflammatory
bacteria [4]. These findings demonstrate the relevance of the IM to body composition, as
well as to clinical parameters related to metabolic dysfunction [1].

Studies on IM in subjects with obesity have concluded that people with a high BMI
differ in their microbial profile compared to individuals with a lower BMI. At the genus
level, lower proportions of Bifidobacterium and Eggerthella and higher proportions of Dorea,
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Escherichia/Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococ-
cus, and Sutterella have been described at higher BMIs [13]. Higher relative abundances of
the phyla Firmicutes, Proteobacteria, and Fusobacteria, as well as the genus Lactobacillus,
have also been described in individuals with obesity. On the other hand, species such as
Faecalibacterium prausnitzii, Akkermansia muciniphila, and Methanobrevibacter smithii were
found in lower relative abundances in adults with a high body weight compared to lean
individuals [11,14]. However, systematic reviews on IM and obesity agree that the only
thing that they have in common is the heterogeneity of their results. While some bacterial
taxa may be associated with the obese phenotype in one population, they may be charac-
teristic of lean individuals in a different region. This reflects the striking individuality of
this bacterial community; it also demonstrates its sensitivity to environmental, genetic, and
lifestyle factors [15].

In the population of western Mexico, to this date, there is no published research work
that describes the IM profile of adult subjects with obesity. Therefore, the present work
aims to compare the IM profile of adults with and without obesity in this region. These
findings will enable a better understanding of the pathophysiology of obesity, which may
lead to the development of therapeutic targets that could be implemented in the future.

2. Materials and Methods
2.1. Study Design

This cross-sectional, comparative study was carried out in the Institute of Chronic
Degenerative Diseases of the University of Guadalajara. Sixty-five volunteer male and
female participants were included in the study. They were recruited from the metropolitan
area of the city of Guadalajara through a first-hand invitation from the researchers. Thirty-
eight subjects were included in the obesity (Ob) group and twenty-seven in the control
group. The recruitment time took place from May 2022 to November 2022. All participants
signed an informed consent form, and this study was conducted in accordance with the
guidelines of the World Medical Association (Declaration of Helsinki, revised in 2013).

Anthropometric characteristics, particularly BMI, were used to classify participants
into the obesity (Ob) or the control groups. Inclusion criteria for patients with obesity
were (a) BMI > 29.9 kg/m2, (b) age between 18 and 59 years, (c) Mexican citizens (born
in Mexico), (d) current residents of a western Mexican state (Colima, Jalisco, Michoacán,
and Nayarit), (e) not currently undergoing a nutritional intervention for weight loss, (f) no
current or past SARS-CoV-2 infection for at least 30 days before recruitment, (g) no current
or past use of prebiotics/probiotics for at least 30 days before recruitment, (h) no current or
past use of antibiotics at least 30 days before recruiting.

Inclusion criteria for subjects without obesity (control group) were (a) BMI < 29.9 kg/m2,
(b) age between 18 and 59 years, (c) Mexican citizens (born in Mexico), (d) current residents
of a western Mexican state (Colima, Jalisco, Michoacán, and Nayarit), (e) not currently un-
dergoing a nutritional intervention for weight loss, (f) no current or past SARS-CoV-2 infec-
tion for at least 30 days before recruitment, (g) no current or past use of prebiotics/probiotics
for at least 30 days before recruitment, (h) no current or past use of antibiotics at least
30 days before recruitment.

2.2. Anthropometric Evaluation and Biochemical Parameters

Body weight and body fat percentage were measured under fasting conditions using a
bioelectrical impedance scale (OMRON HBF-514C Body Composition Monitor with Scale).
Height was measured using a wall-mounted stadiometer. Measurements were taken in
the standing position after removing shoes. Basal biochemical data were obtained from a
venous sample, also under a 12 h fasting condition. The biochemical data obtained were
the following: glucose, triglycerides (TG), total cholesterol (TC), high-density lipoprotein
cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c).
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2.3. Blood Pressure

Systolic and diastolic blood pressures were obtained using a blood pressure monitor
(OMRON HEM-7120). The cuff was placed and tightened on the patient’s left arm while in
a resting position.

2.4. Extraction of Nucleic Acids and 16S rRNA Amplicon Sequencing

Fecal samples were collected and immediately stored at −80 ◦C. DNA was extracted
from 150 mg of frozen feces with QIAamp PowerFecal DNA Kit (QIAGEN, Hilden, Ger-
many) according to the manufacturer’s protocol. DNA was quantified with NanoDropTM
OneC spectrophotometer (Thermo Scientific, Waltham, MA, USA).

The 16S metagenomic sequencing library preparation was performed according to Illu-
mina MiSeq System’s protocol (Illumina, San Diego, CA, USA) [16]. V3 and V4 regions from
16S were amplified with Platinum Taq DNA Polymerase High fidelity (Invitrogen, Carlsbad,
CA, USA) using primers with adaptors. The sequence of the primers used were as follows: For-
ward: (5′TCGTCGG-CAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-
3′), reverse: (5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGG-
TATCTAATCC-3′). PCR conditions were followed according to protocol. Product pu-
rification was achieved with AMPure XP® (Beckman Coulter, Brea, CA, USA) magnetic
beads and was quantified with Qubit® 3 dsDNA HS kit (Invitrogen, Carlsbad, CA, USA)
according to product indications (Supplemental Figure S3). Next, index incorporation was
achieved with Nextera XT Index Kit v2 Set A (No. Cat. FC-131-2001, Illumina, San Diego,
CA, USA) by a second PCR amplification. Finally, amplicons were pooled to equimolar con-
centrations into a 4 nmol/L solution tube, library denaturing, and MiSeq Sample Loading
(kit Miseq Reagent V3 600-cycle, Illumina, San Diego, CA, USA) according to protocol.

2.5. Bioinformatic Analysis of 16S Amplicon Sequencing

Microbiome bioinformatics were performed with QIIME2 version 2023.2 [17]. Se-
quences whose quality parameter was Phred ≥ 30 were filtered by denoising with DADA2
via q2-dada2 [18]. All resulting amplicon sequence variants (ASVs) were aligned with
MAFFT [19] (via q2-alignment) and used to construct a phylogeny with FastTree2 [20]
(via q2-phylogeny). Taxonomy was assigned to ASVs using a pre-trained classifier against
the Silva 138 full-length sequences database [21–23]. ASVs identified as mitochondria
and chloroplasts were removed from the feature table. Alpha diversity metrics (observed
features, Shannon and Chao1 indices) [24], as well as beta diversity metrics (Weighted
UniFrac and unweighted UniFrac) [25] and Principal Coordinate Analysis (PCoA) were
generated and tested with QIIME2 pipeline. Linear discriminant analysis effect size (LEfSe)
was obtained with the Galaxy interface [26,27]. The threshold cutoff value of the LDA score
was 3.1. Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt2) pipeline [28–32] was used to predict the functional pathways of each
group according to the MetaCyc Database [33], whose results were then analyzed using
LEfSe with a threshold of 1.8. ANCOM-BC (analysis of the composition of microbiomes
with bias correction), which is a compositionally based method [34], was performed at the
family and genus level to determine differentially abundant taxa using the q2-composition
plugin, implemented in the QIIME2 pipeline.

To calculate Proteobacteria/Firmicutes ratio, a centered log-ratio (clr) transformation
was applied to feature table at phylum and genus levels through MicrobiomeAnalyst
server [35]. Then, normalized ratios of taxa identified as Firmicutes or Proteobacteria
were calculated as previously described [36]. For Gram-positive/Gram-negative ratio, taxa
were filtered from raw ASV table collapsed at the species level. All taxa that could not
be identified at the genus or species level were removed, as well as those with putative
names or uncultivated species, obtaining a filtered abundance table. Gram staining was
examined according to BacDive database [37]. Undetermined or variable Gram staining
taxa were removed. Undetermined or variable Gram staining taxa were removed. In
case the genus or specie were not in the BacDive database, the primary publication of
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each genus or specie was examined. Using this same filtered abundance table, oxygen
tolerance was evaluated with information from the BacDive database, complemented by
public databases (https://www.mediterranee-infection.com/wp-content/uploads/2020/0
5/OXYTOL-1.3.xlsx, accessed on 28 December 2021), as described by Dubourg et al. [38].
Obligate aerobes, microaerophiles, and facultative anaerobes were considered aerobes,
whereas only obligate anaerobes were considered true anaerobes, according to Kumar
et al. [39].

2.6. Statistical Analyses

When assessing the participants’ background characteristics, Student’s t-test or U of
Mann–Whitney test were employed, depending on parametric or non-parametric variables.
Chi-squared test was used when assessing categorical variables. Alpha diversity medians
were compared using Mann–Whitney U test. Beta diversity metrics among groups were
statistically analyzed by performing PERMANOVA tests. Both alpha and beta diversity
statistical analyses were corrected with Benjamini–Hochberg (BH) multiple testing through
QIIME2 package. Spearman’s rank correlation between selected taxa and biochemical
values was performed. All statistical tests were two-sided, and a p-value or false discovery
rate-adjusted q-value of less than 0.05 were considered statistically significant. Data were
analyzed using SPSS 25.0, unless otherwise specified. Plots were generated utilizing
GraphPad Prism version 9.0.0.

3. Results
3.1. Cross-Sectional Study and Clinical Assessments

In this study, the total cohort was sixty-five participants, of which thirty-five were
women (53.8%) and thirty were men (46.2%), with an average age of 37.7 ± 12.0 years.
Thirty-eight of them had a BMI that was greater than 30 kg/m2; therefore, they were
assigned to the Ob group. Of these thirty-eight subjects, 44.7% were classified as class I
obesity, 21.05% as class II, and 34.21% as class III. The remaining twenty-seven participants
were assigned to the control group (BMI < 30 kg/m2). There were no significant differences
in the age and sex of the participants between both groups. However, as expected, the
BMI and body fat percentage of the obesity (Ob) group were significantly higher compared
to the control (p < 0.001). Additionally, blood parameters that assess metabolic function
(fasting glucose, HDL-c, TG, TC), as well as blood pressure, did show significant differences
between groups (Table 1).

Table 1. Demographic and biochemical characteristics of the recruited participants.

Characteristics Ob Group (n = 38) Control Group (n = 27) p-Value

Age 37.7 ± 12.0 44.2 ± 12.4 0.088 a

Sex
Men, n (%) 17 (44.7%) 14 (51.9%)

0.571 c
Women, n (%) 21 (55.3%) 13 (48.1%)
BMI (kg/m2) 35.6 (32.8–42.7) 24.9 (23.1–26.9) <0.001 *b

Body fat % 45.0 ± 7.9 29.3 ± 7.9 <0.001 *a

Glucose (mg/dL) 97.0 (92.0–105.3) 90.0 (85.5–94.5) 0.001 *b

Triglycerides (mg/dL) 213.2 ± 77.1 126.6 ± 78.3 0.001 *a

TC (mg/dL) 192.9 ± 28.6 158.6 ± 26.4 0.005 *a

LDL-c (mg/dL) 92.0 (88.5–115.5) 100.0 (59.0–113.0) 0.540 b

HDL-c (mg/dL) 35.0 (28.0–46.0) 44.0 (40.0–59.0) 0.002 *b

SBP (mmHg) 135.9 ± 19.9 110.4 ± 20.0 0.002 *a

DBP (mmHg) 92.5 ± 11.0 77.3 ± 11.5 0.001 *a

Abbreviations: BMI (body mass index), SBP (systolic blood pressure), DBP (diastolic blood pressure), TC (total
cholesterol), HDL-c (high-density lipoprotein cholesterol), LDL-c (low-density lipoprotein cholesterol). Data
are expressed as average ± standard deviation, or as median and interquartile ratio (IQR). Statistical analysis:
a Student’s t-test, b U of Mann–Whitney, c χ2. p < 0.005 is considered statistically significant. * Indicates statistically
significant differences with respect to the control group.

https://www.mediterranee-infection.com/wp-content/uploads/2020/05/OXYTOL-1.3.xlsx
https://www.mediterranee-infection.com/wp-content/uploads/2020/05/OXYTOL-1.3.xlsx
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3.2. Microbiota Diversity between Groups

The alpha diversity was calculated using observed features (analogous to observed
ASVs) and Shannon and Chao1 indices. The observed feature analysis expresses the species
richness in a community, Shannon estimates the richness and diversity, and Chao1 estimates
the diversity based on abundance (Figure 1). We observed a significant decrease in the
three indices within the Ob group compared with the control group (Observed features
and Chao1, p < 0.001; Shannon, p = 0.003).
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Figure 1. Gut microbiota richness and diversity. Dot plots showing alpha diversity indices that
account for richness (observed features), low-abundance species (Chao1), and diversity (Shannon),
among subjects without obesity (control) and subjects with obesity (Ob). Individual sample values are
shown as red and green dots, respectively. Lines inside the dots represent median values. Medians
were compared with Mann–Whitney U test, ** p < 0.01; *** p < 0.001.

The beta diversity analysis was evaluated by unweighted UniFrac metrics, in order to
show how similar or different the bacterial diversity between both groups was (Figure 2).
Results were plotted by Principal Coordinate Analysis (PCoA). We clearly observed the
conformation of two well-defined groups in the unweighted UniFrac plot, which implies an
evidently different microbiome profile between the participants with and without obesity
(PERMANOVA, p < 0.001).
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3.3. Relative Abundances

At the phylum level, the Proteobacteria/Firmicutes (P/F) ratio was significantly
increased in the Ob group compared to the control (p < 0.05) (Supplemental Figure S1). The
Firmicutes/Bacteroidetes ratio did not show significant differences between the groups.
Another relevant finding was the predominance of aerobic and Gram-negative bacterial
groups, with respect to anaerobic and Gram-positive bacteria, in the Ob group compared
to the control (p < 0.05, both ratios, Supplemental Figure S1).

3.4. Differential Abundances (LEfSe and ANCOM-BC)

The linear discriminant analysis (LEfSe) was used to determine the bacterial taxa that
differentially characterize both study groups (Figure 3), i.e., which taxa are statistically
representative of each group (LDA ≥ 3.10, p < 0.05), and which might explain the observed
clinical differences between them. The analysis confirmed that bacterial members belonging
to the Negativicutes class and the genus Lachnoclostridium are taxa that are associated with
the Ob group. These bacteria are known for their production of short-chain fatty acids
(SCFAs). In the case of Negativicutes, they are also distinguished by their proinflammatory
potential, due to the presence of lipopolysaccharide (LPS) in the outer membrane of their
cell wall. Other proinflammatory bacteria were also found in the Ob group, such as
members of the Streptococcaceae family (order Lactobacillales) and Enterobacteriaceae. On
the other hand, the control group was characterized by bacteria belonging to the Clostridia
class, especially the families Christensenellaceae and Lachnospiraceae. In this group,
some genera such as Porphyromonas and Anaeroplasma, as well as the Acholeplasmataceae
family, were also enriched. Both groups were dominated by bacteria belonging to the
phylum Firmicutes.
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To complement the LEfSe analysis, and to strengthen the results of the differential
abundances, ANCOM-BC analysis was performed (Figure 4). This analysis has greater
statistical power, as it has the ability to control for possible biases that are associated with
false positives. Confirming the LEfSe findings, the ANCOM-BC results showed that several
genera belonging to the Negativicutes class are significantly enriched in Ob patients. These
genera include Allisonella, Megamonas, Megasphaera, Acidaminococcus, Veillonella, Dialister,
and Phascolarctobacterium. In addition, the most representative genus of the Ob group was
Lachnoclostridium. It was also found that members belonging to the phylum Proteobacteria,
such as the genera Escherichia/Shigella and Suterella, as well as the family Enterobacteriaceae,
were strongly associated with the Ob group. Other taxa that were characteristic of the
obese phenotype were some genera belonging to the families Lachnospiraceae (Dorea,
Tyzzerella, Roseburia, Agathobacter, Blautia), Prevotellaceae (Prevotella, Paraprevotella, and
Alloprevotella), and Ruminocaccaceae (Subdoligranulum, and Faecalibacterium), as well as the
order Lactobacillales (Streptococcus, Lactobacillus, Weisella, Enterococcus, and Lactococcus).
In general terms, Gram-negative bacteria with proinflammatory potential were enriched
in the Ob group, which is associated with metabolic dysfunction. However, important
bacterial groups producing SCFAs, especially acetate, were also found to be enriched in
subjects with obesity.

On the other hand, and in agreement with LEfSe, the control group was characterized
by the presence of bacteria belonging to the Clostridia class, especially the families Christen-
cencenellaceae, Oscillospiraceaceaceae, and Peptostreptococcaceae. The genera Akkermansia
(phylum Verrucomicrobia) and Eggerthella (phylum Actinobacteria) were also found to be
enriched. Likewise, members of the family Lachnospiraceae were representative of the
control group, especially genera such as Anaerostipes, Butyrivibrio, Coprococcus, Moryella,
and the species Eubacterium halli. Finally, other genera that were characteristic of this
group were Alistipes, Rombutsia, Colidextribacter, Desulfovibrio, Turicibacter, and Actinomyces.
Broadly speaking, it is evident that the control group possesses a greater diversity in terms
of the families that make up the IM, as well as a significant predominance of Gram-positive
SCFA-producing bacteria, especially butyrate, which has positive effects on intestinal health
and energy metabolism [40].

3.5. Functional Prediction of Metabolic Pathways (PICRUSt2)

PICRUSt2 was used to infer the functional mechanisms of the intestinal microbiota,
that is, which bacterial metabolic pathways are most prominent in each group, depending
on the microbial profile. The results of this algorithm were analyzed by LEfSe analysis
(LDA ≥ 1.8, p < 0.05) (Figure 5). Comparisons between groups revealed that the Ob group
has increased metabolism of some amino acids, such as L-tyrosine, L-phenylalanine, and
L-arginine. Some pathways of energy metabolism were also increased, such as glycolysis,
the Krebs cycle, the pentose phosphate pathway, and homolactic fermentation. As for the
control group, nucleic acid metabolism pathways (purine and pyrimidine degradation and
adenosine biosynthesis) predominated. The synthesis pathways of some cofactors such
as folates (vitamin B9) were also increased, which lead to the biosynthesis of methionine,
purines, and pyrimidines. Of particular relevance, the obese group showed a depletion of
vitamin B9 (folate) metabolism.
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Figure 5. Predictive analysis of metabolic pathways by PICRUSt2 of the gut microbiota in patients
with obesity (Ob) and without obesity (control). Metabolic pathways are represented in accordance
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The threshold of LDA > 1.8, p < 0.05 was applied. Green bars represent bacterial metabolic pathways
enriched in the obese group, while red bars represent the control group. PICRUSt2 (Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States).

3.6. Correlation Analysis

We further employed Spearman’s correlations between specific taxa and blood bio-
chemical parameters. Notably, we found significant negative correlations between the
Eubacterium hallii group and blood parameters such as triglycerides (p < 0.01) and glucose
(p < 0.01) In contrast, we observed positive correlations between the Eubacterium hallii group
and HDL-c (p < 0.05) (Supplemental Figure S2).

4. Discussion

Obesity is a highly prevalent public health problem worldwide. This disease is a risk
factor for developing other comorbidities such as type 2 diabetes mellitus (T2DM), CVD,
and cancer. Recently, it has been discovered that there is a relationship between obesity
and a dysbiosis of the IM, which could be involved in the etiology and pathophysiology of
obesity [4]. The present work is a pioneer in describing the alterations of the gut microbiota
in adult subjects with obesity in western Mexico.

Regarding the alpha and beta diversities of the IM, we found substantial differences
between both study groups. In patients with obesity, we observed a significant reduction in
bacterial diversity and richness (alpha diversity) compared with the control group. This low
bacterial diversity has clinical relevance, as a reduction in this metric has been associated
with dysbiosis, as well as with the presence of several acute and chronic diseases. This
suggests the possible importance of a complex microbial composition in order to exert a
true commensal relationship with the host [41]. It is important to mention that, regarding
this metric, the results in different populations have been discordant. For example, Chávez-
Carbajal et al. reported that the alpha diversity was higher in a population of women with
obesity and MetS in Mexico City, compared to women with a lower BMI [42]. On the other
hand, some meta-analyses confirm that in other countries, alpha diversities have been
significantly lower in patients with obesity; among them are Japan, France, Saudi Arabia,
and Egypt, as well the Latin American migrant population of the United States [13]. This
reflects the marked variability in the findings of IM studies in different geographic and
cultural contexts [15].

On the other hand, in terms of differential abundances, LEfSe and ANCOM analyses
revealed a gut microbial profile with a highly proinflammatory and pathogenic potential in
subjects with obesity. This profile is dominated by Gram-negative bacteria in a favorable
aerotolerant environment, in accordance with the ratios previously analyzed, which were
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found to be statistically significant. In contrast, the bacterial profile found in the control
group was dominated by Gram-positive bacteria in an anaerobic microenvironment. The
results obtained from these ratios are novel findings, given that they have not yet been
described in the context of obesity.

One of the taxa that was significantly increased in the Ob group with respect to the
control were the Negativicutes. These are a rare class of Gram-negative bacteria, which
correlate positively with LPS-induced proinflammatory pathways. It is worth noting that a
high plasma concentration of this endotoxin is associated with a high-fat diet, which could
cause local intestinal inflammation, increasing gut barrier permeability and the subsequent
translocation of LPS into systemic circulation [43].

The main Gram-negative genera that we found, which belong to the Negativicutes
class, were Allisonella, Megamonas, Megasphaera, Acidaminococcus, Veillonella, Dialister, and
Phascolarctobacterium. In fact, these bacteria were practically absent in the participants
without obesity in the present work. These genera have been poorly described in Latin
American countries, and little is known about their role in the pathophysiology of obesity.
However, we found that the Negativicutes could be a characteristic hallmark of the obese
phenotype in the population with obesity of western Mexico. This class has been found
to be enriched in other populations with obesity in China and with T2DM in Pakistan. In
addition, it is positively associated with the presence of steatohepatitis [44,45]. Importantly,
Dialister and Phascolarctobacterium (both members of the Negativicutes) have been positively
related to BMI and body weight gain, respectively. The proinflammatory potential of the
Negativicutes class is relevant, as it is known that a chronic, low-grade inflammation could
lead to the development of insulin resistance and MetS [43,46]. A clear association has been
described between inflammation and decreased insulin sensitivity, which causes increased
free fatty acid efflux from adipocytes and ectopic fat deposition [47]. Additionally, chronic
systemic inflammation has been found to increase lipogenesis in the liver. Proinflammatory
cytokine TNF-α is thought to induce hepatic lipid accumulation through increased fatty
acid uptake, enhanced TG synthesis, and reduced fatty acid oxidation. Therefore, chronic
low-grade inflammation might have a direct effect on the development of ectopic fat
deposition and lipogenesis [48].

Another proinflammatory bacterial group that we found to be significantly enriched in
the population with obesity was the Enterobacteriaceae family (phylum Proteobacteria), as
well as the genera Escherichia/Shigella and Sutterella. It is known that Enterobacteriaceae are
capable of inducing a proinflammatory response through the release of LPS [49]. Anhe et al.
found that subjects with obesity and T2DM have increased levels of this family in their
microbiota, not only at the gastrointestinal level, but also in their plasma, liver, and adipose
tissue [50]. Particularly, Escherichia/Shigella has been positively associated with insulin
resistance, T2DM, and weight loss difficulty after a dietary intervention [51]. These findings
are in agreement with the Proteobacteria/Firmicutes (P/F) ratio, which was significantly
increased in the Ob group. This ratio has scarcely been investigated in microbial taxonomy
studies; however, our research group recently reported that patients with HIV and MetS
who were treated with integrase strand transfer inhibitors (INSTIs), compared to those
treated with protease inhibitors (PIs), displayed a significantly increased P/F ratio. These
changes were associated with a more profound dysbiosis [36]. Therefore, we suggest a
deeper investigation of the P/F ratio in various pathologies, in order to better understand
the changes that occur at the phylum level, as well as its possible clinical implications.

Along the line of Gram-negative bacteria with potential immunogenic effects, we
found that some genera of the Prevotellaceae family were enriched in the Ob group; among
them were Prevotella, Paraprevotella, and Alloprevotella. In fact, according to Xu et al., Pre-
votella has been described as a representative taxon of obesity-associated dysbiosis [15]. In
addition, positive relationships have been reported between Prevotella and some metabolic
disorders such as insulin resistance, hypertension, and non-alcoholic fatty liver disease
(NAFLD) [52].
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Another relevant finding regarding the IM profile that was found in patients with obe-
sity was its remarkable association with the production of short-chain fatty acids (SCFAs).
Members of the Negativicutes, for instance, are important producers of these metabolites.
Below, we describe the bacterial genera that belong to this class and were enriched in the Ob
group: the genus Megamonas, for example, possesses a metabolic pathway which produces
acetate; this pathway promotes the accumulation of triglycerides, and the subsequent
development of NAFLD [53]. Veillonella, on the other hand, is capable of producing acetate
and propionate through pathways that involve lactate and butyrate [54]. Several studies
have highlighted that acetate can induce obesity, as it stimulates the synthesis of fatty
acids and cholesterol, as well as the storage of adipose tissue [55]. As for butyrate, it can
be produced by Megasphaera using amino acids (glutamate and lysine) as substrates. It
is hypothesized that a reduced intake of non-digestible carbohydrates leads to increased
conversion of amino acids into SCFAs by the intestinal microbiota. It should be noted that
these pathways generate ammonia, which can have deleterious effects on health [54].

Additionally, we found that some genera belonging to the family Lachnospiraceae
were also enriched in the Ob group of our study (Lachnoclostridium, Roseburia, Agathobacter,
Dorea, Blautia, and Ruminococus torques). Most of these bacteria are known to produce SCFAs
via a pathway that utilizes acetyl-CoA [31]. Likewise, Lachnoclostridium has been positively
associated with visceral fat, and this association is thought to be partially mediated by
acetate. In addition to its contribution to energy harvesting through SCFAs, it is believed
that Lachnoclostridium can increase levels of trimethylamine N-oxide (TMAO), which is a
metabolite that is commonly associated with cardiometabolic disorders, including obesity
and T2DM. Similarly, some species of this genus have metabolic pathways belonging to the
lipid biosynthesis category [56].

Our findings are in agreement with Palmas et al., who describe an SCFA-producing
microbial profile being associated with the obese phenotype in Italy. A possible explanation
is that the fermentation of non-digestible polysaccharides to SCFAs may induce hepatic
lipogenesis and triglyceride accumulation in host adipocytes. Although SCFAs are generally
known to have beneficial effects on host metabolism and body weight, this process could
be impaired in obesity, especially in the context of a high intake of carbohydrate-rich foods,
which increases energy harvesting from the diet and leads to hepatic lipogenesis [54].

Conversely, the bacterial taxa that we found to be enriched in the control group are
associated with parameters that indicate host metabolic homeostasis and are representative
of the lean phenotype. Among them is the Christensenellaceae family, which has been
positively associated with a normal BMI (18.5–24.9 kg/m2) and with low levels of adiposity
and visceral fat. It has even been shown that the abundance of this family increases in
response to weight loss. With respect to dietary effects, an increase in Christensenellaceae
has been observed in response to dietary interventions with prebiotic fibers (resistant starch,
galactooligosaccharides, and polydextrose). It has also been associated with a diet that
is low in refined sugars and high in fruit, vegetables, and animal protein. Interestingly,
Christensenellaceae is a highly heritable taxon, often associated with host health [57].

Another bacterial group that was characteristic of our control group was the genus
Akkermansia, which includes the species Akkermansia muciniphila. This bacterium has been
negatively associated with obesity and metabolic dysfunction, as it promotes intestinal
barrier integrity and prevents inflammation that is secondary to mucosal permeability [58].
Depommier et al. even demonstrated that supplementation with A. muciniphila orally for
three months reduced insulin resistance, total cholesterol, body weight, and fat mass, as
well as some markers of inflammation and liver dysfunction [59].

In general, we reaffirm that the microbial profile of our control group was polarized to-
wards Gram-positive, butyrate-producing bacteria. These include Coprococcus, Clostridium,
Actinomycetes, Butyrivibrio, and Eubacterium hallii. Butyrate has shown positive effects on
the host, as it helps maintain intestinal barrier integrity, modulates immune responses, and
participates in the synthesis of some vitamins, including vitamin B9 (folic acid). Moreover,
in the context of obesity, butyrate supplementation has been shown to improve insulin
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sensitivity and decrease adiposity. Likewise, consuming a diet that is high in prebiotic fibers
can promote the growth of bacterial groups that are capable of producing butyrate through
the fermentation of non-digestible polysaccharides [40]. The Mediterranean diet, for ex-
ample, which is high in fiber, promotes a mutualistic relationship between Bifidobacterium
adolescentis and Eubacterium hallii; the latter is well known for its butyrate production [9].

We consider it important to highlight the presence of Eubacterium hallii in our study,
since we found interesting correlations with some biochemical parameters: negative corre-
lations with triglycerides and glucose and positive ones with HDL-c. In a previous study
carried out by our research group in patients with HIV and MetS in western Mexico, we
reported similar findings regarding Eubacterium hallii. This bacterial species displayed neg-
ative correlations with metabolic and inflammation markers, such as triglycerides, LDL-c,
and C-reactive protein [36]. We theorize that E. hallii could be an interesting therapeutic
target in cardiometabolic pathologies such as obesity and MetS.

Another bacterial genus that deserves special attention is Coprococcus. This genus is
known for both its production of butyrate and of B vitamins, including B9 [56]. This is
consistent with what we found in the PICRUSt2 analysis, which shows that the metabolic
pathway for folate synthesis was increased in the control group and nearly depleted in the
obese group. This is a novel finding, since the disruption of microbial folate metabolism
pathways in obesity are described for the first time in universal research and is unprece-
dented in patients from western Mexico. Recently, Navarrete-Muñoz et al. demonstrated
that a folate-rich diet is associated with lower basal glucose levels and higher HDL choles-
terol concentrations in high-risk cardiometabolic subjects [60]. Additionally, in their sys-
tematic review, Köse et al. described that subjects with an elevated BMI have lower blood
folate concentrations compared to individuals with a lower weight. Individuals who are
overweight often eat unhealthy diets that are high in energy and low in fruits, vegetables,
and dietary supplements, all of which could affect folate levels. Moreover, high body fat
could reduce vitamin B9 absorption by the intestinal epithelium. Although the mechanism
is not clearly elucidated, dietary folate deficiencies are associated with a higher lipid storage
and leptin secretion of adipocytes [61].

Regarding vitamin B7, Belda et al., in their cross-sectional European MetaCardis study,
reported alterations in microbial biotin (vitamin B7) metabolism, evaluated by metagenomic
quantification in patients with severe obesity. These results correlated with suboptimal
systemic biotin levels in these patients [62]. Biotin has been shown to be involved in glucose
and lipid homeostasis [63]. Therefore, these interesting findings strengthen the clinical
importance of knowing the bioavailability of vitamin B9 and B7 in patients with obesity, as
well as how these vitamins impact the host’s metabolism. B-vitamin producing bacteria,
along with their metabolites, could also be considered as future therapeutic targets.

Finally, we described the metabolic pathways that are specific to the Ob group’s
microbiome and suggested an association with the clinical features of obesity and metabolic
dysfunction. Mainly, twelve metabolic pathways were found to be significantly enriched in
the obese group compared with the control. Of these pathways, six of them are involved in
energy metabolism, mainly carbohydrate metabolism. Glycolysis, pyruvate fermentation
to lactate, the pentose phosphate pathway, and the Krebs cycle (by acetate producers)
pathways were found to be increased. This finding is in agreement with Duan et al.,
who found that subjects with obesity have abnormalities in their bacterial carbohydrate
metabolism [64]. These metabolic pathways reflect the capacity of the intestinal microbiota
to extract energy from the diet. Similarly, Chávez-Carbajal et al. concluded that obesity is
associated with a bacterial profile with higher saccharolytic activity and a greater capacity
to produce SCFAs. These pathways increase acetyl-CoA levels in the host, harvesting more
energy from the diet and promoting dyslipidemia and adiposity [42]. Additionally, the
Krebs cycle pathway, specifically that of acetate-producing bacteria, was also increased in
the Ob group. This is consistent with Wan et al., who concluded that organic acids that
are involved in the Krebs cycle, such as succinate and propionate, may be involved in
the pathophysiology of obesity. For example, it is believed that propionate can stimulate
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glycogenolysis, hyperglycemia, compensatory hyperinsulinemia, and subsequent insulin
resistance. Also, fecal propionate concentrations have shown a positive correlation with
BMI. Moreover, succinate, which is a precursor of propionate, is also positively related
to body weight. It is worth mentioning that a future line of research for our group is to
study the fecal and systemic levels of SCFAs in patients with obesity, given their important
implications in host metabolism.

Regarding the limitations of our study, due to the cross-sectional nature of the present
research, causation cannot be inferred. Moreover, this was a single-center study with a
relatively small sample size. Another limitation is that the study was conducted exclusively
in the western Mexican population; therefore, results cannot be generalized to other regions
of the world. As future lines of study, we consider evaluating additional parameters,
mainly host-related factors such as lifestyle and diet, which will give greater strength to the
present study.

5. Conclusions

Our study showed a strikingly different gut microbiota profile between subjects
with and without obesity, regarding structure, taxonomy, and function. The obese group
demonstrated a clear decrease in richness and diversity, as well as an aerotolerant microen-
vironment that was dominated by Gram-negative bacteria. We identified bacteria with
potential proinflammatory and pathogenic effects, such as the Negativicutes class, and
genera like Escherichia/Shigella and Prevotella. Likewise, an increase in short-chain fatty
acid-producing bacteria was found, especially the genus Lachnoclostridium. In addition,
there was a decrease in bacteria that are associated with metabolic health and the lean
phenotype (Christensenellaceae, Akkermansia, and Eubacterium hallii). Interestingly, the
PICRUSt2 analysis showed depletion of vitamin B9 metabolism and an increase in carbo-
hydrate metabolism pathways. The IM of patients with obesity possesses a dysbiotic and
proinflammatory environment, with an increased saccharolytic activity, all of which could
contribute to lipogenesis and adiposity. These findings are described for the first time in
the adult population of western Mexico. Further studies with a greater number of patients
are needed in our population, in order to categorize subjects according to their obesity class
and obtain a more accurate IM profile that may explain the development and evolution of
this highly prevalent metabolic disease.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/metabo14020121/s1: Figure S1: Scatter plot of Proteobacteria/Firmicutes,
Anaerobic/Aerobic, Gram+/Gram− in obesity (Ob) and without obesity (control) groups; Figure S2:
Correlations between blood biochemical parameters and Eubacterium hallii in obesity (Ob) and without
obesity (control) groups; Figure S3: Gel electrophoresis of PCR of V3-V4 regions from 16S rRNA.

Author Contributions: Conceptualization, M.R.B.-T. and T.A.B.-D., Data curation, V.R.-B., S.D.T.-A.,
P.A.C.-J., L.V.S.-O. and J.M.V.-C., formal analysis, V.R.-B., T.A.B.-D., P.A.C.-J. and M.R.B.-T., Inves-
tigation, T.A.B.-D., P.A.C.-J. and M.R.B.-T., Methodology, V.R.-B., A.N.V.-M., M.P.-R. and P.A.C.-J.,
Resources, M.R.B.-T., Supervision, S.D.T.-A., M.P.-R., L.V.S.-O. and M.R.B.-T., Software, T.A.B.-D.,
Writing—original draft, S.D.T.-A., T.A.B.-D., L.V.S.-O. and M.R.B.-T., Writing—review and editing,
V.R.-B., S.D.T.-A., T.A.B.-D. and M.R.B.-T. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by grants from Universidad de Guadalajara: Fondos para el
Fortalecimiento de la Investigación y el Posgrado (IECD 271879).

Institutional Review Board Statement: This study followed the Ethical Principles for Medical
Research Involving Human Subjects outlined in the Helsinki Declaration of 1975 (as revised in Brazil,
2013) and was approved by the Ethics Committee of University of Guadalajara (Centro Universitario
de Ciencias de la Salud protocol codes 22/99, approval date 11 February 2022).

Informed Consent Statement: Written informed consent was obtained from each participant prior
to enrollment.

https://www.mdpi.com/article/10.3390/metabo14020121/s1
https://www.mdpi.com/article/10.3390/metabo14020121/s1


Metabolites 2024, 14, 121 15 of 17

Data Availability Statement: All data generated or analyzed during this study are included in this
published article and are available by request, due to ethical restrictions.

Acknowledgments: The graphical abstract were designed using resources available from Flaticon,
created by Good Ware, Backwoods and Parzival’ 1997, from www.flaticon.com (accessed on 9
January 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. World Health Organization Obesity and Overweight. Available online: https://www.who.int/es/news-room/fact-sheets/

detail/obesity-and-overweight (accessed on 20 January 2022).
2. Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado La Obesidad En México. Available online: https:

//www.gob.mx/issste/articulos/la-obesidad-en-mexico (accessed on 20 January 2022).
3. Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B. Consenso SEEDO 2007 Para La Evaluación Del Sobrepeso y La Obesidad

y El Establecimiento de Criterios de Intervención Terapéutica. Med. Clin. 2007, 128, 184–196. [CrossRef] [PubMed]
4. Davis, C.D. The Gut Microbiome and Its Role in Obesity. Nutr. Today 2016, 51, 167–174. [CrossRef] [PubMed]
5. Hasan, N.; Yang, H. Factors Affecting the Composition of the Gut Microbiota, and Its Modulation. PeerJ 2019, 7, e7502. [CrossRef]

[PubMed]
6. Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C.; et al. Interactions between

Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. ISME J. 2010, 4, 232–241.
[CrossRef]

7. Garcia-Mantrana, I.; Selma-Royo, M.; Alcantara, C.; Collado, M.C. Shifts on Gut Microbiota Associated to Mediterranean Diet
Adherence and Specific Dietary Intakes on General Adult Population. Front. Microbiol. 2018, 9, 890. [CrossRef]

8. De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi,
C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome.
Gut 2016, 65, 1812–1821. [CrossRef]

9. Singh, R.; Dutta, A.; Bose, T.; Mande, S.S. A Compendium of Predicted Growths and Derived Symbiotic Relationships between
803 Gut Microbes in 13 Different Diets. Curr. Res. Microb. Sci. 2022, 3, 100127. [CrossRef]

10. Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on
Human Gut Microbiota. Nutrients 2020, 13, 7. [CrossRef]

11. Castañer, O.; Schröder, H. Response to: Comment on “The Gut Microbiome Profile in Obesity: A Systematic Review”. Int. J.
Endocrinol. 2018, 2018, 9109451. [CrossRef] [PubMed]

12. Farías, N.M.M.; Silva, B.C.; Rozowski, N.J. Microbiota Intestinal: Rol En Obesidad. Rev. Chil. Nutr. 2011, 38, 228–233. [CrossRef]
13. Pinart, M.; Dötsch, A.; Schlicht, K.; Laudes, M.; Bouwman, J.; Forslund, S.K.; Pischon, T.; Nimptsch, K. Gut Microbiome

Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021, 14, 12. [CrossRef]
14. Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the Gut Microbiota of Adults with Obesity: A Systematic Review. Eur. J. Clin.

Nutr. 2020, 74, 1251–1262. [CrossRef]
15. Xu, Z.; Jinag, W.; Huang, W.; Lin, Y.; Chan, F.K.L.; Ng, S.C. Gut Microbiota in Patients with Obesity and Metabolic Disorders—A

Systematic Review. Genes. Nutr. 2022, 17, 2. [CrossRef]
16. Illumina Inc. Illumina 16S Metagenomic Sequencing Library. Available online: https://support.illumina.com/downloads/16s_

metagenomic_sequencing_library_preparation.html (accessed on 20 December 2021).
17. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;

Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol.
2019, 37, 852–857. [CrossRef]

18. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference
from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [CrossRef]

19. Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast
Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [CrossRef] [PubMed]

20. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE
2010, 5, e9490. [CrossRef] [PubMed]

21. Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible
Sequence Taxonomy Reference Database Management. PLoS Comput. Biol. 2021, 17, e1009581. [CrossRef] [PubMed]

22. Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing
Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018,
6, 90. [CrossRef] [PubMed]

23. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene
Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [CrossRef] [PubMed]

24. Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270.

www.flaticon.com
https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
https://www.gob.mx/issste/articulos/la-obesidad-en-mexico
https://www.gob.mx/issste/articulos/la-obesidad-en-mexico
https://doi.org/10.1016/S0025-7753(07)72531-9
https://www.ncbi.nlm.nih.gov/pubmed/17298782
https://doi.org/10.1097/NT.0000000000000167
https://www.ncbi.nlm.nih.gov/pubmed/27795585
https://doi.org/10.7717/peerj.7502
https://www.ncbi.nlm.nih.gov/pubmed/31440436
https://doi.org/10.1038/ismej.2009.112
https://doi.org/10.3389/fmicb.2018.00890
https://doi.org/10.1136/gutjnl-2015-309957
https://doi.org/10.1016/j.crmicr.2022.100127
https://doi.org/10.3390/nu13010007
https://doi.org/10.1155/2018/9109451
https://www.ncbi.nlm.nih.gov/pubmed/30671094
https://doi.org/10.4067/S0717-75182011000200013
https://doi.org/10.3390/nu14010012
https://doi.org/10.1038/s41430-020-0607-6
https://doi.org/10.1186/s12263-021-00703-6
https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/nar/gkf436
https://www.ncbi.nlm.nih.gov/pubmed/12136088
https://doi.org/10.1371/journal.pone.0009490
https://www.ncbi.nlm.nih.gov/pubmed/20224823
https://doi.org/10.1371/journal.pcbi.1009581
https://www.ncbi.nlm.nih.gov/pubmed/34748542
https://doi.org/10.1186/s40168-018-0470-z
https://www.ncbi.nlm.nih.gov/pubmed/29773078
https://doi.org/10.1093/nar/gks1219
https://www.ncbi.nlm.nih.gov/pubmed/23193283


Metabolites 2024, 14, 121 16 of 17

25. Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights
into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [CrossRef] [PubMed]

26. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery
and Explanation. Genome Biol. 2011, 12, R60. [CrossRef]

27. Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al.
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