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Abstract: Depressive disorder is a multifactorial disease that is based on dysfunctions in mental
and biological processes. The search for biomarkers can improve its diagnosis, personalize therapy,
and lead to a deep understanding of the biochemical processes underlying depression. The purpose
of this work was a metabolomic analysis of blood serum to classify patients with depressive disor-
ders and healthy individuals using Compound Discoverer software. Using high-resolution mass
spectrometry, blood plasma samples from 60 people were analyzed, of which 30 were included in a
comparison group (healthy donors), and 30 were patients with a depressive episode (F32.11) and re-
current depressive disorder (F33.11). Differences between patient and control groups were identified
using the built-in utilities in Compound Discoverer software. Compounds were identified by their
accurate mass and fragment patterns using the mzCloud database and tentatively identified by their
exact mass using the ChemSpider search engine and the KEGG, ChEBI, FDA UNII-NLM, Human
Metabolome and LipidMAPS databases. We identified 18 metabolites that could divide patients
with depressive disorders from healthy donors. Of these, only two compounds were tentatively
identified using the mzCloud database (betaine and piperine) based on their fragmentation spectra.
For three compounds ((4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-
2-one, (2E,4E)-N-(2-hydroxy-2-methylpropyl)-2,4-tetradecadienamide and 17α-methyl-androstan-
3-hydroxyimine-17β-ol), matches were found in the mzCloud database but with low score, which
could not serve as reliable evidence of their structure. Another 13 compounds were identified by
their exact mass in the ChemSpider database, 9 (g-butyrobetaine, 6-diazonio-5-oxo-L-norleucine,
11-aminoundecanoic acid, methyl N-acetyl-2-diazonionorleucinate, glycyl-glycyl-argininal, dilauryl-
methylamine, 12-ketodeoxycholic acid, dicetylamine, 1-linoleoyl-2-hydroxy-sn-glycero-3-PC) had
only molecular formulas proposed, and 4 were unidentified. Thus, the use of Compound Discoverer
software alone was not sufficient to identify all revealed metabolites. Nevertheless, the combina-
tion of the found metabolites made it possible to divide patients with depressive disorders from
healthy donors.

Keywords: biomarker; depression; metabolomics; metabolome

1. Introduction

Depression disorders are a group of mental illnesses that seriously impair the social
functioning and quality of life of patients and are characterized by a high recurrence rate [1].
The lifetime prevalence of depression in communities from different countries between 1994
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and 2014 was 10.8% [2]. Due to the COVID-19 pandemic, the global estimated prevalence
of depression in the mid-2020s was seven times higher than in 2017, at 25% [3]. Depression
is more common in women, and socioeconomic and family factors have a pronounced
influence on its development in both sexes [4]. Despite a large amount of research, the un-
derlying molecular mechanisms of depression remain unclear. Depression is characterized
by multifactoriality, heterogeneity of clinical manifestations and lack of diagnostic biomark-
ers. The classic etiopathological hypothesis is the monoaminergic hypothesis of depression,
according to which the neurotransmitters norepinephrine and serotonin are involved in the
development of the disease. However, this hypothesis cannot explain the multifactoriality
and heterogeneity of the clinical manifestations of depression [5]. Treatment strategies
using antidepressants are aimed at normalizing neurotransmitter levels, but some patients
with depressive disorders do not achieve an adequate therapeutic response [6]. The existing
time lag between treatment administration and therapeutic effect, which can significantly
influence the development of the disease, including increasing the likelihood of suicide, also
entails the need for additional study of the biological mechanisms of depressive disorders.
The cytokine hypothesis (immune-inflammation) of depression has also been intensively
studied. According to it, internal or external stress causes an imbalance in the cytokine
spectrum, which plays an important role in the severity and continuity of depressive
symptoms in vulnerable individuals [7]. The hypothalamic–pituitary–adrenal (HPA) axis
hypothesis of depression is also widely discussed. Evidence includes chronically elevated
cortisol levels, hypersecretion of corticotropin-releasing factor from the paraventricular
nucleus of the hypothalamus, disruption of the HPA axis negative feedback, and adrenal
enlargement in depression [8,9]. The inotropic glutamate receptors NMDAR and AMPAR
are also closely associated with depression symptoms.

Other theories on the pathophysiology of depression discuss changes in neuroplastic-
ity and neurotrophins in selected vulnerable brain regions; abnormal glutamate and NMDA
receptors; a decrease in synaptic plasticity; increased apoptosis; insufficiency of neuros-
teroid synthesis; disruption of the endogenous opiate system; and changes in mitochondrial
function and neuronal bioenergetics [10–14].

The identification of potential biomarkers of mental illness is of particular interest
in metabolomic research due to the complex and multifaceted changes in biochemical
pathways that lead to the pathological state. Metabolomics has become the basis for the
system-wide profiling of diseases and medicine because of the interest in and the recogni-
tion of the important role of metabolites in biological processes and the dynamic influence
of the metabolome on biological systems. Between 2007 and 2017, the number of publi-
cations mentioning the terms ‘metabolomic’ and ‘biomarker’ increased significantly [15],
and this increase has continued in recent years, with the number of publications doubling
since 2017. This growth has been attributed to advances in liquid chromatography–mass
spectrometry (LC-MS), which has allowed the untargeted metabolomic analysis of bio-
logical fluids [15–17]. Several types of mass spectrometers, such as time-of-flight (TOF),
ion trap TOF, hybrid quadrupole TOF, and Orbitraps, routinely achieve high mass accu-
racy [15,18,19]. This enables the determination of a compound’s molecular formula from
its exact mass. However, due to their absence in reference databases, the wide range of
metabolite concentrations, and the limitations of mass spectrometry data acquisition speed,
compound identification remains poor, and many peaks remain unidentified [15].

A variety of free software is available for compound annotation, both as an online
resource and implemented using the R and Python programming languages [20–23]. More-
over, each mass spectrometer company provides its own software to process, annotate and
visualize mass spectrometry data, for example, Progenesis QI (Waters, Milford, MA, USA),
XCMSplus (Sciex, Framingham, MA, USA), MassHunter (Agilent, Palo Alto, CA, USA),
and Compound Discoverer (Thermo Scientific, San Jose, CA, USA). The last one works
only on .raw files generated by Xcalibur software and Orbitrap mass spectrometers but
provides automated compound annotation via the mzCloud database [24]. Compound
Discoverer was used in various untargeted metabolomics studies for, e.g., compound iden-
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tification in ethanol extract of plants [25–28], comparing samples of propolis [29] and lentil
seed coats [30], determining the metabolic changes during the browning process [31], the
analysis of biological fluid samples [32,33], autism studies, [34] etc.

The search for biomarkers can improve disease diagnosis, personalize therapy and lead
to a deep understanding of the biochemical processes underlying depression. Metabolomic
approaches based on the use of gas chromatography–mass spectrometry and LC-MS are
widely used to search for potential biomarkers of depression [35]. According to systematic
analyses in these studies, changes in metabolites have been observed in depressive disorders
and play a role in amino acid metabolism, energy and lipid metabolism and cell signal-
ing, as well as affect cell membrane components, neurotransmitters, inflammatory and
immunological mediators, hormone activators and precursors, and sleep regulators [35–37].
A systematic review summarized data indicating that in patients with depression, the
levels of lipids (arachidonic, linoleic, oleic, heptadecylic and valeric acids and cholesterol),
phosphoethanolamine, histamine, leucine-enkephalin, amino acids (tryptophan, kynure-
nine, gamma-glutamylleucine, arginine and isoleucine) and inosine in plasma/serum are
reduced. Increased concentrations of gamma-aminobutyric acid, dopamine, xanthine,
adenosine α-1-acid glycoprotein 1 and leucine-rich α-2-glycoprotein have also been found
in the plasma/serum of patients with depressive disorders [36]. At the same time, re-
searchers noted some difficulties associated with the ambiguous reproducibility of results,
and therefore new studies on metabolomic profiling remain relevant [35].

Therefore, the aims of the work were to classify patients with depressive disorders and
healthy individuals using metabolomic analysis of blood serum and to evaluate whether
this could be achieved with Compound Discoverer alone.

2. Materials and Methods
2.1. Chemicals and Reagents

HPLC-grade methanol and LC-MS-grade acetonitrile were purchased from J. T. Baker
(Gliwice, Poland) and Biosolve (Dieuze, France), respectively. Formic acid was acquired
from Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade water was produced with a Milli-Q
purification system from Millipore Corp. (Bedford, MA, USA).

2.2. Study Population and Sample Collection

The study was conducted in accordance with the Declaration of Helsinki of the World
Medical Association. The study protocol was approved by the Ethics Committee of the
Mental Health Research Institute, Tomsk National Research Medical Center, the Russian
Academy of Sciences (approval on 17 June 2022, #154). Clinical examination was carried
out in accordance with the Mini-International Neuropsychiatric Interview (M.I.N.I.) for
DSM-5, Russian version. Thirty patients with depressive disorders were included in the
study after signing an informed consent. There were 14 patients with a depressive episode
and 16 participants with recurrent depressive disorders according to the International
Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10:
F32.11 and F33.11). The patients were recruited from the Affective States Department in
the Mental Health Research Institute of the Tomsk National Research Medical Center. The
control group consisted of healthy volunteers (n = 30). The selection of healthy volunteers
was carried out among the staff and students at the Mental Health Research Institute
and Siberian State Medical University. All control group participants were assessed by a
trained psychiatrist to determine whether they met the inclusion/exclusion criteria and
by a self-report questionnaire. The questionnaire screened for both physical and mental
pathologies, e.g., endocrine, neurological, gynecological and psychiatric disorders.

The inclusion criteria for healthy volunteers were age from 18 to 55 years, consent
to participate in the study, absence of mental disorders, and absence of somatic disorders
requiring intensive treatment. The inclusion criteria for patients were a diagnosis of
depressive disorders (F32.11, F33.11) according to ICD-10 and age of 18–55 years. We
excluded patients with other comorbid mental disorders, for instance, schizophrenia,



Metabolites 2024, 14, 110 4 of 13

intellectual disability, alcoholic psychoses, and patients with acute physical diseases. The
screening for relevant pathologies for the in-/exclusion of subjects, disease development
and the severity of the conditions was performed according to clinical assessment by three
trained psychiatrists on the first day of admission.

The basic demographic and clinical data are presented in Table 1.

Table 1. Demographics and clinical characteristics of the study population, Me (Q1; Q3).

Indicators
Patients with Depressive Disorders

Healthy
Controls p-Value

Overall Depressive Episode
(F32.11)

Recurrent Depressive
Disorders (F33.11) p-Value

Age, years 40.5 (37; 48) 42 (39; 49) 39 (37; 45,5) 0.759 40 (29; 47) 0.359
Gender (male, n

(%)/female, n (%)) 2(6.7%)/28(93.3%) 1(7.1%)/13(92.9%) 1(6.7%)/15(93.3%) 0.922 2(6.7%)/28(93.3%) 1.0

Duration of
disease, years 0.67 (0.33; 4.5) 0.42 (0.25; 0.58) 5 (3.5; 10) 0.0001 * - -

Number of
depressive episodes

experienced
(excluding the
current one)

2 (2; 2) 0 2 (1.5; 2.5) 0.0001 * - -

Duration of the
current affective
episode, months

- 6 (3; 10) 3 (2; 8) 0.089 - -

BMI 25.1 (22.3; 27.3) 25.1 (22.9; 27.4) 25.1 (21.6; 27.1) 0.786 24.7 (22.5; 28.8) 0.531

BMI—body mass index; * p-value < 0.05—statistically significant difference between groups. Comparisons
between groups were performed using the chi-squared test for gender and the Mann–Whitney U-test for the
other indicators.

2.3. Sample Preparation

Blood from a peripheral venous was collected in Vacutainer tubes with a clotting
activator from each study participant between 8 and 9 a.m., after 12 h of overnight fasting
and before the intake of any food or medication. Then, the blood was centrifuged at
2000 rcf for 20 min at 4 ◦C. A 50 µL aliquot of each serum sample was placed in a 1.5 mL
Eppendorf tube. Then, 50 µL of methanol was added, and the samples were vortexed
approximately for 1 min to obtain a fine suspension of serum proteins. Next, 150 µL of
acetonitrile was added, and the samples were shaken for 10 min at 25 ◦C and 900 rpm.
After centrifugation at 13,000× g for 10 min, 100 µL of the supernatants was transferred into
glass vials for subsequent injection into an ultra-high-performance liquid chromatography
(UPLC) system.

2.4. LC/MS Parameters

The mass spectrometric analysis was carried out at the Core Facility of Mass Spectro-
metric Analysis at the Institute of Chemical Biology and Fundamental Medicine, the Siberian
Branch of the Russian Academy of Sciences. The prepared samples were analyzed by a
DIONEX UltiMate 3000 HPLC system and a Q-Exactive HF high-resolution tandem mass
spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA). A ProntoSil-120-3-C18
column (2 mm × 75 mm, 3 µm, EcoNova, Novosibirsk, Russia) with an Eclipse XBD-C18
guard column (4.6 mm × 12.5 mm, 5 µm) was used for reversed-phase separation. The
temperature of the column was maintained at 25 ◦C. The mobile phase consisted of wa-
ter containing 0.1% FA (A) and acetonitrile containing 0.1% FA (B); the flow rate was
0.3 mL/min. The chromatographic separation of all substances was performed in a 15 min
run using the following gradient elution program for the mobile phase: 80% buffer B
from minute 0 to minute 10, 1% buffer B to minute 12, 80% buffer B from minute 12.1 to
minute 15.

The Q-Exactive HF orbitrap mass spectrometer (Thermo Fisher Scientific, Inc.) was
utilized to analyze the metabolites in positive ion mode. The settings of the ESI source
were as follows: 4.2 kV electrospray voltage; capillary temperature, 320 ◦C; and S lens RF
level, 50. Precursor spectra (m/z 100–1035) were collected at 45,000 resolution at m/z 200
to hit an automatic gain control (AGC) target of 1 × 105 with a maximum injection time
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of 100 ms. A top 5 configuration to acquire data with isolation windows m/z 1.4 was set
in data-dependent acquisition (DDA) mode. The resolution was set at 15,000 to collect
fragment spectra for achieving an AGC target of 1 × 105, and the maximum injection time
was set to 65 ms. The normalized collision energies of 20, 40, and 80 eV were set for whole
molecule fragmentation. The data were acquired using Xcalibur 4.0 software (Thermo
Fisher Scientific). All samples were analyzed in three technical replicates.

2.5. Analysis Optimization

When conducting comparative metabolomic analysis, it is crucial to adhere to the
same conditions for sample preparation and data collection. Additionally, it is necessary to
examine the stability of the samples after extraction and before data collection. Given the
large number of compounds with different chemical characteristics, it is possible that some
compounds will be degraded. In this case, differences between samples will be primarily
caused by heterogeneity in the analysis conditions rather than by different concentrations
of compounds in the groups.

To study stability, we analyzed the same test sample every hour and studied the
change in signal area for the identified compounds in Compound Discoverer. The results
showed that after extraction, the samples remained stable for 6 h.

The chromatographic separation parameters were determined in the next step. An
isocratic gradient for 12 min was found to reveal the highest number of compounds in
the subsequent analysis using the Compound Discoverer program, while maintaining a
minimum chromatography time. Therefore, the samples were divided into groups of six,
each consisting of three patient samples and three healthy donor samples. Each sample
was analyzed three times to ensure accuracy, and including the washes, the total analysis
time did not exceed six hours.

2.6. Compound Identification and Statistical Analysis

Following their acquisition, the mass spectrometry data (.raw files) were inputted into
Compound Discoverer 3.3 software. In the “Study Definition”, the samples were divided
by the categorical factors “Diagnosis” and “Sample name”, and technical replicates were
specified as biological replicate factor. The following ratios were generated at the “Group-
ing and Ratios” step: patients with depressive episode vs. control group (F3211/healthy),
patients with depressive episode vs. control group (F3311/healthy), and patients with
depressive episode vs. patients with depressive episode (F3311/F3211). A common work-
flow “Untargeted Metabolomics with Statistics Detect Unknowns with ID using Online
Databases” was used for compounds identification, with mass tolerance of 10 ppm in
all appropriate nodes. Several databases, i.e., ChEBI (https://www.ebi.ac.uk/chebi/;
accessed on 5 December 2023), FDA UNII–NLM (https://precision.fda.gov/uniisearch/;
accessed on 5 December 2023), Human Metabolome Database (https://hmdb.ca/; accessed
on 5 December 2023), KEGG (https://www.genome.jp/kegg/; accessed on 5 December
2023), and LipidMAPS (https://www.lipidmaps.org/; accessed on 5 December 2023), were
chosen in the ChemSpider search node.

Several mzVaults were used in the mzVault search node, i.e., Negative ion mode_Jan2021.db
and Positive ion mode_Jan2021.db (https://more.bham.ac.uk/bamcg/resources/; accessed
on 5 December 2023), MS2_library.db [38], LipidBlast-V56B-Neg.db, and LipidBlast-V56B-
Pos.db [39]. The metabolites were identified on the basis of both accurate mass and fragment
mass “fingerprint” spectra via searches against the spectra of compounds available in the
mzCloud database (https://www.mzcloud.org; accessed on 5 December 2023) and local
mzVaults databases. Compounds that were absent in mzCloud were tentatively identified
using a ChemSpider search.

Statistical analysis was carried out using modules built in Compound Discoverer 3.3,
i.e., principal component analysis and differential analysis. The p-value per group ratio was
calculated by a multivariate paired t-test (assuming equal variance). Background signals
with a mean area less than 3 × 106 were filtered out, resulting in a total of 1573 compound

https://www.ebi.ac.uk/chebi/
https://precision.fda.gov/uniisearch/
https://hmdb.ca/
https://www.genome.jp/kegg/
https://www.lipidmaps.org/
https://more.bham.ac.uk/bamcg/resources/
https://www.mzcloud.org
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lines (some of the compounds were presented in multiple lines). The PCA tool built into
Compound Discoverer was used to separate groups, but the initial set of compounds did
not result in meaningful group separation. The built-in differential analysis utility was used
to identify compounds to separate the patient groups from the control group. We selected
compounds whose concentrations were significantly different (p-value < 0.05) by more than
2-fold in the patients and control groups. Then, we filtered the results by p-value adjusted
using Benjamini–Hochberg correction for the false discovery rate, with adj. p-value < 0.05
for at least one patient group. And additional manual filtering was performed.

3. Results and Discussion

Although about 1500 compounds were identified by the Compound Discoverer anal-
ysis, the multivariable analysis of the full set of compounds failed to fully discriminate
between patient groups and healthy donors. Moreover, the first two principal components
(PCs) demonstrated in the PCA score plot slight variations, with PC1 and PC2 being 16.9%
and 9.2%, respectively (Figure 1A). To differentiate between patients and controls, 18 com-
pounds were selected as a result of sequential filtration (Table 2). In the PCA score plot, the
variation of the first component PC1 increased significantly to 51.6%, even though the vari-
ation of the second component PC2 hardly increased and reached 10.2% (Figure 1B). Only
4 from the selected 18 compounds (1, 6, 8, 10) were tentatively identified in the mzCloud
database from their fragment patterns, and for compound 9, fragmentation similar to that
of a different molecule was observed. Two compounds were identified with good mzCloud
score (Table 2): compound 1 as betaine, and compound 8 as piperine. The comparison of
the experimental fragmentation spectra with the spectra from the mzCloud database is
presented in Figure S1 for betaine and in Figure S2 for piperine.
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Because of poor fragmentation for compounds 6 (Figure S3) and 10 (Figure S4), the sug-
gested structures were most likely incorrect. This was also evidenced by the low mzCloud
scores of 60.2 for compound 6 and 55.2 for compound 10 (Table 2). The fragmentation
pattern of compound 9 was similar to that in the autoprocessed spectrum of NP-008993,
with different molecular weight of 314.24571 and gross formula C18H34O4 (Figure S5).
Nevertheless, such fragmentation could correspond to decadienamide or sphingosine
derivatives. Other compounds were not found in the mzCloud database and were tenta-
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tively identified only by their accurate mass using a ChemSpider search, suggesting their
possible association with neurodegenerative diseases. Compounds 13 and 14 had different
retention times but the same molecular weight.

Table 2. Compounds whose levels differed significantly between patients with depressive disorders
and healthy volunteers.

No. Calc. MW, Da Formula Name mzCloud Score
F3211/

Healthy
(p-Value)

F3311/
Healthy

(p-Value)

1 117,07860 C5H11NO2 Betaine 93.2 0.37 (0.0003) 0.31 (0.0017)
2 145,10947 C7H15NO2 g-Butyrobetaine - 0.56 (0.002) 0.53 (0.015)
3 172,07044 C6H10N3O3 6-Diazonio-5-oxo-L-norleucine - 0.39 (0.0006) 0.39 (0.002)
4 201,17209 C11H23NO2 11-Aminoundecanoic acid - 0.07 (0.002) 0.08 (0.004)
5 214,11747 C9H16N3O3 Methyl N-acetyl-2-diazonionorleucinate - 0.31 (0.004) 0.30 (0.002)

6 216,09639 C10H16O5
(4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-

3,4,5,8,9,10-hexahydro-2H-oxecin-2-one 60.2 0.36 (0.001) 0.42 (0.005)

7 272,15857 C10H20N6O3 Glycyl-glycyl-argininal - 0.07
(0.00007) 0.08 (0.001)

8 285,13511 C17H19NO3 Piperine 87.5 0.59(0.03) 0.51 (0.005)

9 295,24900 C18H33NO2
(2E,4E)-N-(2-Hydroxy-2-methylpropyl)-

2,4-tetradecadienamide 52.2 * 7.2 (0.0007) 8.8 (0.003)

10 319,24639 C20H33NO2
17α-Methyl-androstan-3-hydroxyimine-

17β-ol 55.2 20.3 (0.0004) 26.2 (0.0002)

11 367,41679 C25H53N Dilaurylmethylamine - 0.28 (0.003) 0.37 (0.003)
12 390,2752 C24H38O4 12-Ketodeoxycholic acid - 0.42 (0.005) 0.34 (0.007)
13 465,52609 C32H67N Dicetylamine - 0.02 (0.004) 0.02 (0.006)
14 465,52684 C32H67N Dicetylamine - 0.11(0.1) 0.13(0.1)
15 497,89136 C8H7N2O17PS2 - - 0.48 (0.002) 0.54 (0.014)
16 519,33092 C26H50NO7P 1-Linoleoyl-2-hydroxy-sn-glycero-3-PC - 0.17 (0.006) 0.14 (0.0006)
17 701,85267 C12H5N10O16P3S2 - - 0.49 (0.002) 0.57 (0.019)
18 837,82763 - - - 0.46 (0.0005) 0.54 (0.012)
19 905,81407 - - - 0.47 (0.002) 0.44 (0.013)

* mzCloud best similarity score.

According to a meta-analysis, animal models of depression showed decreased levels
of neurotransmitters and increased levels of kynurenine in the brain; a decrease in the
concentration of amino acids and an increase in the level of corticosterone in the blood;
and signs of unbalanced energy metabolism and microbial metabolites in urine [5]. This
correlated with the decreased concentrations of compounds 3, 5 and 7, tentatively identified
as norleucine derivatives and three-amino acid peptide, respectively, in patients with
depressive disorders. A large-scale meta-analysis including 10,145 control subjects and
5283 persons with depression indicated a distinctive profile of circulating lipid metabolites
associated with depression [37]. Compounds 13 and 14, identified as dicetylamine, could
be part of a lipid molecule with an amino group and an aliphatic chain. Also compounds
15 and 17–19, which presented identical fragments, could be part of an iterative molecule.

Betaine (compound 1) takes part in the conversion of homocysteine to methionine.
Disruption of these metabolic pathways leads to the accumulation of homocysteine. Excess
homocysteine, hyperhomocysteinemia and homocystinuria are associated with various
somatic and mental disorders: arterial occlusive disease, hypertriglycerilemia, venous
thrombosis, chronic renal failure, megaloblastic anemia, osteoporosis, Alzheimer’s disease
and cognitive decline [40–43]. According to a systematic review and meta-analysis, ele-
vated homocysteine levels are positively associated with the risk of depression [44]. The
homocysteine-converting role of betaine is hypothesized to be critical for homeostasis [45];
when betaine levels decrease, which is accompanied by an increase in homocysteine levels
and a decrease in methionine production, the synthesis of dopamine, serotonin and nore-
pinephrine decreases, which leads to depression. In addition, homocysteine has a direct
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toxic effect on endothelial cells and cerebral vascular neurons [46,47]. In a metabolomics
analysis of plasma using liquid chromatography–mass spectrometry, betaine was one
of five metabolites that were associated with depression severity in three independent
cohorts, independent of the presence or absence of medical treatments and diagnostic
differences [48]. The plasma betaine levels were also reduced in patients with post-stroke
depression [46]. A number of studies demonstrated that a combination therapy consist-
ing of betaine and S-adenosylmethionine was effective and safe in patients with mild to
moderate depression [49,50].

In recent years, research studying the brain–gut microbiological axis in mental disor-
ders have become widespread. In particular, significant differences in the intestinal micro-
biota have been identified in patients with depression compared to healthy people [51–55].
Cholic acid and its derivatives (compound 12) are bile acids that are synthesized in the liver
and then processed by intestinal bacterial enzymes. Bile acids can change the permeability
of the BBB and influence inflammation processes and oxido-nitrosative and endoplasmic
reticulum stress [56,57]. Significant alterations in the content of cholic acid derivatives
were revealed in patients with depression compared to healthy people. [56,58]. Using
targeted metabolomics, it was shown that changes in the bile acid profile in patients with
major depressive disorder were associated with higher levels of anxiety and an increased
likelihood of first-line treatment failure [59].

The decrease in g-butyrobetaine (trimethylammoniobutanoic acid, compound 2) levels
in depressed patients can be explained in several ways. g-Butyrobetaine is a trimethylated
derivative of y-aminobutyric acid (GABA) [60]. GABA is the main inhibitory neuro-
transmitter of the central nervous system; decreased GABA levels are associated with
depression and mood disorders [61,62]. Animal studies suggest that the gut microbiota
may alter GABA activity in the brain via the vagus nerve in animals. On the other hand,
g-butyrobetaine is a precursor to L-carnitine in mammal endogenous synthesis; in humans,
endogenous synthesis accounts for 25% of L-carnitine, while 75% of L-carnitine derives
from the diet [63]. L-carnitine is a major participant in energy metabolism involved in
the β-oxidation of fatty acids [64]. There was a decrease in the level of L-carnitine in the
plasma of patients with depression compared to healthy individuals [65,66]. In addition,
L-carnitine and acetyl-L-carnitine were shown to be markers of treatment effectiveness in
depression [66].

1-Linoleoyl-2-hydroxy-sn-glycero-3-PC (LGPC, compound 16) is a lysophospholipid
containing linoleic acid. Insulin resistance and dysglycemia lead to decreased LGPC
levels in human serum [67]. In addition, we found unidentifiable compounds, most
likely representing fatty acid residues. Given recent meta-analyses showing significant
relationships between metabolic disorders, insulin resistance and depression [68,69], it
can be assumed that the appearance of these compounds in the metabolomic signature
confirmed the close relationship between these mental and somatic conditions.

Compound 8, identified as piperine by multiple fragments with a high mzCloud
score (87.5), is not an endogenous metabolite. Piperine is one of the main constituents of
pepper, natural substances of alkaloid origin with multiple pharmacological properties.
These include anti-inflammatory [70], antimicrobial, antioxidant [71], hepatoprotective [72],
anticonvulsant [73], and neuroprotective [74] activities. Piperine also showed potential for
treating depressive disorders and enhancing memory in animal models [75,76]. The oral
administration of piperine, the main alkaloid of black pepper, was shown to be effective
with respect to antidepressant activity and cognitive effects in rat experiments [76]. Its
effects were shown to be comparable to those of the positive controls fluoxetine and
donepezil hydrochloride. Interestingly, piperine does not cause false positives in the
effort swimming test, as it has no stimulatory effect on locomotor activity. Thus, the
antidepressant activity of piperine is not a false positive effect. Similar results were obtained
in another study, which also demonstrated the antidepressant activity of piperine in rats
under chronic mild stress [75]. In several mouse models of behavioral despair, piperine was
shown to inhibit monoamine oxidase activity, increase monoamine neurotransmitter levels,
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and thus produce antidepressant-like activity [77]. The antidepressant effects of piperine
were associated with increased proliferation of hippocampal progenitor cells [75]. It was
also shown that brain-derived neurotrophic factor signaling mediates this antidepressant-
like effect of piperine in chronically stressed mice [78]. Since piperine is ingested with food
and affects serotonin production, it is not clear from our study whether a reduction in black
pepper intake negatively affects the serotonin levels or whether patients with depressive
episodes dislike peppered foods.

The remaining compounds we tentatively identified are not endogenous and are
metabolites that reflect the likely influence of environmental factors. We controlled blood
sampling in the study participants, trying to ensure equilibrium concentrations of metabo-
lites in the blood. Understanding the role of these compounds for a holistic deciphering of
the molecular mechanisms that control the final phenotype seems to be possible to realize
in future studies, as knowledge about the human exposome accumulates and expands.

The comparison of our results with data from other untargeted metabolomics studies
of depression led to mixed conclusions. In general, a fairly large amount of knowledge has
been accumulated about changes in the metabolite profile in patients with depressive disor-
ders [35–37]. However, the results of these studies are generally contradictory. According
to a recent systematic review, the most consistent evidence was obtained for kynurenine
and acylcarnitine [36]. In our study, we did not find changes in these metabolites, but their
derivatives were identified as altered in depressive disorders. The lack of clear reproducibil-
ity of the results of metabolomic studies is associated both with the high heterogeneity of
the clinical manifestations of the disease and with different methodological approaches in
different studies. Therefore, work in this direction, conducting similar studies including
a detailed description of the methodologies used, can contribute to the development of
metabolomics approaches and, in the future, to the acquisition of true knowledge.

The main limitations of our study are the small sample size and the tentative identifi-
cation of most of the revealed metabolites using only Compound Discoverer software.

4. Conclusions

Eighteen compounds were revealed as metabolites with significantly different levels in
patients with depressive disorders in comparison with healthy controls through untargeted
metabolomics using Compound Discoverer software. The structure of two compounds
was confirmed by their fragmentation patterns through the mzCloud database, while the
remaining compounds were identified tentatively. Although the utilities built in Compound
Discoverer software were sufficient to identify differences in metabolites between groups,
Compound Discoverer was not sufficient to reliably identify all detected compounds. It can
be used for the initial identification of ions whose amounts differ meaningfully between
groups, but reference standards are required for the accurate identification of presumed
molecules. Even without knowing the exact structure of the proposed compounds, using
multivariate analysis of mass spectrometry data, the described set of metabolites could
be useful in a clinical test to reveal patients with depressive disorders. Further research
is required to conclusively identify and validate the revealed metabolites as potential
biomarkers of depressive disorders.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo14020110/s1, Figure S1: Comparison of the experimental
fragmentation spectrum of betaine (top) with the spectrum from the mzCloud database (bottom); Fig-
ure S2: Comparison of the experimental fragmentation spectrum of piperine (top) with the spectrum
from the mzCloud database (bottom); Figure S3: Comparison of the experimental fragmentation
spectrum of (4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one (top)
with the spectrum from the mzCloud database (bottom); Figure S4: Comparison of the experimental
fragmentation spectrum of 17α-Methyl-androstan-3-hydroxyimine-17β-ol (top) with the spectrum
from the mzCloud database (bottom); Figure S5: Comparison of the experimental fragmentation
spectrum of (2E,4E)-N-(2-Hydroxy-2-methylpropyl)-2,4-tetradecadienamide (top) with the spectrum
of NP-008993 from the mzCloud database (bottom).
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