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Abstract: Physical activity is a potential protective factor against gout, but the role of exercise
intensity in this context remains unclear. To overcome the limitations of observational studies in
causal inference, this study employed a two-sample Mendelian randomization approach to explore
the impact of different genetically proxied/predicted intensities of physical activity on serum urate
concentration and the incidence of gout. Our data related to physical activity, serum urate, and
gout were obtained from the UK Biobank, the Global Urate Genetics Consortium (GUGC), and
the FinnGen dataset, respectively. Walking was included as representative of typical low-intensity
physical activity in the analysis, and the other two types were moderate and vigorous physical
activities. The estimation methods we used included the inverse-variance-weighted (IVW) method,
MR-Egger regression, weighted-median method, simple-mode method, and weighted-mode method.
Sensitivity analyses involved Rucker’s framework, Cochran’s Q test, funnel plots, MR-PRESSO outlier
correction, and leave-one-out analysis. We found suggestive evidence from the inverse-variance-
weighted method that moderate physical activity was a potential factor in reducing the incidence of
gout (OR = 0.628, p = 0.034), and this association became more substantial in our subsequent sensitivity
analysis (OR = 0.555, p = 0.006). However, we observed no distinctive effects of physical activity
on serum urate concentration. In conclusion, our study supports some findings from observational
studies and emphasizes the preventive role of moderate physical activity against gout. Given the
limitations of the existing datasets, we call for future reexamination and expansion of our findings
using new GWAS data.

Keywords: physical activity; gout; metabolic disorder; chronic disease; uric

1. Introduction

Gout is an acute sterile inflammation primarily triggered by the deposition of monosodium
urate crystals in joints [1,2]. Historically, gout was thought to be a disease of only the
wealthy or royal class, and it was called the “disease of the kings.” However, the inci-
dence of gout has largely increased in multiple countries and regions as rapid economic
development has provided the general population with richer diets [3]. From 2010 to 2020,
the global incidence of gout rose from 0.08% to 2–4% [4,5]. In addition to severe pain
symptoms, gout itself may contribute to an increased risk of conditions such as cardiovas-
cular disease [6], chronic kidney disease [7], and rheumatoid arthritis [8]. Currently, gout
remains a challenging condition to manage. Its progressively rising incidence, coupled
with various associated comorbidities, poses a considerable economic burden on both
individuals and society. A survey indicated that, compared with non-gout individuals,
those with gout experience a substantial increase in annual medical expenses, amounting to
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several thousand or even tens of thousands of dollars [9]. Additionally, reports suggest that
in the United States alone, the annual economic burden caused by gout exceeds billions
of dollars [10]. Consequently, gout emerges as a noteworthy issue in the global public
health domain.

The pathogenic mechanisms of gout are still quite complex [11], and the deposition
of serum urate is widely recognized as the primary risk factor for gout [12]. Currently,
pharmaceutical treatments are widely employed to address the issue of elevated serum
urate levels causing gout [13]. While these medicines show good short-term efficacy, long-
term use may induce gastrointestinal reactions, skin rashes, systemic complications, and
even renal failure [14,15]. Furthermore, such medications cannot prevent, halt, or reverse
the progression of this complex disease [16]. Therefore, there is an urgent need for non-
pharmacological preventive and therapeutic approaches at present. In behavioral medicine,
improving diet, physical activity, and alcohol consumption habits is considered beneficial
for the prevention and treatment of gout [17]. Among these, physical activity may play
a particularly crucial role. On one hand, there is a close relationship between physical
activity and obesity (one of the risk factors for gout); on the other hand, skeletal muscles
can produce anti-inflammatory cytokines during exercise, helping to break the vicious
cycle of chronic inflammation and thereby reducing the impact of gout [18]. To explore the
preventive effect of physical activity on gout, many scholars have conducted large-scale
surveys, such as cross-sectional studies observing the association between physical activity
and serum urate levels as well as gout symptoms [19,20]. Their research primarily supports
the positive role of physical activity.

To address the limitations of observational studies, randomized controlled trials
(RCTs), considered the “gold standard” for causal inference, are crucial [21]. However, high-
quality RCTs often require substantial sample sizes and rigorous randomization processes
to effectively balance confounding factors. Therefore, alternative research methods have
considerable value, and Mendelian randomization (MR) has emerged as a novel technique
in this context. MR uses genetic variants as instrumental variables to explore causal
relationships between other external factors, thus allowing us to re-evaluate the findings
from observational studies. MR is based on the principle that if genetic variation (or
genes) influences a modifiable risk factor, and this risk factor, in turn, affects the risk
of a certain disease, then genetic variation should be associated with the risk of that
disease [22]. Eventually, we can estimate the causal impact of modifiable risk factors on
disease risk based on certain assumptions [22]. Since an individual’s genotype is fixed at
the formation of the zygote, theoretically the association between genes and traits should
not be confounded by environmental factors encountered during an individual’s later life
history [23]. Furthermore, the random allocation of genetic variation during meiosis and
random mating within populations can further balance confounding factors [23]. These
advantages make MR an analog of RCTs and thus play a crucial role in causal inference.

As mentioned above, since the previous findings on the association between physical
activity and gout were obtained from observational studies, they can be threatened by
confounding, and the causality cannot be confirmed due to the nature limitation of this
research design [24], especially considering that gout symptoms can reduce overall activity
levels (which implies reverse causality) [25]. Moreover, due to the often long and unpre-
dictable intervals between gout attacks, exploring the impact of physical activity through
large-sample and well-controlled trials is challenging and resource-intensive. For these
reasons, using the MR approach to identify the causal effect of physical activity on gout
and its risk factor serum urate is essential and may offer additional evidence to form a
triangulation with existing studies of different designs [26]. So far, there has been only very
limited exploration in this regard [27], and the intensity of physical activity has not been
specifically studied. Since the intensity of physical activity is believed to alter its benefits
on gout, our study, in response, is designed to explore the differences. In general, this study
aims to use MR design to validate the impact of different intensities of physical activity on
serum urate concentration and the incidence of gout.
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2. Materials and Methods
2.1. Research Design

We employed a two-sample MR design for causal association evaluation. The
two-sample MR is a typical technique within the MR framework. It extracts genetic
variant—exposure and genetic variant—outcome association information from different
study cohorts of the same underlying population [28,29]. To control for population stratifi-
cation bias, we focused on individuals of European ancestry only in the current analysis [30].
This study is based on publicly available, summary-level GWAS (Genome-Wide Associa-
tion Studies) data, eliminating the need for informed consent and ethical approval. The
study was conducted according to the STROBE-MR statement [31].

2.2. Data Source

Single-nucleotide polymorphism (SNP) refers to a genetic variant in which a single
base pair in the DNA varies across the population at an appreciable frequency [31]. In this
study, SNPs were used as instrumental variables (IVs) to perform MR analysis.

Our “SNP—physical activity” data were obtained from the UK (United Kingdom)
Biobank. The UK Biobank is a very large, population-based prospective study, established
to allow detailed investigations of the genetic and nongenetic determinants of diseases [32].
In this survey, a series of questions were posed regarding participants’ physical activity
habits. The question was, “On how many days per week do you respectively engage in
walking, moderate physical activity, or vigorous physical activity that lasts 10 min?“ Re-
sponses were self-reported by participants and were coded as ordered categorical variables
(0–7 representing 0 to 7 days per week). To our knowledge, this survey was modified from
a well-studied three-item physical activity assessment tool [33,34]. It includes walking as
representative of low-intensity physical activity, which may enhance the questionnaire’s
applicability, as walking is a typical low-intensity leisure activity [35].

Our “SNP—serum urate” data were derived from a meta-analysis conducted by
the Global Urate Genetics Consortium (GUGC). This meta-analysis combined data from
48 genome-wide association studies, establishing associations between genes and serum
urate concentration (mg/dL). The study encompassed a cohort of 110,347 individuals of
European ancestry [36].

Our “SNP—gout” data come from the FinnGen project in Finland. The FinnGen
project, initiated in 2017, is a research endeavor aimed at collecting biological samples from
500,000 participants in Finland over six years. The project seeks to enhance health condi-
tions through genetic research. Our “SNP—gout” data record the associations between
genetic variants (SNPs) and the incidence of gout among participants. The outcome is
encoded as a binary variable to represent the incidence of gout. All the data we utilized,
along with their identification numbers and specific details, can be found in Table 1 of the
IEU GWAS OPEN database [37].

Table 1. Data sources and IDs.

GWAS-ID Phenotype Sample Size SNPs (n) Ancestry

ukb-b-4886 Walking 454,783 9,851,867 European
ukb-b-4710 Moderate PA 440,266 9,851,867 European
ukb-b-151 Vigorous PA 440,512 9,851,867 European
ieu-a-1055 Serum urate 110,347 2,450,548 European

finn-b-M13_GOUT Gout 150,797 (3576 cases
and 147,221 controls) 16,380,152 European

Note: PA, physical activity.
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2.3. Mendelian Randomization

There are three fundamental assumptions when applying MR [38], which are that
(1) the genotype is associated with the exposure; (2) the genotype is associated with
the outcome through the studied exposure only (exclusion restriction assumption); and
(3) the genotype is independent of other factors which affect the outcome (independence
assumption). The assumptions applying to the current study are visualized in Figure 1.
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To fulfill the first assumption, we used the conventional genome-wide significance
threshold (p < 5 × 10−8) to choose genetic instruments that were strongly associated with
exposures [39]. Moreover, all initially identified genetic variants were clumped using
PLINK to ensure that our instruments came from an independent set of variants (settings:
clump-r2 = 0.001 and clump-kb = 10,000) [40]. Then, data harmonization was performed to
either correct or directly exclude the effects of ambiguous single-nucleotide polymorphisms
(SNPs) with inconsistent alleles and palindromic SNPs with ambiguous strands [41]. The
F-statistic for each instrument was estimated using F = beta2/SE2 [42–44]. IVs with an
F-statistic smaller than 10 were considered weak instruments [45] and were excluded
before analysis.

Unlike the first hypothesis, the other two MR hypotheses are unlikely to be fully vali-
dated [46,47]. On the one hand, the pleiotropy of genes is widespread. On the other hand,
accurately specifying all confounding factors and excluding relevant SNPs is challenging.
Therefore, we implemented several countermeasures to address this issue. First, although
not always necessary, reverse causality between exposure and outcome may introduce
bias to the estimation [23]. Considering this, we employed the Steiger filtering method to
eliminate any SNP that was more predictive of the outcome than the exposure [48,49]. This
method involves measuring the variance explained in exposure and outcome by SNPs, and
testing whether the variance in the outcome is less than the exposure [50].

Secondly, horizontal pleiotropy is arguably the greatest threat to MR. It occurs when
an SNP affects the confounders of the exposure—outcome association and eventually
affects the outcome (referred to as correlated pleiotropy), or directly influences the outcome
(referred to as uncorrelated pleiotropy) [51,52]. These two types of horizontal pleiotropy
represent the violation of the second and third assumptions mentioned above [51]. For
these reasons, evaluating and controlling for horizontal pleiotropy is highly important
during MR analysis. Here, we mainly employed the MR-Egger intercept test and the
“global test” of the MR Pleiotropy Residual Sum and Outlier test (MR-PRESSO) [53,54].

The MR-Egger intercept test is used to evaluate directional horizontal pleiotropy. Un-
der the InSIDE (Instrument Strength Independent of Direct Effect) assumption, the intercept
from the MR-Egger analysis can be interpreted as the average horizontal pleiotropic effect
of the IVs included in the analysis, and an intercept not significantly different from zero
can be interpreted as a balanced horizontal pleiotropy. Otherwise, there can be directional
horizontal pleiotropy or a violated InSIDE assumption or both [53]. The MR-PRESSO
global test evaluates the overall horizontal pleiotropy among all IVs in a single MR test
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by comparing the observed distance of all the variants to the regression line (residual
sum of squares) with the expected distance under the null hypothesis of no horizontal
pleiotropy [51]. In this study, a total of 10,000 simulations were computed to calculate the
empirical p-values for the MR-PRESSO tests [51,55].

Three estimators were used for MR analyses, including inverse-variance weight-
ing (IVW), MR-Egger regression, and weighted median. IVW was our core estimator
and is the most efficient estimator [39] that can provide unbiased estimates under bal-
anced horizontal pleiotropy [56]. We used the random effects model only for the IVW
method as it tolerates balanced horizontal pleiotropy [57]. The MR-Egger is robust to direc-
tional horizontal pleiotropy under the InSIDE assumption, which allows for uncorrelated
pleiotropy [28,52,58]. The weighted-median method can accommodate correlated horizon-
tal pleiotropy [52] but requires that over 50% of IVs are valid [59]. We also considered two
extra estimators, namely, simple and weighted mode estimators. The weighted mode-based
estimators assume that the most common causal effect is consistent with the true causal
effect. Hence, the remaining instruments could be invalid (that is, violate the assumptions
of MR) without biasing the estimated causal effect [60,61]. A consistent direction of effect
across all three methods strengthens the causal evidence, as each estimator makes different
assumptions about pleiotropy [26,62].

2.4. Sensitivity Analysis

Since both the MR-Egger and MR-PRESSO rely on the InSIDE assumption [51,53] that
is difficult to verify [63], we further supplemented two methods to check the pleiotropy
issue. Firstly, we employed a funnel plot based on the core estimator used to visually
assess overall directional pleiotropy. A symmetric funnel plot provides evidence for no
horizontal pleiotropy or balanced horizontal pleiotropy [64,65]. Secondly, we conducted
the Cochran Q test to assess heterogeneity [66]. While pleiotropy is not the sole cause of
heterogeneity, it often leads to significant levels of heterogeneity [57]. Additionally, based
on the Cochran Q test, we utilized the Rucker framework to examine whether our core
estimator, IVW, provided a more optimal estimate. This framework calculates the change
in Q value between IVW based on fixed and random models and MR-Egger estimates, thus
suggesting the most reliable estimation [57].

After that, we used MR-PRESSO to address pleiotropy issues. MR-PRESSO is an
IVW variant [39,41] that adjusts estimates based on detected pleiotropic instruments [51].
Finally, we performed a leave-one-out (LOO) analysis based on the IVW estimator to assess
whether the results were altered by individual instrumental variables [57,67].

All statistical analyses were conducted using the TwoSampleMR (v.0.5.6), Mendelian
Randomization (v 0.6.0), and MRPRESSO (v. 1.0) packages in R (v. 4.2.1). Due to mul-
tiple testing, we employed Bonferroni correction for statistical significance thresholds
(0.050/3 exposures/2 outcomes = 0.008). A p-value less than 0.008 was deemed statistically
significant, while p-values between 0.008 and 0.050 were considered suggestive evidence
supporting causal associations [68,69].

3. Results
3.1. Horizontal Pleiotropy Assessment

We removed SNPs with stronger predictive power for the outcome variables using
Steiger filtering. All the SNPs then exhibited ideal F-statistics (F > 10) and were therefore
included in the analysis. The global test of MR-PRESSO revealed significant horizontal
pleiotropy in all associations, except for the “moderate physical activity—gout” and “vigor-
ous physical activity—serum urate” associations (Table 2), which justified the re-analysis
after removing outliers (see Section 3.2 for sensitivity analysis). However, the MR-Egger
intercept test only detected significant directional pleiotropy in the “moderate physical
activity—serum urate” and “vigorous physical activity—gout” associations.
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Table 2. Horizontal pleiotropy assessment.

Exposure Outcome
MR-PRESSO MR-Egger

p Intercept p

Walking Serum urate 0.010 −0.024 0.416
Gout 0.008 0.033 0.770

Moderate PA
Serum urate 0.004 0.011 0.002

Gout 0.370 0.042 0.373

Vigorous PA Serum urate 0.207 0.051 0.084
Gout 0.016 0.213 0.028

Note: PA, physical activity.

3.2. Mendelian Randomization

Regarding serum urate, MR-Egger regression showed that moderate physical activity
was significantly associated with lower levels of serum urate (B = −1.520; p < 0.008) (Table 3).
However, this result was inconsistent with the IVW estimate (p = 0.096). Apart from this
association, all other associations did not reach statistical significance (p > 0.008), and there
was no suggestive evidence found at a relaxed significance threshold (p > 0.05).

Table 3. Effects of physical activity on serum urate concentration.

Exposure Estimator B (95% CI) p

Walking

MR-Egger 0.996 (−1.200, 3.793) 0.393
Weighted median 0.156 (−0.037, 0.350) 0.113

IVW 0.053 (−0.136, 0.240) 0.584
Simple mode 0.186 (−0.181, 0.552) 0.341

Weighted mode 0.177 (−0.162, 0.515) 0.236

Moderate PA

MR-Egger −1.520 (−2.194, 0.847) 0.001
Weighted median −0.031 (−0.192, 0.129) 0.704

IVW −0.143 (−0.312, 0.025) 0.096
Simple mode −0.014 (−0.249, 0.221) 0.907

Weighted mode −0.011 (−0.223, 0.202) 0.923

Vigorous PA

MR-Egger −1.756 (−3.515, 0.002) 0.098
Weighted median 0.166 (−0.032, 0.364) 0.100

IVW 0.094 (−0.079, 0.268) 0.286
Simple mode 0.247 (−0.071, 0.566) 0.172

Weighted mode 0.226 (−0.103, 0.555) 0.221
Note: B, standardized regression coefficient; CI, confidence interval; PA, physical activity.

Regarding the impact of physical activity on gout, we did not find any associations
reaching a significant level (p < 0.008) (Table 4). However, at the relaxed significance level,
MR-Egger regression suggested that vigorous physical activity reduces the odds of gout
(OR = 0.007; p = 0.030), but this result was not supported by our main estimator, IVW. On
the other hand, the IVW method identified suggestive evidence supporting the association
between moderate physical activity and gout incidence (OR = 0.628, p = 0.034).

3.3. Sensitivity Analysis

Our funnel plots (Figure 2) indicated that MR-Egger regression exhibited bias in almost
all analyses. In contrast, IVW performed the best among all estimators. For the observed
potential association of “moderate physical activity—gout”, the scatter plot was generally
symmetrically distributed around the reference line of IVW, suggesting a low likelihood of
interference from directional pleiotropy in this result.



Metabolites 2024, 14, 66 7 of 14

Table 4. Effects of physical activity on gout incidence.

Exposure Estimator OR (95% CI) p

Walking

MR-Egger 0.451 (0.0001, 1858.276) 0.854
Weighted median 1.343 (0.629, 2.868) 0.446

IVW 1.592 (0.792, 3.202) 0.192
Simple mode 0.734 (0.177, 3.044) 0.675

Weighted mode 0.681 (0.166, 2.797) 0.601

Moderate PA

MR-Egger 0.183 (0.013, 2.653) 0.231
Weighted median 0.735 (0.409, 1.320) 0.303

IVW 0.628 (0.409, 0.967) 0.034
Simple mode 0.948 (0.341, 2.633) 0.920

Weighted mode 0.936 (0.348, 2.516) 0.897

Vigorous PA

MR-Egger 0.0007 (2.59 × 10−6, −0.177) 0.030
Weighted median 1.634 (0.621, 4.298) 0.320

IVW 1.072 (0.446, 2.578) 0.877
Simple mode 3.038 (0.561, 16.451) 0.227

Weighted mode 2.793 (0.440, 17.752) 0.302
Note: OR, Odds Ratio; CI, confidence interval; PA, physical activity.
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The Cochran Q test indicates that more than half of the IVW estimates are accompanied
by significant heterogeneity (Table 5). In contrast, MR-Egger regression performed better
in controlling heterogeneity, with significant heterogeneity found only in the analysis of
“walking—serum urate” and “walking—gout” associations. Nevertheless, the potential
causal association suggested by IVW in “moderate physical activity—gout” is not dis-
turbed by heterogeneity (Q = 18.682, p = 0.347), further suggesting a low likelihood of
interference from directional pleiotropy in this result. Based on the Cochran Q statistic, the
Rucker framework was used to assess the appropriateness of the IVW results. The results
indicated that, except for the associations of “moderate physical activity—serum urate”
and “vigorous physical activity—gout”, which were more suitable to reference MR-Egger
regression results, the other association results should be referred to IVW estimates. Addi-
tionally, the results suggest that, due to lower heterogeneity, the observed association of
“moderate physical activity—gout” was more suitable for using the fixed-effects model of
IVW estimation. Under this model, this association becomes more significant (OR = 0.628;
p = 0.027).

Table 5. Cochran Q test for heterogeneity.

Outcome Exposure
MR-Egger IVW

Q p Q p

Serum urate
Walking 25.247 0.008 26.887 0.008

Moderate PA 10.798 0.378 28.441 0.002
Vigorous PA 5.716 0.456 10.002 0.188

Gout
Walking 33.300 0.004 33.497 0.006

Moderate PA 17.749 0.339 18.682 0.347
Vigorous PA 12.929 0.166 22.746 0.011

Note: PA, physical activity.

The MR-PRESSO sensitivity analysis indicates that there were two and one outlier
instrumental variables in the IVW estimates for the “moderate physical activity—serum
urate” and “walking—gout” associations, respectively (Table 6). However, after removing
these outliers, the previously observed associations were not substantially changed.

Table 6. MR-PRESSO outlier-corrected analyses.

Outcome Exposure Outlier (n) Adj-ES p

Serum urate
Walking 0 N.A. N.A.

Moderate PA 2 −0.036 0.506
Vigorous PA 0 N.A. N.A.

Gout
Walking 1 0.246 0.437

Moderate PA 0 N.A. N.A.
Vigorous PA 0 N.A. N.A.

Note: N.A., not applicable; Adj-ES, corrected effect size.

Finally, we employed a leave-one-out method to assess the impact of each instrumental
variable/SNP on the overall results (Figure 3). We found that the previously observed
potential causal association between moderate physical activity and gout might be influ-
enced by a single instrument variable (Figure 3e). After screening, we identified that the
removal of rs1036800 resolved any contentious results in all re-analyses involving other
instrument variables. Furthermore, after excluding this instrument, the “moderate physical
activity-gout” association, estimated by the inverse-variance-weighted (IVW) method,
reached statistical significance (OR = 0.555, p = 0.006). Importantly, none of the methods
used for horizontal pleiotropy diagnostics (including MR-Egger intercept test, MR-PRESSO
global test, and Cochran Q test) showed significant evidence of pleiotropy after removing
this instrument, indicating the reliability of this result.
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4. Discussion

This study aimed to employ MR approach to examine the impact of different intensities
of physical activity on serum urate and gout. We obtained suggestive evidence from our
core estimator (IVW) supporting the role of moderate-intensity physical activity in reducing
the incidence of gout (OR = 0.628, p = 0.034). Moreover, none of the methods employed for
detecting pleiotropy, including the MR-Egger intercept test, MR-PRESSO global test, funnel
plots, and Cochran Q heterogeneity test, demonstrated evidence of horizontal pleiotropy
that could distort this result. The Rucker framework used in our sensitivity analysis and a
MR strategy by others [41] also support this result returned by IVW. Notably, after removing
an instrumental variable that could lead to controversial results, this association reached the
significance level set in our study (OR = 0.555, p = 0.006), further emphasizing the protective
effect of moderate-intensity physical activity against gout. On the other hand, although
MR-Egger regression suggested that moderate physical activity could reduce serum urate
levels and vigorous physical activity could reduce the risk of gout, our funnel plot (based
on MR-Egger) and pleiotropy diagnostics indicated that these results are possibly subject to
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horizontal pleiotropy. Therefore, we refrain from discussing these two associations further,
focusing cautiously on the “moderate physical activity—gout” association only.

Our study results are generally consistent with some previous observational studies.
For example, a cross-sectional survey in Sweden recruited 868 gout patients and compared
them with randomly selected general participants, revealing lower levels of physical activity
reported by male gout patients [19]. Another study showed that gout patients engaging in
physical exercise had fewer annual episodes and reduced pain compared with those who
did not exercise [70]. These studies collectively emphasize the protective role of physical
activity against gout. However, since these studies only investigated a single time point,
they cannot confirm the causal relationship between physical activity and gout. A study
utilizing wearable devices for tracking physical activity identified a significant reduction
in walking volume during gout attack periods, implying that patients with more frequent
gout attacks may be less engaged in physical activity [71]. This uncertainty underscores the
value of MR analysis since the causal direction is pre-determined in such a research design.

In recent years, scholars have increasingly employed this method to explore associa-
tions whose causality is challenging to determine through controlled experiments, such as
the impact of physical activity on COVID-19 mortality [66], the influence of physical activity
on cancer risk [72], and the effect of computer gaming on mental health [73]. Regarding the
topic of gout, one relevant MR study indicated that the overall level of physical activity
measured by accelerometers had no effect on the incidence of gout [27]. This finding
contrasts with our “moderate physical activity—gout” association. We speculate that the
different measurement methods of the independent variable (exposure) may be the primary
reason for this discrepancy. The other study focused on accelerometer-measured physical
activity, which is more objective and accurate, but it is difficult to distinguish the form
and intensity of the physical activity. Thus, the measured physical activity might include
portions unfavorable for reducing or even increasing the risk of gout, thereby weakening
the strength of the association.

We did not find solid evidence to support the impact of physical activity on serum
urate. Therefore, inflammation may be an important clue to explain our findings re-
garding gout. Research indicates that inflammatory factors such as interleukin (IL)-1β,
IL-8, IL-17, NLRP3 inflammasome, and tumor necrosis factor-alpha (TNF-α) are involved
in the inflammatory processes of gout, and immune cells, including neutrophils, mono-
cytes/macrophages, and lymphocytes, play a crucial role in the onset of gout [74]. As
mentioned in our introduction, myokines produced by physical activity help break the
vicious cycle of chronic inflammation, thereby reducing the detrimental effects of gout [18].
Physical activity may exert anti-inflammatory effects by lowering IL-6, reducing C-reactive
protein, and inhibiting TNF-α, thereby reducing the risk of gout [75–77]. However, the role
of physical activity intensity in this regard is less understood. A controlled experiment on
mice suggested that moderate-intensity exercise produced anti-inflammatory effects, while
high-intensity exercise showed no significant difference in inflammation compared with
the non-exercise control group [78]. This anti-inflammatory effect is believed to be achieved
by physical activity through the downregulation of TLR2 on circulating neutrophils and
inhibition of serum CXCL1 [78]. This result somewhat aligns with our study findings,
indicating that the intensity of physical activity can modulate the protective effects of
physical activity against gout. Nevertheless, since our study only analyzed associations
and no other mediators were investigated, the specific mechanisms remain to be explored
in future research.

This study has several advantages. Firstly, the MR approach allowed us to overcome
the confounding effects between the exposure and outcome, regardless of whether the
confounders were measured [79]. Secondly, we used distinct samples, avoiding the bias
introduced by sample overlap in previous studies [29,80].

However, our study has some limitations. Firstly, the two-sample MR approach
requires data from the same underlying population but different samples [29]. This is the
reason why the STROBE-MR statement recommends a justification of the similarity of the
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genetic variant—exposure associations between the exposure and outcome samples [31].
However, since our exposure phenotypes (physical activity of different intensities) were
not measured in the outcome database, we could not conduct such a comparison. Secondly,
geographic clustering of genetic variation may introduce false genetic associations between
our exposure and outcome. For example, mating behaviors (e.g., assortative mating) may
be influenced by spatial factors. Therefore, individuals living in geographically close areas
may have similar genes, leading to associations between genes and cultural, economic,
social, political, and other environmental factors [81]. To address this issue, stratified
analyses by region/area are necessary. However, the nature of the used summary data
forbids such sensitivity analyses, which warrants further research.

5. Conclusions

This study aimed to use MR analysis to explore the impact of different intensities
of physical activity on serum urate and gout. We found that moderate physical activity
has the potential to reduce the incidence of gout, but we did not find conclusive evidence
supporting the impact of physical activity on serum urate. Based on our findings, the
development of exercise prescriptions involving moderate physical activity may contribute
to preventing gout attacks. Future research should further investigate the mechanisms
behind the ability of physical activity intensity to manage gout.
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