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Abstract: Blood metabolomics profiling using mass spectrometry has emerged as a powerful ap-
proach for investigating non-cancer diseases and understanding their underlying metabolic alter-
ations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites
derived from various physiological systems. Mass spectrometry offers a universal and precise ana-
lytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids,
peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of
the research landscape in mass spectrometry-based blood metabolomics profiling. While the field
of metabolomics research is primarily focused on cancer, this review specifically highlights studies
related to non-cancer diseases, aiming to bring attention to valuable research that often remains over-
shadowed. Employing natural language processing methods, we processed 507 articles to provide
insights into the application of metabolomic studies for specific diseases and physiological systems.
The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular
disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing
blood samples, researchers gain valuable insights into the metabolic perturbations associated with
these diseases, potentially leading to the identification of novel biomarkers and the development
of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of
various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS,
LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose
including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based
studies. This addition will contribute to a more exhaustive understanding of the available analytical
techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds
promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling
the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare
professionals can pave the way for precision medicine and personalized therapeutic interventions.
Continuous advancements in mass spectrometry technology and data analysis methods will fur-
ther enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its
translation from the laboratory to routine clinical application.

Keywords: blood profiling; mass spectrometry; GC×GC-MS; non-cancer diseases; metabolomics;
lipidomics; glycomics; biomarkers; review
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1. Introduction

Blood analysis occupies a prominent part within the domains of clinical diagnostics
and scientific research, particularly from the perspective of mass spectrometry (MS) [1,2].
Traditionally, the examination of human venous blood involves substantial volumes, often
in the range of 100–200 mL, with adjustments made in animal studies according to the
species under investigation. Following initial collection, centrifugation separates the
whole blood components into plasma and red blood cells, preparing the ground for the
subsequent analysis [1]. The next phase entails the utilization of solvents and detergents
to extract a variety of bioactive substances, including proteins, glycans, peptides, lipids,
and amino acids, from serum or plasma. This carefully extracted array of compounds is
subjected to separation by advanced techniques such as chromatography or electrophoresis,
although MS stands as the foundation of this investigative process.

As an analytical technique, MS ionizes molecules within the sample, speeds them up,
and evaluates the ratio of their mass to charge [3]. This methodology aids not only in the
identification of specific molecules within the sample but also in the precise quantification
of their abundance through robust statistical data processing. In the context of this review,
we undertook a thorough exploration of a rich collection of published data related to blood
sample processing via MS. Notably, over 80% of the studies were primarily concentrated
on cancer, oncology, and carcinogenesis. While cancer reach is undeniably of essential
significance, this exclusive focus has at times overshadowed the other crucial applications
of MS in blood analysis.

Numerous methodologies for non-cancer disease profiling have achieved a level of
development that enables their direct translation into clinical practice. Therefore, this
review is strategically focused on 814 articles that employ MS for blood profiling in both
fundamental and applied research, including GC×GC-MS for metabolomics-based studies.
To navigate through the hard task of analyzing such a vast number of studies, we utilized
natural language processing methods in order to cluster the studies based on their thematic
content. Additionally, trainable text classifiers were deployed to enhance our analysis of
this multifaceted research domain. Our methodology is described in the Section 2, and the
basic scientometric analysis of the field is presented in the Section 3.

Within our manual analysis, we organized our findings into three distinct sections.
The Section 4 offers a brief explanation of MS methods to facilitate a better comprehension
of the technical aspects. The other two sections are devised to reflect the contents of the
studies found. Thus, MS, along with metabolomics applications in blood profiling, could be
viewed from two perspectives: as a certain class of metabolite studies or with reference to
certain diseases. Therefore, we offer two principal sections of studies according to these two
perspectives. The first section, entitled Research Field Landscape, presents an exploration
of various fields of metabolomics, based on studied metabolites classes, such as ’lipidomics’,
and ’glycomics’. This section provides definitions for each area of metabolomics that is
integrated in some way with blood profiling using the MS approach. It explores the struc-
ture of analyzed substances, their functional roles in the organism, and their involvement
in the pathogenesis of non-cancer diseases; moreover, it outlines the clinical applications.
The second section, Disease Study Landscape, contains a comprehensive review of several
socially significant non-cancer diseases of inflammatory, bacterial, rheumatoid, and other
natures. Each disease is provided with a brief summary, marked symptoms, and known
methods of diagnostics. Each disease description includes particular metabolites that are
often either not analyzed in the profiling of the diseases reviewed or serve as other potential
compounds. All such metabolites are reviewed in the Section 5. Therefore, we fill the gap
between the application of known metabolites and their potential usage in the diagnosis
and management of non-cancer diseases.

This review is intended to serve as a needed resource for researchers, clinicians,
and practitioners to enable them to take advantage of the MS approach in the realm
of non-cancer blood metabolomics. It provides critical insights, highlights methodologi-
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cal advancements, reveals promising opportunities beyond the predominant cancer-centric
paradigm, and remarks on the incorporation of GC×GC-MS for metabolomics-based studies.

2. Review Methodology

In the first step, the scope of the review is outlined as a list of search tags. Most
research groups do not explicitly state that they conduct metabolomics studies, but specify
their research field as lipidomics and glycomics. Thus, we picked all the keywords and
extended the list with synonyms. For example, we would assume that the article was about
lipidomics if its abstract included words such as lipidomics, lipidome, or lipid profiling.
In the same way, we compiled a list of spectrometry acronyms (GC-MS, LC-MS, etc.)
and unfolded each acronym to its full name with various forms. Finally, we chose the
diseases of interest: systemic lupus erythematosus, tuberculosis, sepsis, and rheumatoid
arthritis. Also, we added general words such as immunodeficiency, immunodeficient state,
and inflammation to the search tags. A list of exception tags was drawn up to exclude
unnecessary articles. The list included genomics, pharmacology, and food studies because
these topics fell outside the review scope. Table 1 shows 35 tags for the literature search.

Table 1. A list of keywords for a literature search. The list is divided into topics for better
comprehension.

Fields Field Tags Diseases Biomaterial Methodology Exception Tags

Metabolomics

metabolomics,
metabonomics,

metabolic
profiling,

metabolomics
profile

Systemic lupus erythematosus
Sepsis

Rheumatoid arthritis
Tuberculosis

Immunodeficiency
Immunodeficient state

Inflammation

blood
serum
plasma

liquid chromatography
gas chromatography
mass spectrometry

LC-MS
HPLC-MS

HPLC-MS/MS
UPLC-MS

UHPLC-MS
GC-MS

genomics
genetics

food markers
pharmacology

Lipidomics
lipidomics,

lipidome, lipid
profiling

Glycomics glycomics,
glycome

In the second step, we downloaded article abstracts and meta-information from the
PubMed® database of the National Institutes of Health, United States National Library of
Medicine, Bethesda, MD, USA. The search was confined to the period from 1 January 2003
to 31 March 2023. Overall, 871 abstracts were obtained at this step. Then, we excluded
from consideration preprints, dissertations, posters, presentations, conference papers, and
abstracts without full text. Thus, the review involved only full-text articles, based on
the assumption that full-length articles would undergo editorial evaluation, rendering
information for analysis more trustworthy. This stage provided us with 560 full-text articles.
However, thereafter, we decided to focus on a detailed analysis of research works published
in the last decade, characterized by a sharp rise in the number of studies, which reduced
our pool to 507 articles.

Then, a natural language processing approach was used in order to locate the text
groups with semantic similarities [4]. Firstly, standard text preprocessing methods were
applied, such as tokenization, lemmatization, and stop word removal. After that, the texts
were encoded by means of the term frequency and inverse document frequency ap-
proach [5]. For more advanced analysis, we encoded text using BlueBERT [6], a large
language model trained on PubMed abstracts and clinical notes. Both approaches allowed
us to present texts as vectors in a certain space, where texts with similar meanings are
located near each other.

To reduce the number of vector components, various methods were applied, including
principal component analysis, t-SNE [7], UMAP [8], and PHATE [9]. The results were
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visualized as interactive plots using the Plotly Python package. The authors of this review
manually explored these interactive visualizations and categorized groups of articles
according to their fields of expertise. In total, 16 groups of interest were identified, including
oxylipins, phospholipids, glycerophospholipids, sphingolipids, sterol lipids, N-glycans,
O-glycans, amino acids, tuberculosis, non-alcoholic fatty liver disease, systemic lupus
erythematosus, sepsis, human immunodeficiency virus, rheumatoid arthritis, diabetes, and
a small group of various other diseases.

In the last stage of the review process, we added several important textbooks and
articles that were necessary to enhance reader comprehension. And we included informa-
tion from publications available through Open Access, Affiliated Access, Research Gate®,
San Francisco, CA, USA, and those supplied upon request. The entire text selection pipeline
is depicted in Figure 1.

Figure 1. The stages of the pipeline for article processing for the literature review.

3. Scientometrics

We analyzed 560 full-text articles published in the last 20 years. As can be seen from
Figure 2, the number of publications in the field of research under consideration has been
growing exponentially. Minor declines took place in 2006, 2010, 2012, 2015, and 2018. We
suggest this may be related to the deterioration of the macroeconomic environment in
2004, 2008, 2013, and 2017, because research productivity on a global scale depends on the
world economy.



Metabolites 2024, 14, 54 5 of 43

Figure 2. Number of publications in various metabolomics areas, including studies on lipidomics,
glycomics, and amino acids per year in 2004–2023.

Figure 3 and Table 2 show the text numbers for each field of research and each disease
from the last 10 and 20 years. As noted in the foregoing, metabolomics includes other
research fields but is usually mentioned in texts that focus on specific diseases. As we can
see, the most popular field turned out to be metabolomics, with 386 texts published in the
last decade. We believe this may be related to the growing interest in the application of
mass spectrometry for disease detection and profiling. Next, following metabolomics, we
have texts about lipidomics and glycomics with 113 and 8 published studies, respectively.
We suggest that these numbers indicate a degree of universality within the research field.
Lipidomics is more popular than glycomics because lipid profiles are associated with
inflammation, cardiovascular disease, obesity, etc. All of them are widespread and socially
important diseases. At the same time, changes in the glycome are observed only in a limited
number of health conditions.

Figure 3. Number of publications per year for each field (top picture) and disease (bottom picture).
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Table 2. Number of papers on the most socially important non-cancer diseases in metabolomics,
lipidomics, and glycomics fields from the last 10 years.

Metabolomics Lipidomics Glycomics Total

Inflammation 223 91 4 318
Rheumatoid arthritis (RA) 48 9 2 59

Sepsis 45 9 1 55
Tuberculosis 32 0 1 33

Immunodeficiency 19 3 0 22
Systemic lupus erythematosus (SLE) 19 1 0 20

Total 386 113 8

4. Methods Landscape
4.1. Separation Methods

Chromatography stands as a primary method for the separation of compounds in
metabolomic analysis. Gas chromatography and liquid chromatography variants are
preferred, and are seamlessly integrated with mass spectrometers. In addition to chromato-
graphic methods, capillary electrophoresis has gained prominence in certain instances.

4.1.1. Gas Chromatography (GC)

In GC, the components of a vaporized mixture are separated based on their differ-
ential movement rates while moving in the gaseous mobile phase through the stationary
phase [10,11]. GC-MS technologies are well-suited for the analysis of small molecular
metabolites (<650 Da), including acids, alcohols, hydroxyl acids, amino acids, sugars, fatty
acids, sterols, catecholamines, drugs, toxins, and intermediates of the tricarboxylic acid cy-
cle and glycolysis [12–14]. Chemical derivatization is often employed to make compounds
volatile enough for GC [13,15]. GC-MS is optimal for determining volatile substances,
such as those present in fecal samples, to study the influence of the gut microbiome on
health [13]. On the other hand, the limitations of GC-MS are related to the volatility of
the analytes and their stability at high temperatures [11]. Thus, non-volatile metabolites,
such as peptides or many lipids, as well as thermolabile compounds, are unsuitable for
GC-MS [11,13,15].

Mass spectrometry is often combined with various chromatography methods, allow-
ing for the analysis of complex mixtures and the detection of substances present in micro-
and sub-micron quantities. GC-MS combines the capabilities of gas chromatography (GC)
for component separation with mass spectrometry as a detection and structural elucidation
method. The most popular ionization source in GC-MS instruments is EI. Quadrupole ana-
lyzers are most commonly used in GC-MS due to their low cost and simplicity, but tandem
mass spectrometers, including high-resolution instruments such as TOF or QTOF, are also
employed. One advantage of the GC-MS method is its standardization with established
protocols for many metabolites and the availability of large mass spectral libraries.

4.1.2. Comprehensive Two-Dimensional Gas Chromatography (GC×GC)

Comprehensive two-dimensional gas chromatography (GC×GC) is an advanced
modification of GC, characterized by an improved separation technique. This method
implies the use of two chromatographic columns connected through a modulator, which
supports sample movement from one column to another [16]. Typically, these columns
have different polarities and, therefore, different stationary phases. This feature enables
the separation of compounds based on several properties, most commonly molecular
weight and polarity. GC×GC is becoming a notorious technique in the field of metabolic
profiling due to its ability to identify far more peaks compared to one-dimensional GC
analysis, resulting in an increased resolution [17]. Furthermore, this approach is suitable
for the analysis of complex biological mixtures, such as human plasma. Other compounds
applicable to the analysis with GC×GC are similar to those with GC. Among other notable
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qualities of two-dimensional GC are effective background signal removal; simplified sample
preparation; the high speed of separation; and, finally, the simultaneous processing of
compounds of different classes. Despite the rich abilities of the presented method, it is
worth mentioning its drawbacks, which should be considered during routine analysis. One
difficulty is distinguishing between compounds of similar classes on the chromatogram
that all elute at the same time [18]. The other difficulty arises from the expensive running
costs of GC×GC, which may not be efficient for analyzing a small number of samples.

The combination of GC×GC with MS is a new method that is growing in popularity
in the metabolomics field. The most widespread combination is GC×GC with TOF MS.
This method has several advantages over the common GC-MS, such as better metabolite
coverage, separation peak capacity, sensitivity, and resolution [19,20]. These enhance-
ments render GC×GC-MS a powerful tool for untargeted metabolomics, as it is capable
of detecting three times the number of metabolites compared to traditional GC-MS [21].
Thanks to its separation superiority, there are many metabolites that can only be detected
by GC×GC-MS and not by GC-MS, such as carbohydrates and carbohydrate-conjugate
metabolites [19].

4.1.3. Liquid Chromatography (LC)

The concept of LC encompasses methods for separating and analyzing substance
mixtures where the mobile phase is a liquid. High-performance liquid chromatography
(HPLC) is a traditional variant of LC, characterized by the utilization of small particles
of sorbent (2–20 µm) and high inlet pressure (up to 500 bar) [22]. It is an automated and
standardized method with good reproducibility, universality, and separation efficiency. It
can rapidly and cost-effectively determine numerous compounds within a single analytical
cycle [23].

A more modern variant of HPLC, involving the use of sorbents with particle diameters
below 2 µm and operating at higher pressures (up to 1500 bar), is referred to as ultra-high-
performance liquid chromatography (UHPLC) [22]. UHPLC offers improved separation
efficiency compared to HPLC and enables high-resolution separation of complex samples.
Another advantage of UHPLC is its ability to perform very fast separations with high
resolution, increasing laboratory throughput (i.e., the number of analyzed samples per unit
of time) while saving solvents [24,25]. The method provides high precision, reproducibility,
low limits of detection, and excellent compatibility with HPLC, making it relatively easy to
transfer methodologies developed for HPLC.

LC-MS combines liquid chromatography (LC) with mass spectrometry (MS). The most
common strategy for studying metabolome composition involves coupling liquid chro-
matography with a mass spectrometer equipped with an ESI source. Coupling with
MS allows for reliable compound identification, making HPLC-MS suitable for high-
throughput screening of a large number of samples. HPLC-MS can handle a wide range of
compounds, including both nonpolar and polar metabolites, thermally unstable and/or
non-volatile compounds, as well as high-molecular-weight compounds, such as complex
lipids [13,14,26]. In comparison to direct injection methods in MS, HPLC-MS provides
better specificity and lower limits of detection through chromatographic separation [23].
HPLC-MS has limitations related to the solubility of the sample in the solvent or compati-
bility of the sample with the solvent, but overall, these limitations are less restrictive than
those in GC.

4.1.4. Capillary Electrophoresis (CE)

The CE separation method is based on the differential electrophoretic mobilities
of charged species in capillaries. By utilizing a small capillary and subjecting charged
molecules (ions) to an electric field, CE separates these molecules based on their move-
ment towards electrodes. Capillary electrophoresis–mass spectrometry (CE-MS) combines
mass spectrometry with the separation power of capillary electrophoresis [22]. CE-MS
is particularly suitable for the analysis of amino acids, nucleotides, small organic acids,
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and sugar phosphates due to its ability to effectively profile polar and charged metabo-
lites [27,28]. The technique is characterized by its high resolution, separation efficiency,
sensitivity, analysis speed, ability to provide structural information, and low sample con-
sumption [28]. Many studies have highlighted its capacity for analyzing volume-restricted
samples, as it requires only a few nanoliters of the sample [27–29]. Another advantage of
CE-MS, although less highlighted, is its high reproducibility, making it suitable for large-
scale experiments [27,28]. In addition to these advantages, many comparable datasets
have been collected using the same sample preparation, processing, and data interpretation
procedures for CE-MS [28]. Despite its advantages, CE-MS has limitations, as it is not
recommended for anionic metabolic profiling [27] and there is a lack of standard operating
procedures and workflows for CE-MS [27].

4.2. Mass Spectrometry (MS)

MS is a method based on the ionization of molecules followed by the separation of the
resulting positively or negatively charged ions, depending on their mass-to-charge ratio
(m/z), and the detection of the separated ions [30,31]. Each formed ion is characterized by
a specific m/z value, which can be accurately measured, allowing for the determination
of its molecular mass [30–32]. Additionally, the abundances of ion signals determine the
content of the components in the sample. Fragmentation of the initial molecular ions can
also be initiated, resulting in a set of fragment ions. These ions represent the most stable
fragments of the original molecule and provide insights into its structure. Thus, mass
spectrometry is a sensitive and powerful qualitative and quantitative analytical technique
for the identification and quantification of compounds in a sample.

The main components of a mass spectrometer are the ion source, which converts
sample molecules into charged ions in the gas phase; the mass analyzer, which uses electric
and/or magnetic fields to separate ions based on their m/z values; and the detector, which
measures the signal of each ion [31].

All existing ionization techniques can be broadly divided into “soft” and “hard” meth-
ods [30,31]. This division is based on the amount of internal energy excess in the resulting
molecular ion. In “soft” ionization, this excess is small, the ion fragmentation is negligible,
and the ion is detected as a molecular ion. Contrarily, in “hard” ionization, a significant
excess of internal energy triggers the breaking of specific chemical bonds in the original
molecular ion, resulting in the appearance of various fragment ions. The main ionization
methods are briefly described in the following sections.

4.2.1. Electron Ionization (EI)

Electron ionization (EI), the most popular “hard” ionization method for organic
molecules, was first described by Dempster in 1918 [30,31]. In electron ionization, the sam-
ple molecules in the gas phase are subjected to a stream of electrons with a specific energy
(most commonly 70 eV) under low-pressure conditions. Typically, the molecule loses an
electron and becomes a positively charged ion (radical cation). Molecular ions obtained
under such conditions have a significant excess of excitation energy, leading to their frag-
mentation. EI spectra provide rich structural information and can be used as characteristic
fingerprints of specific molecules [30,31]. Furthermore, since EI spectra are highly repro-
ducible, representative libraries of such spectra have been created (at 70 eV), such as the
mass spectral library of the National Institute of Standards and Technology, Wiley® (John
Wiley & Sons, Inc., Hoboken, NJ, USA) mass spectral databases , and others [13,15]. Re-
searchers effectively utilize these libraries for compound identification. EI is a versatile
method that allows the investigation of various classes of chemical compounds. However,
this method has the disadvantage of requiring the conversion of the sample molecule into
the gas phase, which may limit its applicability to polar, thermolabile, and non-volatile
molecules [13,31]. Nevertheless, some of these molecules can be converted into suitable
derivatives for analysis through derivatization using various reagents [10,13]. The EI
source is ideally compatible with quadrupole instruments, although other types of analyz-
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ers can also be used. Mass spectrometers with EI sources are commonly coupled with gas
chromatography (GC) and are typically employed in GC-MS analysis of organic molecules.

4.2.2. Atmospheric Pressure Ionization (API)

Atmospheric pressure ionization (API) represents a pioneering technique that estab-
lishes a direct link between the supply of analytes in the solution phase and a mass analyzer.
The prevailing method of ionization under atmospheric pressure conditions is electrospray
ionization (ESI). In ESI, the sample solution is aerosolized at the tip of a slender capillary
needle under high voltage (either positive or negative relative to the inlet of the mass
spectrometer), inducing the formation of minute, charged droplets. As the solvent under-
goes evaporation and the droplets diminish in size, ionized molecules from the sample are
emitted. This method has significantly advanced the investigation of non-volatile, labile
molecules, and compounds with high molecular weight. A complementary soft ionization
technique to ESI is atmospheric pressure chemical ionization (APCI), often employed for
analyzing polar and nonpolar compounds that exhibit poor ionization efficiency with ESI
but respond favorably to chemical ionization. In the case of APCI, ions are generated in
the gas phase through the application of a corona discharge, facilitating the ionization of
solvent molecules and analytes within the aerosol. Subsequently, ions transitioning into
the gas phase are analyzed via mass spectrometry. APCI, with its reduced susceptibil-
ity to matrix effects, including ion suppression compared to ESI, is deemed suitable for
various applications, including the determination of nonpolar analytes. ESI and APCI
are exceptionally mild ionization methods, characterized by minimal fragmentation of
the formed ions. Although ions do not undergo fragmentation during these ionization
methods, they are advantageous for collision-induced dissociation (CID), allowing the
generation of MS/MS spectra on tandem instruments and aiding in the elucidation of
molecular structures. The preparation of samples for ESI and APCI involves dissolving the
analyte in water or a water-based mixture with polar organic solvents, typically methanol,
isopropanol, or acetonitrile. Owing to their ability to directly provide ions from molecules
in solution, ESI and APCI are particularly useful in liquid chromatography applications.

4.2.3. Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry resolves the issue of obtaining structural information about
substances forming ions in the source, as it is a powerful analytical approach for elucidating
the structure of a substance molecule and quantitatively assessing its content. The most
commonly used approach for ion fragmentation in MS/MS analysis is CID [12,31,33].
In this process, selected precursor ions acquire high kinetic energy due to acceleration by
electric potential. The accelerated ions then collide with neutral gas molecules in a collision
cell. As a result, part of the kinetic energy is converted into internal energy, leading to
the fragmentation of precursor ions and the formation of ion fragments with m/z values
containing chemical information. The CID process can be performed at low and high
collision energies.

Conducting tandem experiments requires the use of a combination of multiple mass
analyzers or an ion trap mass spectrometer. Modern mass spectrometers employ various
hybrid combinations of mass analyzers, such as triple quadrupole (QQQ), quadrupole
time-of-flight (QTOF), or Orbitrap mass spectrometers. The QQQ combination allows
for several modes of tandem mass spectrometry: product ion scan, precursor ion scan,
neutral loss scan, selected reaction monitoring (SRM), or multiple reaction monitoring
(MRM) [12,31,34]. The SRM/MRM mode is widely used for quantitative analysis as it
offers high specificity and a low limit of detection. Non-target components cannot be
detected using a QQQ instrument operating in SRM/MRM mode. The main drawbacks of
all quadrupole instruments are their low resolution and, consequently, limited accuracy in
measuring m/z for unambiguous compound identification. In contrast, QTOF and Orbitrap
instruments provide accurate mass measurement, enabling the acquisition of elemental
composition information for analyzed compounds [31,32]. Tandem experiments, similar to
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the product ion scan mode for QQQ instruments, can be conducted on QTOF or Orbitrap
mass spectrometers by transitioning to MS/MS mode. The resulting high-resolution CID
spectrum can then be used for compound identification. Replacing the third quadrupole in
a QQQ instrument with an Orbitrap mass analyzer enables the simultaneous detection of
all target product ions in a single coherent high-resolution mass analysis. This operation,
termed parallel reaction monitoring (PRM), mirrors SRM scanning, with the exception that
all transitions are collectively detected and separated from each other and the background
in the final stage of analysis. This operational mode is referred to as parallel reaction
monitoring (PRM) (source). Given that PRM tracks all transitions, there is no need to
pre-determine the target transitions or pre-select them before analysis, distinguishing it
from SRM/MRM.

5. Research Field Landscape

Metabolomics is a broad area that encompasses various approaches to metabolite
profiling based on their composition. At present, six major fields of metabolomics can be de-
fined, including lipidomics, glycomics, fluxomics, ionomics, and metallomics. Lipidomics
is an area that analyzes lipids, playing one of the most significant roles in any living organ-
ism, facilitating energy metabolism and signaling. Glycomics focuses on carbohydrates
and explores their role in disease progression [35]. Glycans are an integral part of the body,
involved in protein clotting, participating in protein transport, and modeling the immune
system, and are, therefore, of particular interest. Metabolomics also includes some other
fields that are infrequently used with blood probes. Ionomics involves the analysis of
the ionome, including inorganic components and trace elements that interact with living
organisms [36]. Metallomics, a branch of ionomics, aims to determine the forms of metals
and other metalloid elements in living systems and to establish their functions and the
mechanisms of the biological processes in which they participate [37]. The most widespread
analysis in these fields is microelement detection in hair samples. Fluxomics is the study of
metabolic reactions or flows in biological systems [38,39]. Fluxomics evaluates the relative
or absolute rate of metabolic reactions through a series of metabolic intermediates in a
given metabolic pathway [40]. Fluxomics studies usually involve cellular cultures.

5.1. Lipidomics

Lipidomics is a field of qualitative and quantitative analysis of all known lipids,
describing their properties in biological systems [41–43]. Lipids play one of the most
significant roles in any living organism, facilitating energy metabolism and signaling
processes. Lipidomics profiling is widely applied in studies of diseases based on inborn
metabolic errors [44]. The methods of lipidomics enable the identification of specific lipid
classes that accumulate in the body during these diseases, which could later be used
as diagnostic targets. Quite recently, a new branch of lipidomics has emerged: clinical
lipidomics [45,46]. This area of study considers lipid profiles in relation to the pathways
and pathological processes in which they are involved. To date, many lipid classes linked to
various diseases have been identified [47]. The next step in developing clinical lipidomics
is to integrate it into personalized medicine. Based on current literature, the majority of
lipidomics studies focus on fatty acids, oxylipins, phospholipids, glycerophospholipids,
sphingolipids, and sterol lipids. All categories will be further reviewed in detail below.

5.1.1. Fatty Acids

Fatty acids, fundamental constituents of lipids, are central players in human physi-
ology, exerting a profound and expansive influence. Diverse in composition, fatty acids
span various categories, including saturated, unsaturated (monounsaturated and polyun-
saturated), and trans fats, each with its unique chemical structure. These molecules serve
as repositories of caloric energy and as indispensable components, contributing to the
structural integrity of cell membranes and serving as precursors for various bioactive
compounds. Fatty acids actively participate in energy metabolism through beta-oxidation
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to generate adenosine triphosphate (ATP), while also modulating cell membrane fluidity
and participating in essential cell signaling pathways.

However, their role extends beyond the above, since fatty acids are associated with
a wide spectrum of diseases. Elevated levels of saturated and trans fats are linked to car-
diovascular diseases, while polyunsaturated fatty acids, including omega-3 and omega-6
variants, assume pivotal roles in regulating inflammation and maintaining cardiovascular
health. Dysregulation in fatty acid metabolism can significantly contribute to conditions
such as obesity, diabetes, and metabolic syndrome [48]. Employing derivatization-enhanced
separation with LC-MS, a breakthrough quantified long-chain free fatty acids (LCFFAs)
in the sera of asthma patients, shedding light on non-cancer disease-associated metabolic
changes [49]. The impact of ischemic stroke on plasma-free fatty acid (FFA) derivatives,
including lipoxins, RevD1, and 9,13 HODE, has been identified as critical mediators with
potential implications for quenching inflammation [50]. This underscores the importance
of studying specific FFA derivatives in the context of ischemic stroke and highlights their
potential as therapeutic targets for modulating inflammatory responses. In the realm of
chronic kidney disease (CKD) progression, altered fatty acid profiles have been character-
ized by changes in inflammation-related pathways, decreased polyunsaturated fatty acids
(PUFAs), and increased monounsaturated fatty acids (MUFAs) [51]. These findings high-
light the potential role of fatty acids in the pathogenesis of CKD and may offer opportunities
for novel therapeutic interventions targeting fatty acid metabolism. Furthermore, utilizing
an animal model of Yersinia pestis infection, significant changes in lipid profiles and fatty
acid proportions have been observed, suggesting potential implications for inflammation
and oxidative stress [52].

The clinical application of fatty acids is influencing dietary guidelines by emphasizing
the reduction of saturated and trans fat intake, thus directly impacting the management
of cardiovascular risk [53]. Personalized nutrition plans and therapeutic interventions
tailored to individuals with conditions such as diabetes and obesity significantly benefit
from targeted fatty acid analysis. Omega-3 fatty acid supplementation, known for its
potential cardiovascular and anti-inflammatory benefits, serves as a prime example of how
fatty acid research translates into practical clinical applications, reshaping the landscape of
preventive medicine and patient care.

In our array of studies reviewed, fatty acid profiling investigations are more likely to
utilize MS approaches with LC [48,49,52], rather than GC [50]. We assume this is because
LC, especially in its high-resolution or high-performance variations, offers much higher
sensitivity and selectivity compared to GC-MS.

5.1.2. Oxylipins

Oxylipins are a family of oxidized lipids derived from polyunsaturated fatty acids,
such as omega-6 or omega-3. These bioactive molecules are synthesized during inflamma-
tion or infection, thus playing a role in immune defense and modulating the inflammation
response. Oxylipins can be produced by almost all cell types but cannot be stored in tissues.
They are formed from 20 essential amino acids, which define their pro-inflammatory or
anti-inflammatory effects [54]. The concentration of oxylipins may change with an individ-
ual’s age or during certain diets. According to the study by Caligiuri et al. [55], a four-week
flax seed diet had a positive impact on restoring the oxylipin profile in adults. The same
study stated that the level of pro-inflammatory oxylipins increases in older individuals [55].

Since oxylipins modulate the inflammatory response, they are involved in the patho-
genesis of various inflammatory diseases. In one of them, aortic dissection, serum metabolic
profiling revealed 91 altered oxylipins [56]. Subsequent pathway analysis indicated that
most metabolites were part of the arachidonic acid metabolism pathway. Oxylipins also
modulate cardiovascular diseases by maintaining vascular homeostasis and regulating
blood pressure [57]. High levels of oxylipins in serum were associated with an increased
risk of acute myocardial infarction and other cardiovascular events [58,59]. Moreover, the
characterization of oxylipin profiles was proposed in patients with neurophysiological
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diseases. In amyotrophic lateral sclerosis, major alterations were identified in linoleic
acid-derived oxylipins and 5-lipoxygenase metabolites [60]. At the same time, plasma
levels of 13-HODE and 9-HODE showed a positive correlation with disease continuity.

The clinical application of oxylipins mostly involves the evaluation and quantification
of eicosanoids: prostaglandins, lipoxins, and other groups. Given the immune-modulating
effects of these molecules, they may serve as reliable therapeutic agents. Thus, lipox-
ins have shown promising applications in cardiometabolic, cardiovascular, respiratory,
and neurodegenerative disease management [61–63].

Modern equipment for oxylipin analysis includes processing with LC-MS/MS [64],
GC-MS/MS [58], HPLC-MS/MS [60], and ESI/MS. Other known techniques, such as im-
munoassay and thin-layer chromatography, are not specific or sensitive enough for oxylipin
profiling, often obstructed by the need to perform additional derivatization procedures [65].

5.1.3. Phospholipids

Other notable compounds in the field of lipidomics include phospholipids. Struc-
turally, these are polar molecules with a hydrophilic head containing a phosphate group
and two hydrophobic tails, which are fatty acid derivatives. Phospholipids are major
components of the plasma membrane, forming lipid bilayers in all living cells. They are
involved in lipid, fatty acid, and cholesterol transport. There are two main classes of
phospholipids, differing in their backbone content: glycerophospholipids and phosphosph-
ingolipids (sphingolipids). Each class is further divided into subclasses depending on the
types of lipid headgroups.

Altered concentrations of phospholipids are associated with a wide spectrum of
metabolic, cardiovascular, and neurological diseases. For example, notable changes have
been detected in arthritic diseases: collagen-induced arthritis [66] and rheumatoid arthritis
(RA) [67]. Some of the phospholipids identified in these studies have been used as biomark-
ers, contributing significantly to the early diagnosis of RA [68]. Blood phospholipids have
also shown utility in differential diagnostics for distinguishing between RA and Lyme
arthritis [69]. Differentiation between NAFLD and NASH is also possible through analysis
of phospholipid content, which was reported to be elevated in NAFLD subjects [70]. Hence,
these are a few successful examples of phospholipid biomarkers for differentiating between
similar disorders that can be used in diagnostics.

Due to their great biocompatibility, phospholipids have found applications in pharma-
ceutical developments. They are known to reduce levels of cholesterol and triglycerides
and can increase levels of HDL, known as “good cholesterol”. Based on the above, medical
treatment with phospholipids has shown positive effects on patients with liver diseases
and metabolic disorders [71].

5.1.4. Glycerophospholipids

Glycerophospholipids are molecules with a glycerol backbone. They play a significant
part in forming the cell membrane and act as precursors for lipid mediators, modulating
cellular responses [72]. Glycerophospholipid composition varies among cell types, enabling
them to perform a wide range of functions, from signal transduction and vesicle trafficking
to membrane fluidity control [72]. The most abundant glycerophospholipids in the blood
are phosphatidylcholine (PC), phosphatidylethanolamine, and phosphatidylserine [73].
As will be shown, all these compounds are effective biomarkers for various diseases.

An altered metabolism of PCs has been reported to be associated with sepsis [74].
There is evidence of both increased and reduced concentrations of PC species in the blood.
Upregulated levels of saturated and unsaturated PCs and LPC in plasma were identified
in a comparison between healthy and septic individuals [75]. Notably, the levels of PC
and lysophosphatidylcholine (LPC), a derivative of PC, displayed corresponding changes.
Conversely, reduced levels of PC and LPC were found in neonates with late-onset sepsis,
accompanied by necrotizing enterocolitis [76]. PCs and LPC may also be considered prog-
nostic markers for evaluating survival risk. Low unsaturated long-chain PCs and LPC in
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patients with severe septic shock were associated with a three-month survival rate [77]. In
addition to sepsis, diabetes mellitus is characterized by an altered glycerophospholipid
profile. Major structural lipids, including LPCs and PCs, were reduced in non-obese di-
abetic mice studies [78]. Studies of human blood plasma yielded similar results to the
animal model: PC levels are reduced in diabetic patients [79]. Glycerophospholipid levels
may change in certain bacterial infections. For instance, in Lyme disease caused by Bor-
relia bacteria, LPCs are reported to increase [80]. This may be due to Borrelia’s ability to
manipulate the host lipid metabolism, affecting structural support, immune evasion, and
disease severity [81]. Another case of bacterial disease is melioidosis, which is caused by
Burkholderia pseudomallei. High PC levels were reported in patients with this infection [82].
Further studies may draw upon the aforementioned results to properly explore host re-
sponse in bacterial diseases and reveal how glycerophospholipid metabolism affects the
pathogenesis of diseases. Glycerophospholipids show altered profiles in inflammation-
related diseases. In some of them, glycerophospholipid levels are reduced, for instance,
in blood vessel inflammation, known as Behçet’s disease [83]. This disorder is associated
with a low concentration of several serum PCs. One more example is inflammation in-
duced by drug exposure, which has an effect on LPC concentrations. In a recent study,
LPCs were reported as potential biomarkers for drug-induced interstitial lung disease [84].
The selected biomarkers showed no associations with other drugs and were effectively
implemented to differentiate between other lung diseases: idiopathic interstitial pneumonia
and lung disease associated with connective tissue disease.

The detection and quantification of glycerophospholipids are mostly implemented
by LC modifications with MS: UHPLC-MS/MS [74], UPLC-Q-TOF-MS [83], and UPLC
coupled to ESI-QTOF [79]. For large clinical studies of glycerophospholipids, an accurate
and fast method with application to different biological samples is needed.

5.1.5. Sphingolipids

Sphingolipids are a subclass of phospholipids, containing a backbone with sphin-
gosine bases or similar structures. The basic sphingolipids are the ceramides; all other
sphingolipids are their derivatives. Sphingolipids play a role in maintaining the structure
of cell membranes and act as cell signaling modulators and mediators. These molecules
have emerged as key players in various diseases [85]. Numerous studies have explored
alterations in sphingolipid metabolism and their associations with different pathologi-
cal conditions. Recent findings have demonstrated the significance of sphingolipids as
biomarkers for disease diagnosis, prognosis, and treatment response.

The diagnostic potential of sphingolipidomics has been examined in various diseases.
For instance, Qu et al. [86] analyzed the plasma lipidome of patients with chronic hepatitis
C virus (HCV) infection using a high-throughput lipidomic platform. The analysis revealed
distinct differences in sphingolipid composition between healthy and infected individu-
als, and the lipid profile also correlated with the severity of intrahepatic inflammation,
suggesting a potential role of sphingolipids in HCV-related digestive system disorders.
Moreover, sphingolipid alterations were observed in acute respiratory distress syndrome
associated with H1N1 influenza. The identified biomarkers, including lysophospholipids
and sphingolipids, provided insights into the metabolic changes occurring in patients with
acute respiratory distress syndrome, contributing to a better understanding of the disease’s
pathogenesis [87]. Sphingolipid metabolism was also found to be affected by metham-
phetamine exposure, influencing gut homeostasis, serum metabolome, neurotoxicity, and
behavior in mice [88]. Methamphetamine disrupted gut homeostasis, induced inflamma-
tion, and altered the serum metabolome, affecting Bacteroides-derived sphingolipids and
serotonin, which correlated with the observed behavioral changes. Other studies investi-
gated sphingolipid-related metabolic disruptions in spontaneous intracerebral hemorrhage,
neuropsychiatric diseases such as schizophrenia, obesity-related diabetes risk, and experi-
mental autoimmune encephalomyelitis, an animal model for multiple sclerosis [89]. These
studies identified notable changes in sphingolipids and associated pathways, providing in-
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sights into the pathogenesis and potential diagnostic markers for these conditions. Bariatric
surgeries, such as Roux-en-Y gastric bypass (RYGB) and adjustable gastric banding, were
also investigated in relation to lipid metabolism [90]. Comparing the lipid profiles of obese
women undergoing these surgeries, RYGB was reported to induce more alterations in
lipid markers, including sphingolipids. These RYGB-specific alterations were associated
with metabolic improvements, independent of weight loss, suggesting a specific effect
of RYGB on sphingolipid metabolism and metabolic outcomes. Sphingolipid alterations
have also been investigated in the context of sepsis treatment, the Bacille Calmette–Guérin
vaccine [91], gestational diabetes mellitus [92], allergic inflammation, and coronary artery
ectasia [93]. These studies have identified specific sphingolipids and other metabolites
associated with disease presence, severity, treatment response, and early diagnosis.

Sphingolipid profiling involves the usage of high-throughput MS techniques: HPLC-
MS [86], HPLC-MS/MS [90], UPLC-HRMS [87,93], and UPLC-MS/MS [91]. These plat-
forms have shown good application in the detection and identification of a broad spectrum
of sphingolipid classes, some of which could not be detected by the less complicated LC-
MS or LC-MS/MS methods. These methods can also be modified for the simultaneous
quantification of specific sphingolipid metabolites.

5.1.6. Sterol Lipids

Sterol lipids unite cholesterol and cholesterol-derived metabolites. These compounds
share a common feature: four linked hydrocarbon rings that could be modified by func-
tional groups [94]. The largest number of studies in lipidomics is dedicated to the best-
known animal sterol, cholesterol. Its main function lies in forming the cell membrane
structure and serving as a precursor to several organic molecules, including bile acids,
oxysterol, steroid hormones, and vitamin D. Cholesterol exists in two forms: low-density
lipoprotein (LDL) and high-density lipoprotein (HDL). Studies of the latter make up a
large area in lipidomics [95,96]. Popular science texts describe HDL as “good” cholesterol
that absorbs “bad” cholesterol in the blood and carries it away. The structure of HDL
includes a hydrophobic core of non-polar lipids, surrounded by a hydrophilic membrane
consisting of phospholipids, free cholesterol, and apolipoproteins [97]. In human blood,
HDL consists of 40% [98] proteins and 60% lipids (12% triacylglycerols, 40% cholesteryl
esters, 47% phospholipids, and 1% free fatty acids) [98]. The most important processes in
which HDL is involved in the human organism are lipid metabolism, lipid transport in the
blood, and lipid storage in the liver.

Cholesterol in high concentrations may create fatty deposits in blood vessels, which
makes it difficult for blood to go through the arteries. This complication results in the risk of
cardiovascular disease development [99]. Lipidomics approaches offer a great opportunity
to find new cholesterol biomarkers for diseases and evaluate their concentrations. For
instance, in pre-eclampsia, a positive association with high cholesterol precursors and
metabolite production was discovered [100]. Not only are high concentrations of choles-
terol associated with complications; low concentrations also serve as indicators of certain
developing diseases. Low levels of HDL are often associated with inflammation [101].
According to the found studies, inflammation processes affect the HDL structure, thus re-
ducing the ability of HDL to participate in reverse cholesterol transport [102]. Nonetheless,
the exact reason why inflammation decreases the level of HDL is still being explored. These
findings are consistent with studies on several inflammatory diseases; for instance, in RA,
cholesterol levels are decreased [67]. In the context of RA, researchers explored alterations
in the lipidome and antioxidative activity of small HDL particles. Such alterations were
found in all RA patients, especially in those with high levels of inflammation [103]. The
functional deficiency of small, dense HDL in RA was attributed to inflammation, highlight-
ing the impact of inflammatory processes on HDL structure and function [95]. Furthermore,
during RA treatment, HDL proteome remodeling was observed, leading to changes in
proteins involved in immune response, proteinase inhibition, and lipid metabolism [104].
Notably, normolipidemic RA patients with high levels of inflammation exhibited reduced
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antioxidative activity in small, dense HDL, suggesting functional deficiencies [95]. Other
sterol lipids behave differently during inflammation. Oxysterol levels in chronic HCV
infection, which is characterized by liver inflammation, were reported to be high [105].
These results suggest that elevated levels of oxysterols may be observed due to oxidative
stress or inflammation in the liver and cholesterol autoxidation. Other examples of altered
sterol lipid behaviors have been observed in several HIV studies. Although it is not an
inflammatory disease, it causes inflammation. This is evidenced by changes in several
sulfated steroids [106] and a decrease in neuroactive steroids, revealing an association with
depression in HIV [107].

Modern techniques for sterol lipid profiling in blood include the use of MS: GC-
MS, LC-MS, or MRM-MS [96]. Compared to previous methods for sterol identification,
such as thin-layer chromatography or UV-vis spectrophotometry, the MS approach allows
for differentiation between sterol lipids of similar structures [108]. For example, LC-
MS/MS was utilized for the rapid quantification of hydroxysterols, primary and secondary
bile acids, and their taurine and glycine conjugates [109]. Another study used the same
approach for the quantification of oxysterols and suggested a method for their isolation
using solid-phase extraction [110]. The method was tested on oxysterols from peripheral
blood mononuclear cells in mitochondria.

5.2. Glycomics

Glycomics focuses on exploring carbohydrates (glycans) and their role in health and
disease progression [35]. Glycans are long molecules constructed from monosaccharides
linked by a chemical bond. They are involved in protein clotting, participate in lipid
and protein transport, model the immune system, and thus are of interest to a broad
range of researchers. Many glycomic studies are oriented toward profiling specific glycan
subtypes: N-linked, O-linked, and glycans from glycolipid. Particular attention is given to
the analysis of glycosylation, a post-translational modification that affects protein structure
and consequently their biological activity. The glycosylation profile can be altered due to
various pathophysiological processes. In this connection, new biomarkers can be detected
by analyzing a “damaged” glycomic profile, taking into account how the host is responding
to the disease. The analysis of serum glycans is one of the most promising areas in this
regard. It is expected to help develop new methods for monitoring and diagnosing a wide
range of diseases.

The largest number of studies in glycomics focus on N-glycans, or N-linked glycans.
These compounds are among the abundant proteins in the blood that have undergone
the process of N-glycosylation, which is the linkage of an oligosaccharide molecule to
the nitrogen atom of an asparagine [111]. The most important functions of N-glycans are
the control of protein folding and the control of the interaction between cells by directing
migration patterns [112]. The structure of N-glycans can be altered in various pathological
conditions: autoimmune, diabetic, or oncological. Moreover, mutations in the genes
involved in glycosylation may result in a variety of diseases, particularly nervous system
alterations [113].

N-glycans are obtained from both serum and plasma [114]. Any change in serum
N-glycome may indicate alterations in two components: immune B-cells, which are im-
munoglobulins, or the liver. Immunoglobulin molecules have several different glycosyla-
tion sites; alterations in any of them can lead to failure in the regulation of major immune
processes, for instance, glycan-protein binding [115]. IgG is a quite relevant compound
for serum N-glycome profiling. There is evidence that the structure of IgG is modified
by N-glycans [116,117]; therefore, IgG N-glycome profiling is a significant area of study.
Another immunoglobulin, secretory IgA, also has the potential to become a frequently
profiled antibody in glycomics. Some sites of this molecule are highly glycosylated, and
any changes in the glycosylation process may affect the health state [118]. Consequently,
new methods of IgA characterization are needed. As mentioned earlier, liver conditions
may reflect changes in serum N-glycome. In the literature, IgA N-glycome signatures were



Metabolites 2024, 14, 54 16 of 43

investigated in patients with liver diseases related to hepatitis B virus infection [119]. It
was concluded that IgA levels are relatively higher in patients with the aforementioned
disease. N-glycan biomarker profiling applies not only to human blood samples. In vet-
erinary medicine, this approach was used to search for serum biomarkers in dogs with
osteoarthritis, which is the most common canine disease [120].

Biomarker discoveries have led to the creation of new analytical methods with the MS
approach for N-glycan characterization [121]. MS methods are a standard technique for N-
glycan analysis due to their high sensitivity, compared to other methods like exoglycosidase
digestion or lectin binding. Novel MS variation techniques, such as microfluidic capil-
lary electrophoresis, assist in profiling N-glycan isomers [122–125]. Accordingly, a novel
approach that can directly measure serum N-glycans from MALDI-MS has been devel-
oped [126]. Another novel method for glycan analysis combines MS with dual isotopic
labeling and fluorous solid-phase extraction [127]. These authors believe this method has
great potential for biomarker discovery. N-glycans have applications in therapeutics; most
of these molecules are antibodies and could be used as therapeutic proteins. In addition to
that, N-glycan profiling can help determine the effect of drug or chemotherapy administra-
tion. Such investigations can evaluate the sensitivity or resistance to particular compounds
and prevent drug resistance in the future.

The second large group of interest in the glycomics field is O-glycans. These com-
pounds account for 10% of all glycans and are primarily known as mucin proteins. O-
glycans undergo the O-glycosylation process, where a sugar molecule attaches to the oxygen
atom of serine or threonine. The main biological functions of O-glycans include protection
from proteases, influencing stable protein conformation by regulating protein folding, and
immunity maintenance [128]. Studies of O-glycans involve analyzing O-glycosylation
sites in various proteins. One such protein is IgA; this antibody has nine O-glycosylation
sites, and alteration in any of them may trigger the progression of inflammatory and au-
toimmune diseases like systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
Crohn’s disease, and others [129]. Different proteins with altered O-glycosylation have
been identified for specific diseases. For instance, Tau and amyloid precursor proteins were
modified in Alzheimer’s disease [130]. Distinct glycan isoforms of IgA were characterized
in IgA nephropathy patients [131].

Proteins carrying O-glycans are often used as therapeutic proteins. For instance, it was
shown that mucin O-glycans are able to inhibit the pathogenic action of Candida albicans
in humans [132]. Another application of O-glycans is the development of therapeutic
vaccines [133]. Their action is aimed at activating the immune response on truncated
O-glycans. However, despite numerous attempts in this area, most such vaccines still lack
prolonged T-cell immunity and are insufficient for complete tumor progression termination.

Current approaches for O-glycan profiling mostly include HPLC and capillary elec-
trophoresis. All of them can be performed in tandem with MS methods. Yet, new techniques
for more rapid and precise detection of O-glycans are being developed.

5.3. Amino Acids

Amino acids are organic molecules required for protein building. Their structure
is made up of an amino group, an acidic carboxyl group, and a unique organic radical.
Although over half a thousand amino acids are known, only 22 of them can be integrated
into proteins; therefore, they are of major research interest. Amino acids are involved
in numerous biological functions, including food digestion, tissue construction, enzyme
production, and many others. There is a significant interest in examining individual amino
acid metabolic pathways of synthesis and catabolism as indicators for successful diagnosis.
The variability of amino acid metabolic pathways associated with pathological disorders
can lead to the emergence of new biomarkers that could be detected and identified during
chromatography and MS.

The influence of amino acids is evident in a wide range of diseases, including cardio-
vascular diseases (acute ischemic stroke [134], systolic heart failure [135], coronary artery
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ectasia [93], among several others [136]); metabolic diseases (involving supplementation
of ketogenic diet [137,138] and diabetes mellitus); neurodegenerative disorders [139–141];
psoriasis [142]; and autoimmune diseases (SLE, RA). Here, we briefly examine all the listed
categories and their involvement in amino acid metabolism. Being indicators of cellular
functionality, amino acid metabolites can reflect abnormal changes in inflammatory and im-
mune responses [143]. It is important to consider their unique correlations between disease,
bacterial load, metabolomic signatures, pathways, and amino acid concentrations, as they
can potentially act as biomarkers or therapeutic targets of preliminary diagnosis. Inflamma-
tion significantly changes amino acid pathways. Lustgarten et al. [138], demonstrated that
inflammation can lead to the transformation of metabolic pathways through activation of
the tryptophan-cleaving enzyme, indolamine 2,3-dioxygenase, resulting in fluctuations in
the kynurenine-related metabolites kynurenine, kynurenic acid, and 3-hydroxykynurenine.

Amino acid variations have been noted in papers investigating other cardiovascu-
lar and heart diseases. Recent studies applied an LC-MS/MS approach to explore the
associations between cardiometabolic risk factors and concentrations of plasma amino
acids, methylarginines, acylcarnitines, and metabolites of tryptophan catabolism. The
patient cohort included individuals with arterial hypertension, coronary heart disease, and
a control group without any cardiovascular diseases. The study revealed that almost all
significantly different acylcarnitines, amino acids, methylarginines, and intermediates of
the kynurenine and indole tryptophan pathways were elevated.

Another investigation highlighted several elements of arginine metabolism, including
arginine, agmatine, creatine, and some others, as inflammation-related biomarkers. These
compounds revealed metabolic abnormalities in the systemic inflammatory processes of
myocardial infarction, ulcerative colitis, and ischemic heart disease [140]. The study pro-
vided a robust and rapid approach to characterizing inflammation and immune-related
amino acid metabolites, which can be prospectively used in biomarker discovery to as-
sess inflammation and immunity states in various pathological conditions. Still, another
research work provided a comparison of serum amino acid metabolites in healthy con-
trol and HIV-infected subjects [144]. These authors utilized a targeting method based
on LC-MS/MS, which helped rapidly characterize immune changes and inflammation-
related metabolites. Compared to traditional methods, the extraction and derivatization
procedures were greatly simplified without compromising performance, while method
evaluation demonstrated the efficiency and reliability of the established method.

Liao et al. [145] identified 36 amino acid biomarkers related to acute liver failure.
Among the detected metabolites, 27 were shown to be significantly decreased in patients
receiving Mahuang decoction therapy. Having reconstructed the pathways for these
identified metabolites, the authors highlighted eight of them, which can induce the efficacy
of Mahuang decoction therapy in patients with acute liver failure. These eight pathways
include the TCA cycle, metabolism of retinol, tryptophan, arginine and proline, nicotinate
and nicotinamide, phenylalanine, cysteine, and methionine, as well as phenylalanine,
tyrosine, and tryptophan synthesis. The combined concentration parameter, calculated
as [asparagic acid] + [threonine] + [tryptophan] − [histidine] − [phenylalanine], showed
the strongest correlation with the number of painful joints, the number of swollen joints,
and the Disease Activity Score-28 for the evaluation of the severity of RA [146]. This amino
acid analysis structure and their associated metabolites offer opportunities for diagnosis, as
well as for monitoring disease progression and therapy in RA.

The levels of serum aromatic amino acids (AAAs), including phenylalanine, tyrosine,
and tryptophan, are reliable biomarkers that reflect the severity of pathologies of various
kinds. Tryptophan is an essential amino acid required not only for protein synthesis but
also for important biological functions such as stress response, sleep, mood and appetite
regulation, glucose homeostasis, and immune function. Most of these functions are related
to metabolic pathways involved in tryptophan catabolism. Phenylalanine is an essential
aromatic amino acid that must be included in dietary proteins. When phenylalanine enters
the body, it is usually converted to tyrosine, which in turn degrades to acetoacetic and
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fumarate [147]. An apparent increase in phenylalanine and a decrease in tyrosine levels
may indicate impaired phenylalanine and tyrosine metabolism and reduced phenylalanine
hydroxylation in patients with Alzheimer’s disease.

In the studies found, LC-MS/MS is a common approach to amino acid metabolite
analysis. Compared to other methods, this technique shows much higher sensitivity and
specificity for amino acid profiling. Recently, a group of researchers proposed an improved
method for quantitative amino acid analysis with LC-MS/MS, which uses small sample
volumes and has an overall low cost of sample preparation [148]. Additionally, some
authors use the LC-MS/MS approach coupled with TOF MS.

6. Disease Study Landscape

All areas of metabolomics are successfully used in the profiling of a variety of non-
cancer diseases. The integration of MS-based metabolomics has transformed our un-
derstanding of disease pathology. Through the investigation of certain blood or serum
metabolites, many studies have revealed crucial insights into disease mechanisms and
potential therapeutic targets. While challenges and limitations persist, ongoing advances
in analytical techniques, standardization, and the exploration of emerging technologies
offer exciting prospects for further advancements in the field. Against this background, our
review covers some of the most socially significant non-cancer infectious and metabolic dis-
eases: tuberculosis, sepsis, human immunodeficiency virus (HIV), diabetes, non-alcoholic
fatty liver disease (NAFLD), rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), and several other diseases.

6.1. Tuberculosis

Tuberculosis, a bacterial infection caused by Mycobacterium tuberculosis, primarily
affects the respiratory system but can also harm vital organs, such as the kidneys, spine,
or brain. Tuberculosis is spread through the air by coughing and sneezing. Without proper
treatment, advanced cases of tuberculosis may lead to death, which happens in 50% of
cases. Tuberculosis is present globally: a quarter of the world’s population has tuberculosis
in a non-contagious form. According to the World Health Organization’s (WHO’s) annual
report, tuberculosis claimed the lives of 1.6 million individuals in 2022, ranking it among
the leading infectious killers worldwide [149]. The highest incidence rates are reported in
Southeast Asia and African nations. Major risk factors for tuberculosis include smoking
and immune deficiencies [150].

Tuberculosis manifests itself in two primary forms: latent and active. Individuals with
a latent form of tuberculosis have germs in their organism, but they are not contagious
to other people. This state can last for decades, often eluding detection by conventional
diagnostic tests [151]. If left untreated, latent tuberculosis may progress into its active
form, marked by pathogen multiplication and tissue damage, accompanied by evident
clinical symptoms. The clinical presentation of tuberculosis differs, depending on the
affected organ. Pulmonary tuberculosis, affecting the lungs, constitutes approximately
80% of all tuberculosis cases. In contrast, when the infection occurs outside the pulmonary
parenchyma, it is termed extrapulmonary tuberculosis. With appropriate medication,
patients can achieve complete recovery, termed cured tuberculosis.

Tuberculosis infection strongly calls for new biomarkers for diagnostics. The acute
need for biomarkers stems from by the tremendous number of incorrectly diagnosed people.
About 40% of patients with tuberculosis in middle-income countries are given a wrong
diagnosis. Fortunately, the rapid development of metabolomics with MS applications
makes it easier to find suitable candidates for early tuberculosis identification [152,153].
Biomarkers, detectable in both plasma and serum, are accessible in active and latent
tuberculosis [154–156], and across extrapulmonary and pulmonary cases. Recent research
highlights elevated levels of leucine and kynurenine coupled with reduced citrulline and
glutamine levels in latent tuberculosis [157]. In osteoarticular tuberculosis, lipid metabolites
were found to be a significant category of biomarkers [158]. Lipid metabolites, particularly
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glycerophospholipids, feature prominently in biomarkers associated with tuberculosis
progression [79,159]. The absence of standardized laboratory criteria for cured tuberculosis
often results in the early discharge of patients who still have a spreading bacterial infection.
This issue underscores the need for further research into novel biomarkers. One study
demonstrated that l-histidine, arachidonic acid, biliverdin, and l-cysteine-glutathione are
promising markers with differential expression in cured patients [160].

Any form of tuberculosis can be treated with antibiotics. A single medication typi-
cally suffices for latent tuberculosis, while the active form requires multiple antibiotics to
enhance therapeutic outcomes. Like any bacterial infection, multidrug-resistant strains of
tuberculosis bacteria are emerging. Utilizing high-performance chromatography coupled
with mass spectrometry has yielded encouraging results in identifying specific multidrug-
resistant tuberculosis biomarkers [161]. Combining multiple metabolites in an integrated
approach facilitates accurate assessment of treatment response [162], holding potential for
epidemic control and therapeutic advancements.

Tuberculosis presents a serious challenge to farmers, because specific Mycobacterium
tuberculosis strains, such as Mycobacterium bovis, can infect livestock, particularly cattle.
Therefore, specific biomarkers are needed for the differentiation between infected and
healthy animals. Successful implementation of a metabolomics approach has enabled
differentiation between infected and non-infected badgers [163].

6.2. Sepsis

Sepsis is a serious, life-threatening condition characterized by an overwhelming bodily
response to an infection of any nature, whether bacterial, viral, or fungus. The hallmark
of sepsis is its spread through the blood, causing damage to organs. Sepsis could affect
any organ, but more frequently it damages the lungs, kidneys, liver, cardiovascular system,
and nervous system [164]. On a global scale, 50 million new cases of sepsis are reported
annually in both technologically advanced and economically challenged regions [165]. This
condition can develop in any individual, especially adults over 65 years old, individuals
with a weak immune system, or with chronic conditions like acquired immunodeficiency
syndrome (AIDS), diabetes, and cancer, as well as sepsis survivors and those recently
discharged from hospitals.

One of the widely used blood biomarkers for bacterial sepsis diagnosis is procalcitonin
(PCT) [166]. Its levels are low in healthy individuals, but during bacterial infection, includ-
ing sepsis, the level of PCT drastically increases. The quantification of PCT in human serum
is accomplished through high-resolution mass spectrometry [167]. A diagnostic approach
to sepsis could implement a metabolomics approach as well. A study by Guan et al. [168]
employed plasma metabolomics analysis with UPLC-Q-TOF/MS to search for potential
markers of sepsis, resulting in the identification of fifty-five plasma metabolites.

Treatment of sepsis requires antibiotic administration and admission to an intensive
care unit (ICU). Despite a high number of recovered cases of sepsis, about 30–40% of
patients have a poor outcome. New prognostic biomarkers are needed to make correct
predictions and positively change the route of medical treatment. Significantly, amino acid
metabolism played a pivotal role in distinguishing outcomes over different time periods,
namely 28 days, hospital stay, and 90 days [169].

Circulating histones in plasma and specific lipid classes, such as cholesterol esters and
oxidized phospholipids in high-density lipoprotein, are relevant markers for predicting
sepsis prognosis [170–172]. Among other predictive biomarkers from lipid classes are PC
and LPC [74]; these lipids were selected as potential biomarkers in studies exploring sepsis
progression [75,173]. Distinct metabolic alterations become evident at various stages of
sepsis progression, providing crucial insights into its dynamic nature. Bacterial species are
one of the most common causes of sepsis development, and they differ in healthy and septic
individuals. Recent studies have emphasized the importance of exploring metabolomics
profiles for predicting different sepsis types, including bacteremic sepsis in emergency
room settings [174]. For instance, one of the recent studies claims that the metabolites of
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Escherichia coli in septic patients are mostly involved in amino acid metabolism, protein
digestion, and absorption [175]. However, profiles of healthy and non-healthy metabolites
of Escherichia coli share some identical pathways, for instance, amino acids, peptides,
terpene glycosides, and carbohydrates. In pediatric meningococcal sepsis, blood IgG Fc
glycosylation sites emerge as critical indicators correlated with disease outcomes [176].

Differentiation between survival and non-survival in septic patients is a popular field
of metabolomics applications, as metabolites associated with survival in septic patients are
poorly characterized. A study by Kosyakovsky et al. [177] suggests some novel metabolites
associated with sepsis survival: hydroxyisobutyrate, indoleacetate, fucose, and glycolitho-
cholate sulfate. In another study, several upregulated and downregulated metabolites in
survivors and non-survivors were identified [178]. Hence, metabolites in the tricarboxylic
acid (TCA) cycle, amino acids, and energy metabolism pathways were upregulated in
non-survivors, while metabolites of the urea cycle and fatty acids were downregulated.

Both early-onset and late-onset sepsis play a major role in infant deaths. Explorations
of plasma metabolites have shown that glutathione and tryptophan metabolic pathways are
the most disrupted in infants with sepsis [179]. On the other hand, the most common risk
factor for sepsis development in infants is necrotizing enterocolitis, which induces ischemic
necrosis of both the large and small intestines [180]. Scientists explored the blood of
preterm infants with both necrotizing enterocolitis and late-onset sepsis and found several
distinguishing metabolites and proteins [181]. Another study showed that molecules
identified as PCs or LPCs are both reduced in infants with late-onset sepsis, indicating their
potential as biomarkers for early detection [76]. There is also a comprehensive study on
changes in metabolites in neonates during a week of sepsis progression [182]. Changes were
marked in terpenoid skeleton biosynthesis, pyruvate metabolism, cysteine/methionine
metabolism, and ascorbic acid metabolism.

Sepsis extends its influence beyond a systemic response, impacting organs such as
the heart and the brain. Metabolomic markers come to the fore in distinguishing patients
with sepsis-induced cardiac dysfunction. Kynurenic acid and gluconolactone stand out as
promising biomarkers for this aim [183]. Additionally, kynurenic acid and galactitol were se-
lected as good markers to distinguish survivors and non-survivors of the above-mentioned
condition. In the context of sepsis-associated encephalopathy, 4-hydroxyphenylacetic
acid appears to be a promising biomarker, showcasing a correlation with the severity of
consciousness disorders [184]. This biomarker holds the potential to serve as a valuable
prognostic tool for patients with sepsis-associated encephalopathy. Metabolites of sepsis
as a secondary condition were also explored on an example of hospital-acquired pneumo-
nia [185], where lipids showed the biggest alterations in patients with pneumonia, which
hints at their possible role in modulating the inflammatory response and detoxification.

Exploring the metabolomics biomarkers in a model of sepsis induced by Pseudomonas
aeruginosa in burned mice provides insights into potential diagnostic markers [186]. Metabo-
lites involved in amino acid metabolism, pyrimidine metabolism, tricarboxylic acid cycle,
glutamine, glutathione metabolism, and a major component of the protein collagen show
promise for early diagnosis of sepsis caused by Pseudomonas aeruginosa. In the expansive
realm of sepsis studies, the multifaceted approaches, encompassing clinical symptoms,
diagnostic biomarkers, and metabolomic signatures, collectively provide a deeper under-
standing of this complex condition. These findings not only contribute to refined diagnostic
strategies but also pave the way for targeted therapeutic interventions, aiming to improve
patient outcomes and survival rates in the face of sepsis.

6.3. Human Immunodeficiency Virus (HIV)

Human immunodeficiency virus (HIV), one of the most critical global health con-
cerns, damages the immune system’s white blood cells: CD4 T-helper cells, macrophages,
and dendritic cells. Damage to these cells severely weakens the immune system and makes
a person more susceptible to infections, which may result in the acquisition of chronic
diseases. HIV remains one of the major issues in the world. As of 2022, 39.0 million
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individuals are living with HIV, and 630,000 people died in that year from HIV-related
diseases. Annually, approximately 1.5 million new cases of HIV emerge, underscoring the
persistent urgency surrounding this viral infection. HIV exists in two primary types: HIV-1,
prevalent globally, and HIV-2, predominantly confined to West Africa and its neighboring
regions [187]. The intriguing contrast between these types lies in the slower progression of
HIV-2, with a mortality rate approximately two-thirds lower than that of HIV-1. Both HIV
types are further classified into subtypes based on their geographical and genetic features.

Any HIV infection has three stages: acute HIV infection, chronic HIV infection (or
asymptomatic HIV infection), and acquired immunodeficiency syndrome (AIDS) [188].
The first stage, which develops within 2–4 weeks of infection with the virus, is marked
by a high viral concentration, rapid virus replication, and the initiation of attacks on CD4
cells. This acute infection stage lasts two weeks, giving way to the chronic HIV infection
stage. During this period, virus replication becomes low, eventually resulting in AIDS after
a decade.

HIV infection manifests itself in altered metabolic pathways, with a notable occurrence
of poor sleep in over 50% of HIV-infected patients. This phenomenon is linked to the activa-
tion of the tryptophan–kynurenine pathway, leading to the generation of toxic metabolites,
subsequent apoptosis, and cognitive decline [189]. The identification of these metabolic
signatures associated with HIV infection provides not only a deeper understanding of its
progression but also potential avenues for targeted therapeutic interventions. Notably,
about 0.5% of people with HIV infection are able to maintain a very low undetectable
number of viral cells for more than a year. Usually, low rates of viral cells may be achieved
after long therapy, but in these people, it happens naturally. These patients belong to the
elite controller group, and the exact reasons for achieving undetectable viral loads are
supposed to be either genetic changes or special adaptations of the immune system to
the virus.

HIV care involves special treatment with antiretroviral therapy (ART) [190]. Its main
goals are to reduce the risk of transmitting HIV to other individuals, improve the immune
system, and stop virus growth. Therapy is mostly aimed at preventing AIDS [191]; how-
ever, ART introduces its own set of challenges, including impacts on metabolic profiles.
The therapy induces immune cell reconstitution, leading to varying degrees of immune
activation, as reflected by plasma metabolite cysteine levels [192,193]. Additionally, lipid
alterations, which are a common feature in HIV patients, are further influenced by ART,
especially in protease inhibitor-based therapy [106,194]. Lipids change due to the specific
action of HIV: the virus promotes oxidative stress and induces inflammation, during which,
blood vessels start to be affected by lipid plaques. These results indicate the need to take
action to loosen up the dysregulated innate immune activation in HIV patients on ART.

ART supplementation has several risks associated with mortality or the development
of serious diseases. Depression is a common condition on ART with an increased risk
of mortality. It was revealed that HIV patients with depression on ART have low levels
of neuroactive steroids as well as high levels of cortisol/dehydroepiandrosterone sulfate
ratios [107]. Thereby, the neuroactive steroid pathway is a promising target for the treat-
ment of individuals with depression induced by ART. Another risk for patients on ART
is the development of cardiovascular diseases. One marker of their progression is carotid
intima-media thickness, the enlargement of the middle layer of the arteries. Serum metabo-
lites from tryptophan catabolism showed a positive association with this feature [195].
A quite common cardiovascular disease in HIV-infected patients is coronary artery disease.
Plasma biomarkers that are reported to be increased in coronary artery disease are short-
chain dicarboxylacylcarnitines and glutamine/valine [196]. Remarkably, the study did not
involve people on ART. Another cardiovascular disease that is a risk factor for HIV patients
is left ventricular diastolic dysfunction, which is characterized by the stiffening of the heart.
Metabolomic profiling of plasma samples of HIV and healthy women with and without left
ventricular diastolic dysfunction revealed numerous significant biomarkers [197]. Metabo-
lites of glycerophospholipid metabolism and fatty acid oxidation pathways in HIV patients
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have shown a good correlation with left ventricular diastolic dysfunction. The revealed
altered metabolites in all observed cardiac dysfunctions offer new targets to prevent various
cardiovascular diseases in patients with HIV.

HIV-infected patients may acquire comorbidities, some of which are of cardiometabolic
nature. Metabolic syndrome often indicates the development of such comorbidities. Long-
term antiretroviral therapy on its part has a significant impact on metabolomic alterations.
The plasma metabolome was explored to analyze the effects of long-term ART in pa-
tients with HIV and metabolic syndrome. The analysis showed that compounds of amino
acid metabolism and glutamate pathways are the main recovering pathways in such
patients [198]. Apart from comorbidities, patients with HIV may acquire opportunistic
infections, for example, hepatitis C. The plasma metabolome of individuals co-infected with
both HIV and hepatitis C and with HCV-infected alone were compared [199]. Co-infected
individuals were reported to have a decrease in glutamine and an increase in glutamic
acid, arachidonic acid, and its derivatives. In addition, co-infected patients with and
without liver disease progression were compared. Several metabolic pathways, including
phenylalanine, tyrosine, and tryptophan biosynthesis pathways marked by an increased
level of tyrosine, were revealed to be altered the most in patients with liver disease pro-
gression. Another example of an opportunistic infection is chronic obstructive pulmonary
disease. Individuals with this disease and HIV were revealed to have significantly different
sphingolipid profiles [200]. Particular attention in studies is given to the rarest group of
individuals, which have a low undetectable number of viral cells, the elite controllers.
The metabolic and lipid plasma features of these patients showed that the main metabolites
associated with such strong maintenance of low virus load belong to the tricarboxylic acid
cycle [201]. An increased level of α-ketoglutaric acid, which activates the mammalian target
of the rapamycin pathway, is a main marker of long-term HIV control.

The multifaceted nature of HIV, spanning virological, immunological, and metabolic
aspects, mandates a comprehensive approach for effective management and treatment.
Ongoing advancement in diagnostics, therapeutic strategies, and metabolic profiling con-
tinues to shape our understanding of HIV, refining patient care toward a future where this
global health challenge is met with increasingly effective interventions.

6.4. Diabetes

Diabetes mellitus is a group of chronic, metabolic diseases affecting over 537 million
people worldwide [202]. Characterized by elevated blood glucose levels, this condition
leads to severe damage to vital organs, including blood vessels, eyes, kidneys, nerves,
and the heart [203,204]. In 2019, the WHO experts proposed a new classification of diabetes
mellitus, considering both etiological factors and determining appropriate treatment [204].
At present, diabetes is categorized into six major types: type 1 diabetes (T1D), type 2
diabetes (T2D), hybrid forms of diabetes, other specific types, unclassified diabetes, and hy-
perglycemia first detected during pregnancy (gestational diabetes mellitus (GDM) and T1D
and T2D, first diagnosed during pregnancy) [204,205]. The overwhelming majority of cases
of diabetes can be attributed to one of two broad categories: T1D mellitus, which is caused
by β-cell destruction and absolute insulin deficiency, or T2D mellitus, which is characterized
by the presence of peripheral insulin resistance and relative insulin deficiency [206–208],
although some cases are difficult to classify.

According to the American Diabetes Association and the WHO, diabetes may cur-
rently be diagnosed based on plasma glucose or glycated hemoglobin levels [204,209].
Advances in metabolomics offer a promising avenue to enhance predictive potential and
diagnostic efficiency. Van et al. revealed a positive correlation between plasma advanced
glycation end products, pentosidine, and Nε-(carboxymethyl)lysine, and T1D [210]. A pow-
erful T1D-prediction model based on a set of cord serum concentrations of seven lipid
metabolites was proposed by Orevsivc et al. [211]. Decreased levels of cord-blood PCs and
phosphatidylethanolamines in children who were diagnosed with T1D before the age of
four were also observed by La Torre et al. [212].
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Concerning T2D, a higher serum indolepropionic acid level, a gut microbiota metabo-
lite, displayed a negative association with the incidence of T2D [213]. Glycated lysine-141
of haptoglobin was proposed by Spiller et al. for enhancing diabetes diagnostic power [214].
The set of glycated lysine-141 of haptoglobin and HbA1C provided a sensitivity of 94%,
a specificity of 98%, and an accuracy of 96% for T2D identification. The combination of
glycated lysine-141 of haptoglobin and plasma-free fatty acids also allowed T2D diagnosis
to be ameliorated [215]. The estimation of multiple glycation sites on plasma proteins was
proposed as a tool for early diagnosis of T2D and adequate glycemic control [216].

As a final note on the issue of GDM diagnosis, researchers have observed distur-
bances in purine degradation, in metabolites involved in insulin resistance, and fatty
acid oxidation have been noted. Hu et al. proposed an optimal GDM prediction model
composed of glucose, uric acid, DL 11:0-iso2, L-phenylalanine, and direct bilirubin levels
measured by UHPLC-MS/MS in the first trimester of pregnancy [217]. Similar alterations
in metabolic pathways, including pyrimidine/purine derivatives involved in uric acid
metabolism, carboxylic acids, fatty acylcarnitines, and SM in women at risk of GDM in the
first trimester were noted by McMichael et al. [218]. However, their proposed panel with
enhanced diagnostic accuracy included SM 14:0, hypoxanthine, alpha-hydroxybutyrate,
and xanthine. Isovalerylcarnitine (C5) and tiglylcarnitine (C5:1) were also suggested by
Razo-Azamar et al. [219] to be screened for early identification of pregnant women who will
later develop GDM. Alternatively, serum amino acids (serine, proline, leucine/isoleucine,
glutamic acid, tyrosine, and ornithine), a lysophosphatidylcholine (LysoPC(20:4)), and uric
acid were observed to alter prior to GDM onset and during the period from the first to
the second trimester of pregnancy [220]. Glycerophospholipid metabolism, linoleic acid
metabolism, and D-arginine and D-ornithine metabolism were also proposed to be the main
metabolic pathways disturbed by GDM in the second and third gestational trimesters [221].
These facts may also have clinical importance and facilitate early prediction of GDM. Di-
boun et al. suggested plasma glutamate measured in the second trimester as the best
predictor of GDM, and a set of phosphatidylcholine diacyl C40:2, arachidonic acid, gly-
cochenodeoxycholic acid, and phosphatidylcholine acyl-alkyl C34:3 as the best marker of
GDM + T2D in pregnant women in the second trimester [222]. The diagnosis of GDM in
both South Asian and white European women can be determined through an assessment
of several fatty acids, together with some clinical and individual figures [223]. These fatty
acids include total fatty acids, 18:2 linoleic acid, total monounsaturated fatty acids, total sat-
urated fatty acids, lactate, and total esterified cholesterol. Among clinical features, age and
body mass index were considered. Another study revealed that pregnant women with pre-
existing diabetes are characterized by enhanced plasma levels of specific F2-isoprostanes
in the first trimester [224]. This finding could be helpful for the detection of undiagnosed
women at risk.

Metabolomics plays a pivotal role in assessing the efficacy of therapeutic approaches
for managing diabetes. Utilizing UPLC-MS, baseline levels of tryptophan, bilirubin, and in-
doxyl sulfate, along with six-month post-surgery levels of free fatty acids including FFA
16:0, FFA 18:3, FFA 17:2, and hippuric acid, have been identified as robust predictors for the
suitability and effectiveness of RYGB in T2D patients [225]. Lipidomics and metabolomics
have revealed some benefits of activity in comparison with uninterrupted sitting for adults
with T2D [226]. Grace et al. concluded that there are postprandial reductions in lipids
associated with inflammation and increased concentrations of lipids associated with an-
tioxidant capacity in individuals who exercise. A strong and independent positive correla-
tion was found between the plasma lysophosphatidylinositol lipids and insulin secretion.
On the contrary, dihydroceramide was negatively correlated with insulin sensitivity, while
phosphatidylethanolamine and its vinyl ether-linked (plasmalogen) derivatives correlated
negatively with % body fat in obese people [227]. These findings provide a new approach
to both T2D early diagnosis and the estimation of the efficacy of diabetes management.

Metabolomics may be useful for screening the signs of diabetes complications, such as
cardiovascular disease, kidney failure, and retinopathy. Thus, it was shown that plasma-
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free fatty acids with different carbon chain lengths and unsaturation were significantly
upregulated in T2D patients complicated by coronary heart disease [228]. Seven lipid
species, consisting of alkylphosphatidylcholine [PC(O-36:1)], cholesteryl ester, alkylphos-
phatidylethanolamine [PE(O-36:4)], phosphatidylcholine [PC(28:0) and PC(35:4)], and
lysophosphatidylcholine [LPC(20:0) and LPC(18:2)] were identified as predictors for future
cardiovascular events, and only four (alkylphosphatidylcholines PC(O-36:1) and PC(O-
36:5); a diacylglycerol, DG(16:0_22:5); and a sphingomyelin, SM(34:1)) for cardiovascular
death [229]. Pentosidine, a plasma marker, was correlated with coronary artery calcification
score in T1D patients, serving as an early biomarker for cardiovascular disease [210]. Low
circulating plasma levels of tyrosine and alanine were identified as markers for microvas-
cular risk in T2D individuals, while decreased leucine, histidine, and valine correlated with
higher mortality risk [230]. Fatty acid biosynthesis was associated with T2D complications,
and specific metabolites were found to be elevated in patients with both retinal and renal
complications of T2D [231].

In T2D-induced diabetic retinopathy (DR), 10 metabolites were identified as discrimi-
nators between pre-clinical, non-proliferative diabetic retinopathy, and proliferative diabetic
retinopathy (PDR) [232]. Glutamic acid and glutamine emerged as reliable biomarkers for
DR progression, with the glutamine/glutamic acid ratio offering improved recognition.
Additionally, various metabolites, including arginine, citrulline, pseudouridine, and several
others, were associated with DR in T2D patients [233–238]. Zhu et al. identified fumaric
acid, uridine, acetic acid, and cytidine as potential biomarkers for PDR in comparison to
long-lasting T2D without DR [239]. A cross-sectional study performed by Curovic et al.
demonstrated that 2,4-dihydroxybutyric acid, 3,4-dihydroxybutyric acid, ribonic acid,
ribitol, and the triglycerides 50:1 and 50:2 significantly correlated to the DR stage in patients
with T1D. An increasing level of 3,4-dihydroxybutyric acid was identified as a risk marker
for the progression of DR in longitudinal research [240]. The combination of amino acids
and derivatives, monosaccharides, organic acids, and uremic toxins showed high perfor-
mance for early diagnosis of diabetic nephropathy in T1D patients [241]. Haukka et al.
revealed plasma erythritol, 3-phenylpropionate, and N-trimethyl-5-aminovalerate as the
best set for the prediction of microalbuminuria [242], which is considered the first sign of
kidney failure.

In T2D patients with diabetic kidney disease (DKD), disturbed pathways include
cysteine and methionine metabolism [243], galactose and glycerolipid metabolic path-
ways [244], and taurine and hypotaurine metabolism [243]. Specific metabolites, such as
glycerol-3-galactoside, were identified as predictors for DKD [244], as well as c-glycosyl
tryptophan, pseudouridine, N-acetylthreonine [245], plasma histidine, and valine [246].
DKD progression may be estimated with the combination of α2-macroglobulin, cathep-
sin D, and CD324 [244]. Meanwhile, sphingomyelin (d18:1/24:0) was associated with a
lower risk of albuminuria progression [247]. Longitudinally, the PC and several sphin-
gomyelin species were revealed to be associated with a lower risk of the combined renal
endpoint [247]. Utilizing the GC×GC-TOFMS approach, significant metabolites of sugars,
sugar alcohols, amino acids, and free fatty acids were characterized in diabetes mellitus
patients with kidney failure [19]. Some of these metabolites were associated with alterations
in galactose metabolism and the polyol pathway.

A signature panel composed of 20 metabolites was developed by Lai and colleagues
for the prediction of future T2D as a complication of GDM [248]. Moreover, elevated levels
of hexoses and decreased free carnitine, acylcarnitines, long-chain non-esterified fatty
acids, and phospholipids were also revealed in the cord blood of offspring born to GDM
mothers [249], which confirms the transgenerational cycle of diabetes. Metabolomics also
identified biomarkers for pre-term delivery and provided insights into the transgenerational
cycle of diabetes [222].

Thus, metabolomics can provide a useful and promising tool not just for revealing the
diabetes pathophysiological pathways, but also for prediction and early diagnosis, increas-
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ing the diagnostic power, assessing the efficiency of diabetes management, and identifying
biomarkers of severe complications.

6.5. Non-Alcoholic Fatty Liver Disease (NAFLD)

Non-alcoholic fatty liver disease (NAFLD) is characterized by an abnormal buildup of
fat in the liver, known as hepatic steatosis. It manifests itself in the absence of secondary
causes such as excessive alcohol consumption, viral hepatitis, or drug-induced liver fat
accumulation [250]. According to recent studies, NAFLD is a leading cause of chronic liver
disease globally [251]. It is an increasingly common disease: studies with a total sample size
of 8,515,431 patients from 22 countries have shown that the global prevalence of NAFLD is
25.24% with the highest prevalence in the Middle East and South America and the lowest in
Africa [251]. This can be explained by its risk factors, as NAFLD is often associated with an
unhealthy lifestyle, changes which are proven to lower transaminase levels and ameliorate
NAFLD. Other conditions that are closely related to NAFLD include metabolic syndrome,
obesity, type 2 diabetes mellitus, and dyslipidemia [250].

There are two types of NAFLD; they include non-malignant disease of nonalcoholic
fatty liver (NAFL) and a more severe condition of nonalcoholic steatohepatitis (NASH).
NAFL is a form of NAFLD characterized by hepatic fat accumulation with minimal or
zero concurrent inflammation or liver damage. In NASH, in addition to fatty liver, there
are also signs of inflammation of the liver and apoptosis. The inflammation and liver
damage in NASH can cause fibrosis and may lead to cirrhosis, marked by permanent liver
scarring [250].

At present, the diagnosis of NAFL and NASH is usually confirmed by liver biopsy [252],
which has motivated researchers to look for other biomarkers and noninvasive detection
methods. One such approach is OxNASH, a scoring method based on mass spectro-
metric profiling of oxidized lipid products, which correlates with histologic features of
NASH [106,253]. Another approach to distinguish NAFL and NASH is by accessing
hepatocellular ballooning, which is hepatocyte enlargement and the appearance of pale
staining cytoplasm in the cells. Hepatocellular ballooning was proven to be a feature
of NASH [254], and it positively correlates with PC and negatively correlates with LPC
or lysophosphatidylethanolamine [255], offering a non-invasive diagnostic option. Re-
searchers have explored various potential NAFLD biomarkers such as perturbations in
one-carbon metabolism, mitochondrial dysfunction, and increased oxidative stress [256].
Studies have reported a significant decrease in the ratio of stearic acid to oleic acid, high
levels of elongase-5 enzymatic activity [257], and high levels of homocysteine and cysteine
and defective hepatic sulfur metabolism [258].

There are studies that focused on NASH specifically, showing that patients with NASH
show some elevated lipids such as PC, sphingomyelin, and phosphatidylethanolamine [70].
Biomarkers of NASH also include upregulated hepatic AMPK protein and co-activated
pathways of lipid synthesis and degradation [259]. Other useful markers are sphingolipids
and changes in the concentration and quality of oxysterols, which can be used as non-
invasive biomarkers in the categorization of NAFLD and as markers of transition from
NAFL to NASH [70,260,261].

Besides the well-known risk factors such as obesity and dyslipidemia, recent studies
have proven that chronic psychological distress [262], high perfluoroalkyl substances [263],
and benzo[a]pyrene exposure [264] can also contribute to NAFLD initiation and pro-
gression. Currently, there is no medicine that can treat NAFLD directly; however, there
are other methods for its management and resolution [265]. Predominantly, weight loss
strategies [266], including bariatric or metabolic surgery in severe cases, are the most fre-
quently employed interventions [265]. Recent studies have also shown the potential of PC
for ameliorating lipid metabolism and inflammation in NAFLD subjects since it is highly
correlated with ALT, TAG, HDL-C, IL-1β, and TNF-α concentrations [267]. Other solutions
include treatment with vitamin E [250], increase of caffeine [268] and polyphenols [269]
consumption, and the use of pioglitazone [250] or glucagon-like peptide-1 [270].
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6.6. Rheumatoid Arthritis (RA)

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that brings pain and
stiffness to the joints [271]. Without timely treatment, RA may spread to other organs
as well and cause inflammation. Most frequently, it affects the skin, heart, blood, eyes,
or lungs. This disease is characterized as long-term; it has periods of severe and tolerable
pain and currently lacks a definitive cure. Judging by the 2019 WHO report, 18 million
people worldwide were living with established RA. The disease mostly affects women [272]:
70% of RA patients are female, and of these, 55% are older than 55 years.

The precise cause of RA remains uncertain, but scientists believe that genetic and
environmental factors are the key causes. The molecular mechanism of RA develop-
ment involves immune cells’ action against healthy joints, which results in inflammation.
A primary diagnosis of RA is established based on symptoms, but an accurate diagnosis
may also be achieved through specific blood biomarkers. Among the various screening
biomarkers of RA, researchers identified amino acids, which proved to be associated
with inflammation and steroid hormone biosynthesis [120]. The most specific serum
biomarkers for RA are involved in inflammation injury, amino acid metabolism, oxidative
stress, and phospholipid metabolism [67]. Reduced pathways of amino acids and glucose,
along with increased fatty acids and cholesterol biosynthesis, were revealed by GC-MS of
serum [273]. Non-esterified fatty acids showed a non-typical profile in RA as well. A study
by Rodríguez-Carrio et al. [274] suggests that these compounds may affect RA pathogenesis
due to their ability to modulate CD4+ T-cells function. According to the results, the serum
non-esterified fatty acids’ profile in RA had an association with an enhanced T helper 1 cell
response and an aggressive form of disease. Another set of visible changes was detected
in the arachidonic acid, cyclooxygenase, and lipoxygenase pathways in rat plasma with
UPLC-MS/MS [275]. The results showed increased metabolites of the cyclooxygenase and
lipoxygenase pathways and arachidonic acid. As was demonstrated by Surowiec et al. [68],
it is possible to find distinct metabolites of RA development years before its onset by
means of LC-MS. Plasma metabolite profiling of individuals who later developed RA
showed upregulation in the following lipids and small molecules: lysophospatidylcholines
and tryptophan metabolism, perturbation of fatty acid β-oxidation, and an increase in
oxidative stress.

RA is just one member of a group of more than 100 arthritic diseases. Distinguishing be-
tween all of them may be a hard task due to the similarity of their symptoms. Metabolomics
profiling is one possible way to facilitate the differentiation of RA from other arthritis types.
For instance, analyzing the phospholipid profile differentiates RA from Lyme arthritis [69].
Another comprehensive study reported unique metabolic signatures of four arthritic types,
including RA [276]. These results prove that metabolomic phenotyping may be used as
an effective diagnostic tool in RA and other arthritic diseases, including osteoarthritis,
ankylosing spondylitis, and gout.

6.7. Systemic Lupus Erythematosus (SLE)

Systemic lupus erythematosus (SLE), commonly referred to as lupus, is a chronic
autoimmune disease characterized by the corruption of immune cells, leading them to
attack healthy tissues. This aberrant behavior triggers inflammation, which spreads to
the skin, kidneys, joints, blood, lungs, and brain. In some cases, inflammation acquires a
permanent state. While SLE can occur in individuals aged 15 to 45, statistics indicate that
approximately 90% of SLE patients are young women [277]. Geographically, SLE displays
a higher prevalence in the USA and rural regions [278]; ethnically, non-white individuals
have a higher risk of SLE development. Due to a wide range of clinical manifestations
and simultaneous impact on multiple organs, SLE is often mistaken for other diseases.
Among the common clinical signs of SLE, skin redness is the most prominent, often
presented as a “butterfly rash”, which is a persistent redness on the nose and cheeks.
Additionally, SLE is associated with kidney and liver inflammation, chest pain, fever,
fatigue, painful joints, and hair loss. The cause of SLE is still not established. Researchers
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consider it to be the result of a complex interplay between genetic and environmental
factors. The triggers for SLE activation commonly include exposure to sunlight, infections,
or certain medications.

SLE belongs to the broader category of lupus erythematosus diseases. It represents two
major groups: manifested spontaneously, and those induced by medication. “Spontaneous”
lupus types include SLE and chronic cutaneous lupus erythematosus. The latter primarily
affects the skin without involving other organs, and is observed in approximately 10%
of lupus cases. In contrast, drug-induced lupus erythematosus, occurring in 6% to 12%
of individuals during drug exposure, can appear with symptoms similar to those of SLE,
including joint pain, fatigue, fever, and inflammation. It may develop within the first weeks
or months of regular medicine supplementation.

The diagnosis of SLE is challenging due to its multi-organ involvement. Primary
diagnostics include visual observation, specifically searching for skin rashes and laboratory
blood tests. A reduced red blood cell count is a notable marker of SLE progression. In cases
where SLE affects the kidneys and liver, a biopsy of these organs may be necessary for
diagnosis confirmation. At the moment, metabolomics biomarker profiling presents a
promising strategy for detecting lupus disease. Key SLE plasma biomarkers have been
associated with dysregulation of fatty acid [279,280], amino acids [281], and phospholipids
metabolism [279], as well as disruption of tricarboxylic acid cycle [282].

Biomarkers specific to clinical manifestations may not always indicate the particular
subtype of lupus, as they may present with similar clinical manifestations, necessitating
reliable biomarkers to distinguish between them. Notably, lupus nephritis (LN), a common
and severe complication of SLE occurring in approximately 40% of SLE patients [283], can
be differentiated from SLE based on distinct serum oxylipin profiles. These profiles include
several polyunsaturated fatty acids, such as arachidonic acid, linoleic acid, docosahexaenoic
acid, eicosapentaenoic acid, and dihomo-γ-linolenic acid [284]. Furthermore, glycerophos-
pholipid metabolism changes have been associated with the progression of SLE to LN. LN
patients exhibit increased levels of glycocholic acid metabolites [285]. Collectively, these
LN metabolites suggest involvement in inflammation, oxidative stress, and phospholipid
metabolism [286]. Also, novel serum biomarkers for LN were discovered by taking into
account the role of autoimmune-mediated inflammation [287].

Metabolomics profiling of plasma and serum biomarkers holds promise for monitoring
lupus progression, assessing disease activity, and predicting risk states. Plasma biomarkers
have also been studied during lupus progression, with research indicating that long-chain
fatty acids decrease while medium-chain and free fatty acids increase as SLE advances [288].
In terms of predicting risk states, individuals with SLE face a higher risk of adverse
pregnancy outcomes, a phenomenon explored through plasma metabolomics, which has
led to the identification of novel biomarkers for this condition [289,290]. Such investigations
may have good application in managing high-risk patients in the future.

6.8. Other Diseases

Polycystic ovary syndrome (PCOS) is a hormonal condition that affects 10% of women
of reproductive age. This condition is caused by an imbalance of reproductive hormones,
which affects ovarian function and leads to missed or irregular menstrual periods. In the
studies of PCOS, which utilize metabolomics approaches, there is a noticeable trend toward
the hormone profile characterization, and a search for novel metabolic biomarkers. Steroid
profile characterization in women with PCOS with an MS approach was performed by
Pasquali et al. [291]. The study revealed that PCOS status could be defined by incorporating
several steroid concentrations, which can also accurately detect hyperandrogenemia, an in-
creased production of androgen hormones. The result suggests that hyperandrogenism
cannot be defined by interchanging hirsutism and high androgen levels. Several other
hormones were revealed to be different in hyperandrogenism and non-hyperandrogenism
women with PCOS, offering new insights into PCOS pathology [292]. Serum metabolic
characteristics of PCOS performed by untargeted metabolite profiling were identified in



Metabolites 2024, 14, 54 28 of 43

several studies of adolescent and adult women [293–297]. In some studies, attention was
paid to a certain class of metabolites rather than all categories at once. Hence, the sph-
ingolipid profile was characterized in different types of PCOS (with insulin resistance
or/and obesity) [298]. Sphingomyelin species with long saturated acyl chains were se-
lected as potential biomarkers of PCOS. These works utilized different MS approaches:
UPLC-QTOF-MS [294,295,297], Q-TOF LC/MS [293], and LC-ESI-TOF/MS [296].

Metabolomics profiling methods are widely applied to cardiovascular diseases. In the
literature reviewed, we found studies on acute aortic dissection, myocardial infarction,
coronary artery disease, blockade of heart vessel syndrome, resistant hypertension, systolic
heart failure, and remote ischemic preconditioning. Here, we briefly discuss the application
of metabolomics methods to the profiling of some of these diseases. Take acute aortic
dissection, for example, one of the most common disorders affecting the aorta. It happens
when there is a tear in the inner layer of the aorta, which causes the dissection of its inner
and middle layers. Being an inflammation disease, acute aortic dissection is influenced
by oxylipins, which modulate inflammation responses, as was noted earlier. According to
recent studies, the levels of serum oxylipins in patients with acute aortic dissection were
significantly altered [56].

The second broadly examined cardiovascular disease is myocardial infarction, which
occurs when a part of the heart muscle dies due to insufficient blood flow. The most impor-
tant question raised in myocardial infarction profiling through the means of metabolomics
with MS is the identification of novel prognostic and risk-evaluation indicators. Kynurenine,
a tryptophan metabolite, was significantly changed in patients with ST-acute myocardial
infarction and, therefore, was suggested as a reliable marker [299]. Another predictive
biomarker of risk evaluation for ST-elevation myocardial infarction and non-ST-elevation
myocardial infarction is lysophospholipid [300]. Another study took plasma fatty acids and
oxylipins into consideration in the task of myocardial infection risk evaluation [58]. Associ-
ations were found between several metabolites of these classes, but more comprehensive
research is needed.

Heart failure (HF), a frequent complication of myocardial infarction, is also in the
spotlight of metabolomics profiling. HF occurs when a heart does not pump blood properly,
for the reason that the heart becomes too stiff or weak. Using a metabolomics approach
with MS, scientists took a look at some metabolites that change during HF and evaluated
them in individuals with HF risk for prognostic value. Cheng et al. [301] conducted the
aforementioned procedure with phenylalanine, which is elevated in HF patients. For target
human plasma profiling in HF samples with LC-MS/MS, an advanced protocol was created
by Chan et al. [302]. The proposed method includes the profiling of 19 main metabolites,
which were chosen in accordance with their biological relevance to HF. Modern studies
with metabolic profiling of cardiovascular diseases utilize the following MS methods:
LC-MS/MS [56], UPLC/Q-TOF [299], and GC-MS/MS [58].

Another application of metabolomics profiling was found with reference to a variety
of neurodegenerative diseases and disorders, among which are Alzheimer’s disease (AD),
dementia, stress disorders, schizophrenia, and sclerosis. The largest number of these studies
are devoted to AD. This disease affects the brain, which results in issues with memory,
thinking, and behavior. Over time, the brains of patients with AD shrink, and body func-
tions fade, leading to death. Although the main cause of AD development has not yet been
established, it is believed to be associated with amyloid plaques and the loss of brain neu-
ronal connections. There are several risks that may provoke AD progression: head injury,
high blood pressure, and clinical depression. Metabolic analysis is intended to find differ-
ently changed metabolites, which may reveal biochemical changes, and find new targets for
the therapy of neurodegenerative disorders. The results of serum profiling have shown that
tryptophan pathway metabolites are reduced in AD patients [141], and the glutamic acid is
elevated in individuals with AD, as was revealed by the GC×GC–TOFMS approach [303].
One of the markers of AD and other diseases of this type is the plasma neurofilament light
chain. The associations between this compound and some differential metabolites in AD
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were explored in a work by Chatterjee et al. [147]. These associations could eventually be
used as prognostic markers for several other neurodegenerative diseases. Other reliable
biomarkers have shown involvement in AD pathology, such as intracellular neurofibrillary
tangles, extraneuronal senile plaques, neuronal and axonal degeneration, inflammation,
and oxidative stress [304]. These biomarkers are a good target for the identification of dis-
ease stages as well as for predicting prognosis. With time, AD may develop into dementia;
the search for potential markers for indicating its progression is a highly relevant area of
study. Here, we mention one study, in which the exploration of plasma samples from AD
patients provided several dementia biomarkers [305]. The changes found in the study are
related to the lipid profile and feature a high accumulation of hexacosanoic acid.

One more area where the metabolomics approach has been found to be used is
schizophrenia, a mental disorder that causes issues with the psyche, accompanied by
episodes of psychosis. The lipidomic profile appears to be one of the main interests in
profiling the blood of patients with schizophrenia [306]. The alterations resulted in myeli-
nation abnormalities, cognitive deficits, oxidative stress abnormalities, and inflammation.
According to scientists, omega-3 could be used as a supplement in schizophrenia cases, as
it has good tolerability and acceptability. Serum amino acid and acylcarnitine levels were
also altered in schizophrenia patients, as reported by Mednova et al. [139]. The studies in
this area used GC×GC–TOFMS [303], UHPLC-QTOF-MS, and LC-ESI-MS/MS approaches.

7. Conclusions and Future Perspectives

A comprehensive MS analysis, supplemented with a metabolomics approach, is
a rapidly evolving and crucial methodology in blood profiling for non-cancer diseases.
Looking back at the presented studies, we can conclude that MS indeed serves as a powerful
analytical technique for identifying and quantifying metabolites of various natures. The
predominant number of studies is focused on the search for novel biomarkers, which are
viewed from different perspectives depending on the disease under consideration. As
demonstrated in numerous studies, biomarkers are crucial for early detection, diagnosis,
and monitoring the progression of the disease.

Biomarkers play a critical role in broad-spectrum diseases like SLE and RA, as they
prevent misdiagnosis of similar symptomatic subtypes. Thus, different lipid classes have
demonstrated their application in differentiating between various types of these diseases:
phospholipids in RA and oxylipins in SLE. One of the advantages of using metabolomic
biomarkers in clinical practice is that metabolic biomarkers offer a noninvasive method for
confirming diagnoses, minimizing the risk of organ damage, and providing a less stressful
experience for patients. This idea is especially relevant for diseases where only a biopsy is
used for diagnosis confirmation, as reviewed in NAFLD.

A promising perspective involves identifying early metabolic biomarkers through
a comprehensive analysis of associated metabolic pathways. As exposed in the article,
potential biomarkers have already been discovered for the early detection of diseases such
as tuberculosis, sepsis, RA, and diabetes, suggesting avenues for preventing severe disease
progression. Another perspective is using novel biomarkers to help evaluate the disease
state and optimize treatment procedures. That said, it is important to remember that
therapeutic drugs also modulate the metabolome and could carry side effects that may alter
vital metabolic pathways. On this matter, studies devoted to analyzing the effects of medical
drugs on the metabolic profile occupy a special place in this field. This knowledge can aid
in the optimization of existing therapies across various spectrums of non-cancer diseases.
Overall, the analysis of the metabolomics profile has the potential to facilitate personalized
medicine approaches. By looking at an individual’s metabolomic profile and taking into
account their unique characteristics, clinicians can develop a specific treatment with a
more effective outcome. As technological advancements continue, metabolomic profiling
increases its role in clinical practice and in developing novel therapeutic approaches.

While these advancements are commendable, translating metabolomics findings
into clinical practice remains a notable challenge. Bridging this gap requires integrating
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metabolomics-based biomarkers into clinical settings, developing standardized protocols,
and considering regulatory frameworks. This transition is crucial for enabling more accu-
rate and timely diagnoses and personalized therapeutic interventions. Recognizing the
importance of closing this gap, further research and collaboration are imperative for the fu-
ture of metabolomics in healthcare. Ongoing innovation and advancement underscore the
need for investigations addressing these gaps, ultimately leading to more precise diagnos-
tics and tailored therapeutic interventions. This systematic review reinforces the persisting
requirement for research and collaboration to unlock the full potential of MS-based blood
metabolomics in the context of non-cancer diseases and to address the critical challenge of
translating these findings into practical clinical solutions.
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AD Alzheimer’s Disease
AIDS Acquired Immunodeficiency Syndrome
ART Antiretroviral therapy
CE Capillary Electrophoresis
CE-MS Capillary Electrophoresis–Mass Spectrometry
CID Collision-Induced Dissociation
DKD Diabetic Kidney Disease
DR Diabetic Retinopathy
EI Electron Ionization
ESI Electrospray Ionization
ESI-MS Electrospray Ionization Mass Spectrometry
ESI-MS/MS Electrospray Ionization Tandem Mass Spectrometry
ESI-QTOF Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry
GC Gas Chromatography
GC×GC Comprehensive Two-dimensional Gas Chromatography
GC-MS Gas Chromatography–Mass Spectrometry
GC-MS/MS Gas Chromatography–Tandem Mass Spectrometry
GDM Gestational Diabetes Mellitus
HCV Hepatitis C Virus
HDL High-Density Lipoprotein
HF Heart Failure
HIV Human Immunodeficiency Virus
HPLC High-Performance Liquid Chromatography
HPLC-MS High-Performance Liquid Chromatography–Mass Spectrometry
HPLC-MS/MS High-Performance Liquid Chromatography–Tandem Mass Spectrometry
ICU Intense Care Unit
LC Liquid Chromatography
LC-MS Liquid Chromatography–Mass Spectrometry
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LC-MS/MS Liquid Chromatography–Tandem Mass Spectrometry
LDL Low-Density Lipoprotein
LN Lupus Nephritis
LPC Lysophosphatidylcholine
m/z Mass-to-Charge Ratio
MRM Multiple Reaction Monitoring
MRM-MS Multiple Reaction Monitoring Mass Spectrometry
MS Mass Spectrometry
MS/MS Tandem Mass Spectrometry
NAFL Nonalcoholic Fatty Liver
NAFLD Non-alcoholic Fatty Liver Disease
NASH Nonalcoholic steatohepatitis
PC Phosphatidylcholine
PCOS Polycystic Ovary Syndrome
PCT Procalcitonin
PDR Proliferative Diabetic Retinopathy
QQQ Triple Quadrupole
QTOF Quadrupole Time-of-Flight
RA Rheumatoid Arthritis
RYGB Roux-en-Y Gastric Bypass
SLE Systemic Lupus Erythematosus
SM Sphingomyelin
SRM Selected Reaction Monitoring
T1D Type 1 Diabetes
T2D Type 2 Diabetes
TCA Tricarboxylic Acid
TNF-α Tumour Necrosis Factor alpha
TOF Time-of-Flight
TOF-MS Time-of-Flight Mass Spectrometry
UHPLC Ultra-High-Performance Liquid Chromatography
UHPLC-MS/MS Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry
UPLC Ultra Performance Liquid Chromatography
UPLC-Q-TOF-MS Ultra-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass

Spectrometry
WHO World Health Organization
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