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Abstract: The major liver cancer subtype is hepatocellular carcinoma (HCC). Studies have indicated
that a better prognosis is related to the presence of tumor-infiltrating lymphocytes (TILs) in HCC.
However, the molecular pathways that drive immune cell variation in the tumor microenviron-
ment (TME) remain poorly understood. Glycosylation (GLY)-related genes have a vital function in
the pathogenesis of numerous tumors, including HCC. This study aimed to develop a GLY/TME
classifier based on glycosylation-related gene scores and tumor microenvironment scores to pro-
vide a novel prognostic model to improve the prediction of clinical outcomes. The reliability of
the signatures was assessed using receiver operating characteristic (ROC) and survival analyses
and was verified with external datasets. Furthermore, the correlation between glycosylation-related
genes and other cells in the immune environment, the immune signature of the GLY/TME classifier,
and the efficacy of immunotherapy were also investigated. The GLY score low/TME score high
subgroup showed a favorable prognosis and therapeutic response based on significant differences
in immune-related molecules and cancer cell signaling mechanisms. We evaluated the prognostic
role of the GLY/TME classifier that demonstrated overall prognostic significance for prognosis and
therapeutic response before treatment, which may provide new options for creating the best possible
therapeutic approaches for patients.

Keywords: glycosylation modification; tumor immune microenvironment; hepatocellular carcinoma;
single-cell sequencing; malignant epithelial cells; prognosis

1. Introduction

HCC is a malignant liver tumor with a global incidence and has a complex etiology, an
insidious onset, and an elevated malignancy degree [1]. Currently, targeted chemotherapy
and immunotherapy are still effective treatments for advanced HCC [2–4]. Multikinase
inhibitors inhibit tumor proliferation, angiogenesis, metastasis, and invasion by targeting
multiple intracellular and cell surface kinases, including sorafenib, lenvatinib, regorafenib,
cabozantinib, and ramucirumab, which have been approved as targeted treatments for
HCC [5]. To date, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has
shown efficacy in HCC, but the complex tumor immune microenvironment (TIME) of HCC
has somewhat limited the clinical response rate to current mainstream drug therapy and
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T-cell-based immunotherapy [6,7]. Crosstalk between tumor cells and the surrounding
TME has been implicated in tumorigenesis and immune evasion [8,9]. Comprehensive
mining of the hidden information in the TME is crucial for gaining insight into HCC and
improving treatment methods [10].

Glycosylation is the most abundant and diverse form of post-translational modification
of proteins that is common to all eukaryotic cells [11]. Advancements in cancer-associated
glycoproteomics have provided new insights into the mechanisms driving tumor initiation
and progression [12]. Glycosylation abnormalities are frequently observed in HCC and
contribute to changes in protein properties and functions. Altered protein glycosylation
plays a critical role in carcinogenesis, tumor progression, metastasis, stemness, recurrence,
immune evasion, and therapy resistance, underscoring the significance of glycosylation
abnormalities as potential diagnostic and prognostic biomarkers in HCC [13].

Currently, immunotherapy is a promising therapeutic strategy for HCC [7]. Immune
checkpoint inhibitors, oncolytic viroimmunotherapy, and adoptive T-cell transfer have
been developed for the immunotherapy of HCC. However, as a new mainstream therapy,
immunotherapy for HCC still has unresolved challenges, including the role of immunother-
apy in the early phases of HCC, evaluating the use of combined strategies targeting the
immune microenvironment and checkpoint inhibition, addressing the immunosuppressive
components of HCC in the tumor immune microenvironment, and developing thera-
peutic approaches for patients who do not respond to current immunotherapy [14]. In
view of the above issues and challenges, it is very important to find reliable molecular
biomarkers. In this investigation, we examined the ability of the GLY/TME classifier,
and the results indicated that the GLYlow/TMEhigh subgroup had the highest number of
patients who responded to immunotherapy, suggesting that this classifier could predict
immunotherapy response and better survival. In addition, the proteomic patterns of the
GLYlow/TMEhigh group and the HCC immunotherapy responder group showed extremely
high similarity, which may reveal certain commonalities in the decisive interaction between
the tumor cells and immune system. This demonstrated the treatment predictive power of
the GLY/TME classifier.

2. Materials and Methods
2.1. Data Collection and Preparation

University of California, Santa Cruz (UCSC) Xena (https://xena.ucsc.edu/) stores col-
lated clinical data from the The Cancer Genome Atlas (TCGA) database for various cancer
types, and we downloaded genomic data and clinical annotations of Liver Hepatocellular
Carcinoma (LIHC) patients from the UCSC Xena database and Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/, accessed on 11 June 2023) database, which
included LIHC (n = 374) and normal (n = 50) samples on 11 June 2023, and then performed
log2 TPM (transcripts per kilobase million) +1 formats for each expression value. In total,
770 glycosylation-related genes (Supplementary Table S1) were collected from the Molecu-
lar Signatures Database (MSigDB version 7.2, https://www.gseamsigdb.org/gsea/msigdb,
accessed on 12 June 2023).

Single-cell transcriptome data for 18,985 cells (2 HCC samples) were downloaded
from the GEO database (data set GSE166635) and normalized the expression matrix of the
top 2000 highly variable genes by the “Seurat” package [15]. Batch effects were minimized
utilizing the “RunHarmony” function of the “harmony” package [16]. Cell annotation
was identified manually based on canonical marker genes from the CellMarker 2.0 (http:
//bio-bigdata.hrbmu.edu.cn/CellMarker, accessed on 20 June 2023), and t-distributed
stochastic neighbor embedding (t-SNE) was used to show cell distributions [17].

https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gseamsigdb.org/gsea/msigdb
http://bio-bigdata.hrbmu.edu.cn/CellMarker
http://bio-bigdata.hrbmu.edu.cn/CellMarker
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2.2. CIBERSORT Analysis

We analyzed the impact of 22 immune cell types on HCC prognosis using Cell-type
Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) based
on RNA-seq data, and Kaplan–Meier (KM) survival analysis was utilized to examine the
differential abundance of immune cells in overall survival (OS) in HCC [18].

2.3. Formation and Verification of the GLY/TME Scoring System

The “limma” R package (version 3.50.3) was utilized to find differentially expressed
genes (DEGs) across cancerous and paracancerous tissues [19], and then, overlapping
DEGs were identified by intersecting the screened DEGs with the collected genes related
to glycosylation modifications. Univariate Cox regression analysis was conducted on the
assembled training cohort to identify overlapping DEGs by using the “survival” R package
(version 3.3-1), and 15 significant predictors were obtained by employing least absolute
shrinkage and selection operator (LASSO) regression analysis. Here, the bootstrap method
was used to resample the TCGA-LIHC samples 1000 times to obtain a stable signature.
Finally, multivariate Cox regression analysis was used to construct a glycosylation scoring
system, and the risk score for glycosylation modifications in HCC was determined using
the logistic regression formula as follows:

GLY score = Σ
Coefi ∗ Gi

Bootstrap(SD)

where i indicates the number of hub genes and Coef i is each gene’s coefficient obtained by
multivariate Cox regression analysis. Gi is each gene’s expression level and bootstrap (SD).

Establishing the TME score depended on CIBERSORT analysis, and the scores were
selected by using KM survival analysis:

TME score = Σ
−Coefi ∗ Cj

Bootstrap(SD)

where Cj is the abundance of prognosis-related immune cells.
Cutoff values for high and low grouping were detected by utilizing the “survminer”

R package (version 0.4.9). Then, KM curves were obtained by applying the log-rank test to
the training and validation datasets. Finally, a combined prognostic analysis of the GLY
score and TME score was performed to obtain a GLY/TME classifier which comprised four
groups in the TCGA-LIHC cohort: GLYhigh/TMElow, GLYlow/TMEhigh, GLYhigh/TMEhigh,
and GLYlow/TMElow.

2.4. Weighted Gene Coexpression Network Analysis (WGCNA)

Utilizing the “WGCNA” program, characteristic genes of the four groups mentioned
above were determined [20]. A gene coexpression network based on the top 5000 genes was
created after aberrant samples were eliminated, and it was further converted into a scale-
free network by choosing the proper soft-threshold power β. The eigengene adjacency and
the topological overlap measure (TOM) were generated to assess the interactions between
gene modules, and the greatest correlation was chosen for further study based on the
association between the eigenvalue of the module and the phenotype.

2.5. Functional Enrichment Analysis

The “clusterProfiler” R package (v4.2.2) [21] and fast gene set enrichment analysis
(FGSEA) (v1.20.0) were used to perform gene set enrichment analysis (GSEA) of the bio-
logical processes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and MSigDB
database, respectively. Notably, |NES| > 1 and padj < 0.05 were set as the threshold for
differential gene screening. The top 20 pathways enriched for each group were displayed
by utilizing the “pheatmap” (version 1.0.12) R package [22].
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To understand the biological significance of the signature genes identified by the
WGCNA, the genes of hub module were mapped into Metascape for KEGG pathway
enrichment analysis and gene ontology enrichment analysis.

We then visualized the abundance and role of proteins, and the KEGG database
platform was used to annotate these proteomaps [23]. Here, we visualized the pro-
teomaps of GLYlow/TMEhigh patients receiving immunotherapy and those responding
to immunotherapy.

2.6. TIP Analysis

In bulk tumor samples, a GSEA-based technique is used to evaluate the relative
immunological activity of the immune cycle [24], and a variety of tumor-infiltrating im-
mune cells currently tracking the tumor immunophenotype (TIP) are derived from CIBER-
SORT [25].

2.7. Immunotherapy Response Prediction

Tumor Immune Dysfunction and Exclusion (TIDE), an online algorithm that uses
transcriptome information to anticipate patients’ clinical response to immune checkpoint
blockade treatments, was employed to anticipate the treatment sensitivity of patients
associated with glycosylation and high and low scores for the immunological microenvi-
ronment [26].

2.8. Intercellular Communications

The potential interactions between malignant cells with different GLY score and other
cells were employed by the “CellChat” (1.5.0) package [27].

2.9. Cell Culture and mRNA and Protein Level Analysis

The normal human hepatocyte cell lines MIHA and HCC-LM3 were cultured in RPMI-
1640 and DMEM (Gibco, Waltham, MA, USA) with 10% FBS (Sigma-Aldrich, St. Louis,
MO, USA) in a 5% CO2 environment at 37 ◦C. Total RNA was extracted, and an Omniscript
Reverse Transcriptase kit (Qiagen, Hilden, Germany ) was applied to reverse-transcribe
2 µg of total RNA. mRNA level of the target and normalization to that of beta-actin mRNA
level were detected by quantitative real-time PCR (qRT-PCR) using the 2−∆∆Ct method
and the primers are listed in Supplementary Table S2. The primary antibodies used in this
study were PPIA Ab (No.ab126738, Abcam, Cambridge, UK), ALG3 Ab (No.20290-1-AP,
Proteintech, Rosemont, IL, USA), CTSA Ab (No.ab184553, Abcam), CAD Ab (No. ab40800,
Abcam), B3GAT3 Ab (No.SAB1401628, Sigma-Aldrich), TRAPPC3 Ab (No.15555-1-AP,
Proteintech), HSP90AA1 Ab (No.GTX109753, GeneTex, CA, USA), SRD5A3 Ab (No.NBP1-
69612, Novus Biologicals, Littleton, CO, USA), BAG2 Ab (No.ab79406, Abcam), DNAJC1
Ab (No.GTX103858, GeneTex), ADAMTS5 Ab (No. ab182795, Abcam), PLOD2 Ab (No.
DF12018, Affinity Biosciences, Cincinnati, OH, USA), DYNC1LI1 Ab (No.GTX120114,
GeneTex), ST6GALNAC4 Ab (No. ab127016, Abcam), calcium-binding protein p22 (CHP1)
Ab (No. GTX113936, GeneTex), and β-actin (No. T0022, Affinity Biosciences). The Clinical
Proteomic Tumor Analysis Consortium (CPTAC) was used to evaluate the protein levels in
HCC patients [28].

2.10. Prediction of Drug Response

The “oncoPredict” R package was employed to explore the differences in drug treat-
ment effects among HCC patients [29]. The data of cell lines to drugs in the Genomics
of Drug Sensitivity in Cancer Project (GDSC) were used as the input data. A lower half-
maximal inhibitory concentration (IC50) value indicates a higher drug efficacy.



Metabolites 2024, 14, 51 5 of 23

2.11. Statistical Analysis

The R (v4.1.2) program was employed to conduct all statistical analyses and the
Wilcoxon rank-sum test was utilized to assess the differences between the two groups.
Variations between three or more groups were evaluated by using the Kruskal–Wallis test.
Spearman’s correlation coefficient was employed to evaluate correlations. The standard for
statistical significance was p < 0.05.

3. Results
3.1. Construction of GLY Score and TME Score

First, based on the MSigDB database, we collected a gene set containing 770 glycosylation-
related genes by searching for the keyword “glycosylation” after removing duplicate genes.
The differentially expressed glycosylation-related genes between tumors and nearby healthy
tissues were determined by utilizing “limma” package, (Supplementary Table S1). Typically,
603 differentially expressed glycosylation-related genes were recognized from 770 glycosylation-
related genes by setting the screening threshold as p value = 0.05 after removing genes that
were not expressed across most samples. Then, 301 DEGs associated with prognosis were
screened out by univariate Cox analysis, and the differential expression of these glycosylation-
related genes in HCC compared to normal paracancerous tissues was shown using a heatmap
(Figure S1A, Supplementary Table S3).

Next, LASSO regression analysis was utilized to select glycosylation-related genes
with non-zero penalty coefficients, which generated a prognosis-related glycosylation gene
signature (Figure 1A). Finally, a robust prognostic gene signature was constructed with
15 genes, namely, PPIA, ALG3, CTSA, CAD, B3GAT3, TRAPPC3, HSP90AA1, SRD5A3,
BAG2, DNAJC1, ADAMTS5, PLOD2, DYNC1LI1, ST6GALNAC4, CHP1, and detailed in-
formation about them is provided in Supplementary Table S4. The forest plot showed
that the hazard ratios (HRs) of PPIA, ALG3, CTSA, CAD, B3GAT3, TRAPPC3, HSP90AA1,
SRD5A3, BAG2, DNAJC1, ADAMTS5, and PLOD2 were all greater than 1, indicating that
these 12 genes may be risk prognostic factors. DYNC1LI1, ST6GALNAC4, and CHP1 were
less than 1, which may be favorable prognostic factors (Figure 1B). The lollipop plot shows
the gene expression fold change (logFC) of glycosylation-related prognostic genes in the
TCGA-LIHC cohort, where a positive logFC indicates upregulation of gene expression in
HCC compared to normal tissue, while a negative logFC indicates downregulation of genes
(Figure 1C).

Next, we constructed the relative scores of immune cells in the HCC samples and
combined the survival curve of each cell with the optimal cutoff to screen for immune cells
associated with good prognosis, such as natural killer cells (NK cells), M1 macrophages,
and activated CD8 T cells (Figure 1D–F and Figure S1B). Forest plots showed that the
HR values of these three cell types were all less than 1, suggesting that these cell types
were protective factors (Figure 1G). Bootstrap resampling and multivariate Cox regression
analysis were further performed to construct a TME score.

3.2. Differential mRNA and Protein Levels of Glycosylation-Related Prognostic Genes

The mRNA levels of 15 genes were compared by qPCR in normal human hepatocytes
MIHA and HCC-LM3 with high metastatic potential. The results revealed that CHP1 had
low expression and PPIA, ALG3, CTSA, CAD, B3GAT3, TRAPPC3, HSP90AA1, SRD5A3,
BAG2, DNAJC1, ADAMTS5, PLOD2, DYNC1LI1, and ST6GALNAC4 were significantly
overexpressed in human hepatocellular carcinoma cells compared to MIHA (Figure 2A).
Moreover, according to the CPTAC database, the protein level expression of CHP1 was
lower and PPIA, ALG3, CTSA, CAD, B3GAT3, TRAPPC3, HSP90AA1, BAG2, DNAJC1,
PLOD2, DYNC1LI1, and ST6GALNAC4 were significantly higher in tumor tissues. The
protein expression of SRD5A3 was not significantly different between tumor and normal
tissues (Figure 2B). We detected the expression of 15 hub gene expressed proteins in
MIHA cells and HCC-LM3 cells for comparison through western blot analysis. The results
revealed that CHP1 had low expression and PPIA, ALG3, CTSA, CAD, B3GAT3, TRAPPC3,
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HSP90AA1, SRD5A3, BAG2, DNAJC1, ADAMTS5, PLOD2, DYNC1LI1, and ST6GALNAC4
were overexpressed in HCC-LM3 cells compared to MIHA (Figure 2C).
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Figure 2. The relative expression level of glycosylation-related prognostic genes. (A) The relative
mRNA level of PPIA, ALG3, CTSA, CAD, B3GAT3, TRAPPC3, HSP90AA1, SRD5A3, BAG2, DNAJC1,
ADAMTS5, PLOD2, DYNC1LI1, ST6GALNAC4, and CHP1. (B) Expression of 15 hub genes in HCC
primary tumor samples and adjacent normal tissues at the protein level from the CPTAC database
(n = 165). (C) Expression of 15 hub genes in MIHA cell and HCC-LM3 cell at the protein level. (Data
are presented as the mean ± SD, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns, no significance.).

3.3. GLY/TME Score Performs Well in Predicting Prognosis

Patients in the training cohort were distributed into high- and low-GLY groups and
TME groups based on the corresponding median value to evaluate the prognostic power of
GLY score and TME score for HCC. Patients with a high GLY score had a significantly worse
OS compared to those with a low GLY score (p < 0.001) (Figure 3A). Conversely, patients
with a high TME score had longer survival (Figure 3B). Pathway enrichment analyses were
conducted on the high- and low-GLY score and TME score groups. The GSEA results
showed that the high- and low-GLY score groups were primarily related to fatty acid
metabolism, tryptophan metabolism, butyrate metabolism, and other metabolic pathways
(Figure 3C). Immune-related pathways, such as antigen processing and presentation and
primary immunodeficiency, are commonly enriched pathways in both high- and low-TME
score groups (Figure 3D).
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Figure 3. Evaluation of the prognostic power of GLY score and TME score. (A) KM survival analysis of
the GLY score groups. The yellow and blue lines represent the high and low GLY scores, respectively.
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(B) The KM survival curve shows that patients with a low TME score in the training dataset had
significantly shorter OS than those with a high TME score (p < 0.001). (C) GSEA demonstrated that
the hallmark significantly enriched pathways. The high GLY score is located on the left of the origin
of the x-axis, and the low GLY score is located on the right of the x-axis. (D) The hallmark pathways
were significantly enriched in both the low- and high-TME score groups. The high TME score is to
the left of the origin of the x-axis, whereas the low TME score is to the right. (E) The t-SNE plot of all
18,985 cells collected from 2 individuals with primary liver cancer. Each color represents one cell type.
(F) t-SNE plots colored according to GLY score. (G) Differential expression of 15 glycosylation-related
prognostic genes in all cell types.

Notably, we used the t-SNE method on single-cell data from HCC biospecimens from
two individuals, and the GLY score was generated for each cell subset to further verify
the glycosylation-related gene scores in the HCC single-cell transcriptomic landscape.
Using known marker genes and published annotations from the literature, we identified
epithelial cells (CD24, KRT19, EPCAM), malignant cells (TTR, AMBP, APOH), fibroblasts
(ACTA2, RGS5, TAGLN), endothelial cells (PECAM1, VWF, CDH5), macrophages (CSF1R,
CPVL, CD68), mast cells (GATA2, KIT, CPA3), plasma B cells (MZB1, JCHAIN, IGHG1),
B cells (MS4A1, BANK1, TNFRSF13C), NK cells (NKG7, GZMK, PRF1), and T cells (CD3G,
CD2, CD3D) (Figure 3E). We found higher GLY scores in malignant cells and epithelial
cells than in immune cells (Figure 3F). Next, we sought to confirm in which cell types
the 15 prognosis-related genes were highly expressed. We discovered that all of these
prognosis-related genes were mainly expressed in tumor-related cells (such as malignant
and epithelial cells) at the single-cell level, but their expression levels in immune cells were
very low (Figure 3G).

3.4. Construction and Prognostic Value Assessment of the GLY/TME Classifier

To better explore the association between immune-infiltrating cells and glycosylation-
related prognostic genes in the TME, we analyzed the relationship between glycosylation-
related prognostic genes and three immune-infiltrating cells. The correlation heatmap
showed that, except for the CHP1 gene, the remaining glycosylation-related prognostic
genes were significantly positively associated with each other, while the three types of
immune cells were negatively associated with these prognostic genes, indicating that the
GLY score was generally associated with the TME (Figure 4A). Based on the significant
correlation between cells with high immune infiltration and prognostic genes related to
glycosylation modification, we combined the GLY score and the TME score for prognostic
evaluation. The median values were used to divide the dataset into the GLYhigh/TMElow,
GLYlow/TMEhigh, GLYhigh/TMEhigh, and GLYlow/TMElow groups. Survival analysis of the
four subgroups further demonstrated that the GLYhigh/TMElow subgroup had the worst
prognosis, and the GLYlow/TMEhigh subgroup had the best prognosis (Figure 4B).

In addition, to better understand whether the GLY/TME scoring system could effec-
tively predict the prognosis of individuals with HCC, ROC curves of the two subgroups
with the most obvious difference (GLYhigh/TMElow and GLYlow/TMEhigh) were plotted.
The AUC values were 0.759, 0.777, and 0.678 at 1, 3, and 5 years, respectively, revealing
that this scoring system was a good predictor of survival (Figure 4C). To further improve
the GLY/TME scoring system, we combined the GLYhigh/TMEhigh and GLYlow/TMElow

subgroups with small prognostic differences into a mixed group, resulting in the GLY/TME
classifier containing three types. Survival analysis showed a significant difference in prog-
nostic status between the three types, with the GLYlow/TMEhigh subgroup remaining the
group with the longest OS (Figure 4D).
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 Figure 4. Construction and evaluation of the GLY/TME classifier. (A) Heatmap showing the correla-
tions between 15 glycosylation-related prognostic genes and three prognostic-related immune cells.
(B) Utilizing KM curves and the log-rank test, the prognoses of patients in the four subgroups were
compared (GLYlow/TMEhigh, GLYlow/TMElow, GLYhigh/TMEhigh, and GLYhigh/TMElow). (C) The
AUCs of ROC curves according to the GLY/TME classifier for predicting survival of HCC patients
in the training cohort. (D) KM survival curves in the training cohort according to the GLY/TME
classifier divided into three different subgroups (GLYlow/TMEhigh, mixed, and GLYhigh/TMElow).
Log-rank test, p < 0.001. (E) Multivariate Cox regression analysis of the GLY/TME classifier in the
training cohort. (*** p < 0.001).
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In the training cohort, the prognostic and predictive significance of the GLY/TME classifier
was conducted by univariate and multivariate Cox regression analyses (Figures 4E and S2A).
And the results showed that the GLY/TME score was linked to OS in univariate Cox regression
analysis and strongly linked to prognosis (p < 0.001), demonstrating that the GLY/TME scoring
system was able to independently anticipate the clinical outcomes of individuals with HCC.
Furthermore, the predictive value of the GLY/TME classifier was verified in the GSE14520
cohort (Figure S2B).

3.5. Different Underlying Molecular Mechanisms in the GLY/TME Classifier

The “WGCNA” package was used to detect the signature genes of four subgroups.
Outlier samples were first eliminated, and then the remaining samples were clustered. The
scale-free R2 is 0.9 when β is set to 11, forming a scale-free network (Figure 5A). Next,
eight coexpression modules were acquired via dynamic tree cutting and represented a
clustering dendrogram (Figure 5B). A heatmap represents the eigengene adjacency of each
module (Figure 5C). Furthermore, the correlation between the modules and the four cohorts
was also measured. Among them, the blue module was significantly positively correlated
with the GLYhigh/TMElow subgroup and negatively correlated with the GLYlow/TMEhigh

subgroup. Thus, we selected the signature genes of this module and performed enrichment
analysis and showed that the genes in this module were primarily enriched in the cell cycle
processes, indicating that the GLYhigh/TMElow subgroup was very strongly enriched in
cell-cycle- and proliferation-related genes (Figure 5D).

To explore the biological features specific to the three subgroups, we performed
GSEA on the DEGs utilizing the “fgsea” package (Figure 5E). The results showed that the
GLYhigh/TMElow subgroup was mainly involved in the cyclic nucleotide catabolic process,
DNA strand elongation involved in DNA replication, adipocyte proliferation, meiosis I cell
cycle process, epithelial-to-mesenchymal transition, regulation of vasculature development,
transcription by RNA polymerase I, DNA synthesis involved in DNA repair, regulation of
transcriptional elongation from the RNA polymerase II promoter, and positive regulation
of the G2/M phase transition of the cell cycle. Simultaneously, in the GLYlow/TMEhigh

subgroup, the enriched pathways mainly included negative regulation of the cellular
macromolecular biosynthesis process, mitotic G2 DNA damage checkpoint signaling,
negative regulation of mitotic cell cycle, and other processes, which were antagonistic to
the biological processes of the GLYhigh/TMElow subgroup.

To further explore the immune status of the three subgroups in the GLY/TME classifier,
we therefore profiled the immune activity profiles of samples from patients with three types
of HCC by using the TIP server algorithm. Finally, we visualized differences in immune-
related pathways between the three subgroups (Figure 5F). Patients in the GLYlow/TMEhigh

subgroup had higher recruitment scores for CD8 T cells, NK cells, T cells, and Th1 cells
than those in the GLYhigh/TMElow subgroup.
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Figure 5. Identification of signature genes and particular biological mechanisms. (A) WGCNA was
used to analyze the network topology for various soft-threshold powers. The right panel shows
the effect of soft-threshold power on average connectivity, while the left panel shows the effect of
soft-threshold power on the scale-free topology fit index. (B) Dendrogram (cluster tree) according
to different metrics. (C) Heatmap of correlations between module signature genes and molecular
phenotypes. (D) Pathway enrichment analysis of module genes in the GLYHigh/TMElow subgroup.
(E) FGSEA showed the enriched BP pathways in the GLYhigh/TMElow subgroup, GLYlow/TMEhigh

subgroup, and mixed subgroup. (F) TIP database was used to visualize the variation in immune
pathways across the three subgroups.
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3.6. High GLY Scores Were Associated with TME

The next step was to determine the key players in the TME that contribute to gly-
cosylation activity. Based on single-cell transcriptome data (GSE166635), we previously
determined 10 cell subsets, including NK cells, plasma B cells, mast cells, macrophages,
endothelial cells, B cells, fibroblasts, malignant cells, T cells, and epithelial cells. The GLY
score is more highly expressed in malignant cell subsets than in other cells. Based on
this, we divided malignant cell subsets into groups according to the GLY score: GLYhigh

malignant cells, GLYmedian malignant cells, and GLYlow malignant cells. To characterize
the cell-to-cell interactions of the three groups of GLY score malignant cells with other cell
subsets, we used “CellChat” to infer possible cell-to-cell interaction signals as a function of
ligand–receptor (LR) signaling. We detected boosted interactions between malignant and
other cells in the high GLY score group, and the results showed that GLYhigh malignant cells
communicate extensively with fibroblasts, endothelial cells, and macrophages, followed by
GLYmedian malignant cells, whereas GLYlow malignant cells have no interaction information
with other cells (Figure 6A). This finding indicates that GLYhigh malignant cells have the
potential to contribute to glycosylation-modified phenotypes.

We then examined the signal network of high and low GLY scores to identify individual
LR pairs between malignant cells and other cells. Among them, fibroblasts, endothelial
cells, and macrophages targeting GLYhigh malignant cells work together through certain
tumor-promoting signaling pathways, including the NAMPT-(ITGA5 + IAGB1), SPP1-
(ITGA5 + ITGB1), NAMPT-INSR, and TGFB1 (ACVR1B + TGFBR2) signaling pairs, which
interact to mediate uncontrolled tumor proliferation and growth (Figure 6B). The cell
adhesion signaling pathway SPP1, the chemokine-related signaling pathways CCL15 and
CCL16, the vascular endothelial growth factor VEGF signaling pathway, and the midkine
(MDK) signaling pathway were the major signaling factors secreted by malignant cells with
high GLY scores to other cell types (Figure 6C). Among them, the MDK signaling pathway
has been reported as having a vital function in HCC occurrence and growth [30]. In
addition, malignant cells with high GLY scores preferentially send signals to macrophages,
endothelial cells, and fibroblasts through the SPP1 signaling pathway, while malignant
cells with high GLY scores receive this signal mainly through macrophages (Figure 6D).
In conclusion, GLYhigh malignant cells may have more communication with immune cells
and stromal cells in the TME than GLYlow malignant cells.

3.7. Therapy Prediction Based on the GLY/TME Classifier

TIDE analysis was employed to anticipate the response to immunotherapy of individ-
uals with HCC in GLY score subgroups and TME score subgroups in order to investigate
the function of the GLY/TME classifier in immunotherapy. According to the results, indi-
viduals with low GLY scores responded more favorably to immunotherapy than those with
high GLY scores, suggesting that they may benefit more from immunotherapy. In addition,
with respect to the TME score subgroups, individuals with high TME scores benefited from
immunotherapy (Figure 7A). Moreover, 34% of GLYlow/TMEhigh patients responded to
immunotherapy, compared to 25% and 29% in the GLYhigh/TMElow and mixed groups, re-
spectively, with a decreasing trend (Figure 7B). In addition, Proteomap was used to visually
reveal the underlying mechanism by which the GLY/TME classifier predicts treatment re-
sponse in patients receiving immunotherapy. By setting |logFC| > 0.5 and adj.pval < 0.05,
we screened the differentially upregulated genes among the GLYlow/TMEhigh and the
GLYhigh/TMElow subgroups and the differentially upregulated genes between the im-
munotherapy response and non-response subgroups.
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Figure 6. Differences in cell-to-cell communication between malignant cells with different GLY scores
and cells within the TME. (A) Number and strength of cell-to-cell interactions. (B) LR pairs from
immune cells and stromal cells to malignant cells. (C) LR pairs from malignant cells to immune cells
and stromal cells. (D) SPP1 signaling pathways between GLYhigh malignant cells and immune cells
and stromal cells in HCC.
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Figure 7. Prediction of treatment response based on the GLY/TME classifier. (A) The left panel repre-
sents the comparison of glycosylation-related gene scores. The right panel indicates the comparison of
tumor microenvironment scores (true, responders; false, non-responders). (B) Different percentages
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of immunotherapy responders in subgroups based on the GLY/TME classifier (true, non-responders).
responders; false, (C) Functional analysis of GLYlow/TMEhigh patients receiving immunotherapy.
The left is based on upregulated genes, and the right is based on downregulated genes. The size of
each small polygon, representing a KEGG pathway, is correlated with the proportion of subgroups.
(D) Functional analysis of patients responding to immunotherapy. The left is based on upregulated
genes, and the right is based on downregulated genes. The size of each small polygon, representing a
KEGG pathway, is correlated with the proportion of subgroups. (E) Correlation analysis between
model gene and immune checkpoint.

Common pathways were compared between the GLYlow/TMEhigh subgroup and the
immunotherapy response subgroup. Surprisingly, the Proteomap blocks of upregulated
and downregulated genes were quite similar in the GLYlow/TMEhigh (Figure 7C) and
immunotherapy response groups (Figure 7D). In untreated HCC patients, the GLY/TME
classifier features may be useful for predicting patient response to therapy. The two
groups were also compared for immunological checkpoint expression, as immunological
checkpoints are critical for effective immunotherapy. As shown in the bubble map, 26 genes
involved in immune checkpoints were correlated with the model genes (Figure 7E). PLOD2,
ADAMTS5, ST6GALNAC4, DYNC1LI1, HSP90AA1, and CAD were significantly correlated
with immune checkpoint genes.

3.8. Benefit of Therapeutic Agents in GLYlow/TMEhigh and GLYhigh/TMElow Subgroups

A drug sensitivity analysis was performed to analyze the sensitivity to chemotherapeutic
agents of GLYlow/TMEhigh patients in the GLY/TME score classifier versus GLYhigh/TMElow

patients. The results showed that GLYhigh/TMElow patients were more sensitive to Axitinib,
PI3K inhibitor (AZD6482), ERK inhibitor (VX-11e), and PLK inhibitor (BI-2536) and had better
drug efficacy. In contrast, GLYlow/TMEhigh patients were more sensitive to Zoledronate,
Tankyrase inhibitor (XAV939), WNT inhibitor (WNT-C59), and Vorinostat (Figure 8A–H).
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4. Discussion

Proteomics-based precision medicine is expanding quickly [31]. With the rapid growth
of several omics, precision medicine strategies that take into account individual differences
have become a promising approach to improve survival. Glycosylation is a vital component
of protein posttranslational modification and plays important roles in metabolism, immune
response, and malignancy [32–36]. A variety of enzymes, including glycosyltransferases
and glycosidases, have a tight and dynamic function in glycosylation regulation [11].
However, most studies have focused on a single glycosyltransferase [37–39], and the
overall metabolic and TME landscape characteristics mediated by signaling molecules in
integrated glycosylation-related pathways are not fully understood. Therefore, gaining an
understanding of the molecular mechanisms associated with glycosylation modifications
from metabolic and tumor microenvironmental landscape features will help to improve
our understanding of the function of glycosylation modifications in HCC and uncover new
potential markers.

Aberrant glycosylation has been recognized as a novel cancer hallmark because of
its crucial function in tumor biology [40]. At the same time, metabolic changes in tumor
cells influence the activation, identification, proliferation, and cytotoxic capabilities of
tumor-associated immune cells, helping them to evade immune surveillance [41,42]. Tumor
cells alter the tumor microenvironment and help to create an immunosuppressive TME
by restricting nutrients availability and by releasing metabolites, chemokines, and growth
factors that reprogram the normal cell function and metabolism in TME [43].

Increased oxygen and glucose consumption by hyperproliferative tumor cells may
deprive the TME of nutrients required by immune cells, reduce T cell cytotoxicity and
effector activity, and cause the accumulation of immunosuppressive metabolites in the
TME [44]. Shi et al. demonstrated that increased glucose uptake by M2-like tumor-
associated macrophages (M2-like TAMs) promoted O-GlcNAcylation of cathepsin B via
O-GlcNAc transferase (OGT), which increased mature cathepsin B levels in macrophages
and its secretion into the TME, ultimately promoting cancer metastasis and chemore-
sistance [45]. Taken together, these findings suggest that metabolic reprogramming in
cancer cells, including HCC, enhances the growth advantage of tumor cells and has sig-
nificant effects on the TME and immune cells, promoting immunological escape [46–48].
Among these, the N-linked glycosylation alterations of PD-L1 enhance the evasion of
T-cell-mediated immune responses and preserve its interaction with PD-1 [49].

Cascio et al. found that mucin 1 (MUC1) can bind to cell surface lectins such as
CD169 through its surface modified glycosylation motifs. Furthermore, macrophages are
significantly activated by the binding of CD169 to sialylated MUC1, thereby interfering with
cancer immune surveillance and ultimately promoting tumor growth [50]. Nevertheless,
few investigations have combined glycosylation modifications and TME signatures to
predict HCC prognosis and therapeutic response. Here, we concentrate on the function
of glycosylation-related genes and attempt to further evaluate the effects of glycosylation
modification combined with the TME signature on the prognosis and immunotherapy
response prediction of individuals with HCC by establishing a GLY/TME classifier using a
large-scale HCC cohort.

Clinical efficacy and patient prognosis were better in the GLYlow/TMEhigh subgroup.
The prognostic capability of the classifier was further demonstrated in an independent co-
hort (GSE14520), demonstrating its broad applicability in cancer patients. This may indicate
some common characteristics of host antitumor immune responses in glycosylation-related
TMEs. Interestingly, among the 603 selected differentially expressed glycosylation-related
genes, 12 genes included in the glycosylation-related scoring system were adverse prog-
nostic factors and may be responsible for the metabolic reprogramming of tumorigenesis.
Emerging research evidence has led to a growing recognition that aberrantly glycosylated
proteins are regulators of malignant phenotypes in cancer cells [51]. Based on numerous
studies showing that glycosylation modification contributes to the malignant phenotype of
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various cancer types, the 12 genes associated with glycosylation modification have been
laterally identified as adverse prognostic factors.

Cancer-related signaling pathways and extracellular matrix (ECM)–receptor interac-
tion mechanisms were substantially enriched in patients with high glycosylation scores,
suggesting that enhanced glycosylation in the TME of HCC is beneficial for cancer progres-
sion. The N-glycosylation of integrin alpha 2 (ITGA2) affects cell–ECM adhesion, which
promotes cancer metastasis by selectively adhering to ECM proteins [52]. Furthermore,
our investigation showed a negative relationship between GLY score and TME score in
the training cohort, which may indicate that abnormal glycosylation suppresses the antitu-
mor immunological response. These outcomes all indicate the tumor biological value of
the GLY/TME classifier. In addition, negative regulation of the cellular macromolecular
biosynthesis process, mitotic G2 DNA damage checkpoint signaling, negative regulation
of the mitotic cell cycle, and other biological processes connected to the inhibition of cell
growth and proliferation progression were enriched in the GLYlow/TMEhigh subgroup.
This finding may elucidate the underlying mechanisms by which the GLY/TME classifier
predicts prognosis and the immunotherapy effect.

HCC is a highly heterogeneous malignant tumor, and a more accurate classification
system is needed to meet the needs of individualized treatment. Aiming at the tumor-
specific targets of glycosylation modification, previous studies have focused on cancer
diagnosis and prognostic stratification of comprehensive glycosylation regulatory signals
and the application effect of models for immunotherapy, rarely considering their combina-
tion with glycosylation modification. A scoring system based on the immune infiltration
characteristics of the TME has been established to stratify the prognosis of tumor patients.
Zhou et al. identified a novel glycosyltransferase predictive signature as an independent
poor predictor of OS in HCC [37]. Tang et al. established an HCC diagnostic model depen-
dent on glycosylation regulation of relative expression orderings (REOs). The research team
created a glycoscore system that can evaluate the various glycosylation characteristics of
patients in the independent validation and discovery groups. The scoring system was also
effective in predicting the treatment response to sorafenib, transarterial chemoembolization
(TACE), and anti-PD-1 therapy with different glycosylation patterns [53]. Lv et al. estab-
lished a model according to glycosyltransferase characteristics to predict breast cancer
prognosis and response to immunological checkpoint inhibitors and verified that the high-
risk group in comparison was associated with low OS, weak immune effect, high chemical
sensitivity, and different CNV mutation patterns [38]. Sha et al. showed that glycosyl-
transferase (GT)-based GT score was associated with GT expression and neuroblastoma
(NB) prognosis, disialoganglioside phenotype, and immune infiltration, providing new
evidence for predicting NB prognosis and response to immunotherapy [39]. By using in
silico approaches, Caputo et al. identified hub genes and transcription factors including
AURKA, CCNB1, CDK1, RRM2, and TOP2A as promising candidates for potential drug
testing [54]. Huang et al. found that POLE2, GABARAPL1, PIK3R1, NDC80, and TPX2
play critical roles as potential biomarkers to enhance the immunotherapeutic role of PD-L1
inhibitors [55]. These novel therapeutic approaches have the potential to be tested in a
specific cohort of patients with HCC following successful experimental validation.

In contrast, our study established a glycosylation-related score by integrating signal-
ing molecules in glycosylation–related pathways and established a TME immune infil-
tration score by screening immune-infiltrating cells related to a good prognosis. Three
major categories were employed to stratify HCC patients’ prognosis. Among them, the
GLYlow/TMEhigh subgroup had the longest survival, showing excellent prognostic pre-
diction performance. Regarding immune infiltration, the GLYlow/TMEhigh subgroup had
elevated recruiting values for CD8 T, NK, T, and Th1 cells, indicating that this group of
patients had good antitumor immunity, which was consistent with the expected effect,
suggesting the feasibility of the model to anticipate the prognosis of HCC patients.

We further analyzed the main cell types enriched by the glycosylation score at the
single-cell level, and the results showed that the enrichment of tumor malignant epithelial
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cells was the highest. The subgroup was divided into three cell types according to the
GLY score: GLYhigh malignant cells, GLYmedian malignant cells, and GLYlow malignant
cells. Cell communication analysis was conducted to further discover the interaction
between this subgroup and other cell groups in the TME. Interestingly, the communication
between GLYhigh malignant cells and fibroblasts, endothelial cells, and macrophages was
significantly enhanced, followed by GLYmedian malignant cells, whereas GLYlow malignant
cells had no interaction information with other cells. Combined with the score enrichment
degree of each cell subset above, these results indicate that GLYhigh malignant cells are a
significant target of glycosylation modification.

Xu et al. found that PLOD2 expression was positively correlated with 15 immune check-
point genes in patients with stomach adenocarcinoma (STAD) [56]. For the first time, based
on analysis, we found that PLOD2 expression was positively correlated with 12 immune
checkpoint genes (BTN2A1, BTN2A2, CD209, CD276, CD47, CD80, CD86, CTLA4, HAVCR2,
SIRPA, TIGIT, VYCN1) in patients with HCC.

CHP1 has been identified as an important regulator of endoplasmic reticulum (ER)
glycerolipid synthesis and assists in the complete glycosylation of Na+/H+ exchanger
isoform 1 (NHE1) [57,58]. In recent study, Xi et al. employed transcriptome expression data
from the hepatocellular carcinoma cancer genome map (TCGA-LIHC) to develop a model
consisting of 5 NK cell-related genes (IL18RAP, CHP1, VAMP2, PIC3R1, PRKCD), which
divided patients into high- and low-risk groups based on their risk score [59].

Although our study showed encouraging predictive results, there are still some limita-
tions. First, we used bioinformatics methods to explore the heterogeneity risk predictive
ability of glycosylation modification and TME infiltration in HCC. Future collection of
a larger sample size is needed to improve the prediction efficiency and accuracy. Sec-
ond, more laboratory tests are needed to validate the precise biological processes of the
discovered genes. In conclusion, the analysis of glycosylation changes and immune cell
infiltration in the TME may help to predict prognosis and response to therapy, which may
be a promising tool for prognostic evaluation and patient stratification in future medical
treatment of the disease.

5. Conclusions

In conclusion, our results suggest that the model constructed with glycosylation (GLY)
and the tumor microenvironment (TME) can well predict the prognosis of HCC patients.
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