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Received: 28 November 2023

Revised: 29 December 2023

Accepted: 2 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Review

Interaction and Metabolic Pathways: Elucidating the Role of Gut
Microbiota in Gestational Diabetes Mellitus Pathogenesis
Lindong Mao 1,†, Biling Gao 1,†, Hao Chang 1 and Heqing Shen 1,2,*

1 State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen
University, Xiamen 361102, China; maolindong@stu.xmu.edu.cn (L.M.); gaobiling@stu.xmu.edu.cn (B.G.);
changhaomph@stu.xmu.edu.cn (H.C.)

2 Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University,
Xiamen 361003, China

* Correspondence: hqshen@xmu.edu.cn
† These authors contributed equally to this work.

Abstract: Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy
with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut
microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial
taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus.
These changes, detectable in the first trimester, hint as the potential early markers for GDM risk.
Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile
acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin
responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. More-
over, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational
health implications. With the advance of multi-omics approaches, a deeper understanding of the
nuanced microbiota–host interactions via metabolites in GDM is emerging. The reviewed knowledge
offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies
in GDM diagnosis, management, and prevention.
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1. Introduction

Gestational diabetes mellitus (GDM) refers to glucose intolerance that results in hy-
perglycemia during pregnancy [1]. GDM often occurs at 24–28 weeks of gestation, but
can also present earlier [2]. The pathogenesis of GDM is complex, and may be associated
with obesity, insulin resistance, β-cell dysfunction, etc. [3]. The global prevalence of GDM
is 13.6% and is kept increasing [4]. GDM increases the risks of maternal and neonatal
complications [5]. Meta-analyses have shown that approximately 35% of women with
GDM will develop type 2 diabetes mellitus (T2DM) after delivery [6].

Increasing evidence has demonstrated that gut microbiota is closely related to host
metabolic health and may influence the development of various metabolic diseases, such
as obesity, metabolic syndrome and T2DM. Gut microbiota dysbiosis has been considered
as an important environmental factor leading to host metabolic abnormalities [7]. Gut mi-
crobes and their metabolites can affect host health by regulating host energy metabolism [8],
lipid metabolism [9], bile acid homeostasis [10] and inflammatory responses [11]. Particu-
larly during pregnancy, gut microbial imbalance has also been associated with GDM. For
example, reductions in probiotics and some metabolic activity alterations of gut microbiota
have been observed in GDM patients [12]. These findings suggest that modulating and
optimizing gut microbial composition may represent a novel intervention strategy for
GDM. However, the underlying mechanisms still need to be elucidated.
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Recently, various omics technologies have applied to improve the in-depth understand-
ing of relationship between gut microbiota and host metabolism. Microbiome techniques
such as 16S rRNA gene sequencing have been widely used to portray the composition and
structural features of gut microbiota [13]. Meanwhile, metabolomics as a technology of
detecting all small molecule metabolites in biological samples, has been used to detect the
metabolic features of the hosts’ gut microbes [14]. In particular, microbial metabolites such
as short-chain fatty acids (SCFAs) and bile acids (BAs) have been evidenced to influence
host physiological status by blood circulating or neural pathways, thus regulating the host
health [15]. Recent studies employing quantitative metabolomics analyzed gut microbial
metabolites and revealed the metabolites’ activity and function correlated with the host,
which greatly advanced our knowledge of host–microbiota interactions [16–18].

Therefore, the integration of microbiome, metabolome as well and other omics ap-
proaches will facilitate an in-depth understanding of gut microbial impacts on host health
and the development of microbiota-related biomarkers. In the present review, we per-
formed a literature search to identify relevant studies on the role of gut microbiota and
microbial metabolites in GDM. The search was conducted in May 2023 across the PubMed,
Scopus, Web of Science, and MEDLINE databases. For the section investigating the links
between gut microbiota and GDM, search terms included “gut microbiota”, “gestational
diabetes mellitus”, “metabolic disorders”, “metabolomics”, “16S rRNA sequencing”, and
“metagenomics”. For the microbial metabolites section, keywords used were “gestational di-
abetes mellitus”, “microbiota”, “metabolite”, “SCFAs”, “trimethylamine N-oxide”, “BAs”,
and “amino acid metabolites”. The upcoming section on potential microbial-based in-
terventions will utilize keywords such as “Gestational diabetes mellitus”, “Probiotic OR
Prebiotic” and “Fecal microbiota transplant” to identify relevant prevention and treatment
studies. We will focus on the results from the most significant studies dealing with the role
of microbiota-derived metabolites in GDM.

2. Gut Microbiota’s Role in Gestational Diabetes Mellitus

Studies have highlighted the distinctive changes in gut microbiota in normoglycemic
pregnancy. During the healthy pregnancy, a series of physiological changes occurred in
hormones, immunity, and metabolism to support the well-being of both mother and devel-
oping fetus [19] Among these changes, a notable shift in insulin sensitivity, termed insulin
resistance is observed [20]. Recent research has illuminated a potential nexus between
insulin resistance during pregnancy and alterations in the gut microbiota composition [21].
Koren et al. [22] demonstrated the extensive remodeling of gut microbiota throughout
healthy pregnancy. In a prospective cohort of 91 Finnish women, 16S rRNA sequencing re-
vealed the first-trimester microbiota composition was similar to the non-pregnant controls.
In contrast, the third-trimester microbiota was characterized by the increased interpersonal
variability, reduced richness, and increased Proteobacteria. The third-trimester microbiota
promotes metabolic changes that may support fetal growth but resemble metabolic syn-
drome. In summary, pregnancy induces the dramatic changes in microbiota of resembling
dysbiosis, which is an inflammatory state.

Recent systematic reviews and meta-analyses of available clinical evidence suggest that
metformin (MET) exposure is associated with beneficial modulation of the gut microbiome
in cohorts with metabolic disease [23]. In a comparative study evaluating the effects
of metformin and insulin (INS) on health parameters in GDM, significant differences
were observed [24], and the study found changes in the composition of gut microbiota
in the MET group, including a decrease in Firmicutes and Peptostreptococcaceae, and an
increase in Proteobacteria and Enterobacteriaceae. Furthermore, metabolic profiling of the gut
microbiota in the MET group revealed a prevalence of pathways associated with propionate
degradation and ubiquinol biosynthesis. Mouse experiments showed modulation of the
gut microbiota (by an increase in the Akkermansia spp. population) may contribute to the
antidiabetic effects of MET, thereby providing a new mechanism for the therapeutic effect of
MET in patients with T2D [25]. These findings highlight the diverse impact of MET, which
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extends beyond glucose metabolism to include significant effects on the composition and
metabolic functions of gut microbiota. This provides insights into the potential systemic
health implications of the drug [26].

Beneficial commensals refer to bacteria that normally reside in the human body,
especially the gut, and confer health benefits to the host. Studies have shown that certain
commensal bacteria like Bifidobacterium and Lactobacillus play important roles in maintaining
gut barrier integrity, immune homeostasis, and metabolic health [27,28]. Specifically, the
loss of beneficial commensals such as Bifidobacterium and Lactobacillus species leads to
the disruption of gut barrier integrity and metabolic functions. In contrast, opportunistic
pathogens are microbes that are normally harmless but can cause infectious diseases when
the host immunity is compromised [29,30]. Typical opportunistic pathogens that flourish
in dysbiosis comprise of the Enterococcus and Staphylococcus species. These microorganisms
encourage inflammation, interrupt gut permeability, and further contribute to insulin
resistance (Figure 1).
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Figure 1. Impacts of gut microbiota and metabolic changes on gestational diabetes mellitus and
long-term health outcomes.

2.1. Early Pregnancy: Gut Microbiota, Host Overweight, and GDM Predection

In a prospective cohort of 91 Finnish women, Koren et al. [22] demonstrated the first-
trimester microbiota composition was similar to the non-pregnant controls; the study had a
small sample size and limited geographic/ethnic diversity, but provided initial evidence
that early pregnancy microbiota may resemble normal non-pregnant microbiota. Gomez-
Arango [31] et al. performed a cross-sectional study in 2016 among 70 overweight and
obese pregnant women in early gestation (mean 16 weeks) in Australia. Compared to over-
weight women, the obese cohort exhibited increased Actinobacteria, decreased Tenericutes,
and positive correlations between BMI and Lachnospiraceae/Rikenellaceae. The moderate
sample size was limited regionally. Results indicated obesity may lead to early pregnancy
dysbiosis [32]. In a study by Ma et al. [33] with fecal samples obtained from 98 GDM
and 98 matched normoglycemic pregnant women at 10–15 weeks of gestation, GDM was
associated with lowered alpha diversity, increased beta diversity, increased Eisenbergiella,
Tyzzerella, Lachnospiraceae NK4A136, and decreased Parabacteroides, Megasphaera, and Di-
alister. The large sample size has well characterized the metabolism function of GDM
versus normal pregnancy. Functional analysis revealed up-regulation of starch and sucrose
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metabolism pathways and down-regulation of lysine biosynthesis and nitrogen metabolism
pathways in GDM. Mokkala et al. [34] conducted a prospective study in Finland in 2017
comprising 75 pregnant women. Fecal samples were collected at a mean of 12.9 weeks
of gestation and gut microbiota was profiled by 16S rRNA gene V4 region sequencing.
Compared to women who did not develop GDM, those with subsequent GDM exhibited a
significantly elevated relative abundance of Ruminococcaceae.

For summary, the early pregnancy microbial changes (alpha/beta diversity shifts,
specific taxa abundance changes) associate with later GDM occurrence. In particular,
increased Ruminococcaceae has been linked to GDM risk in multiple studies. This provides
a basis for early prediction GDM by using key microbial markers. Larger, multicenter
prospective studies constructing and validating microbiome-based GDM prediction models
are warranted. This could enable the first trimester GDM risk assessment based on gut
microbiota patterns, facilitating early prevention and intervention.

2.2. Second Trimester of Pregnancy: Gut Microbiota, Host GDM, and Metabolomis Pathogensis

Kuang [35] et al. used shotgun metagenomic sequencing to analyze the gut micro-
biota of 43 GDM patients and 81 healthy pregnant women during mid-pregnancy. GDM
patients showed increased abundance of Bifidobacterium and Klebsiella pneumoniae, and
decreased abundance of Alistipes genus, Bifidobacterium genus, and Verrucomicrobia genus
when compared to normal glucose tolerance (NGT) women. Functional prediction anal-
ysis revealed enrichment of lipid and amino acid metabolism pathways in the GDM
group. Liang et al. [36] collected fecal samples from 35 GDM patients and 25 healthy
pregnant women during the second and third trimesters. 16S rRNA gene V4 region
sequencing showed that compared to healthy pregnant women, GDM patients had de-
creased Ruminococcaceae_UCG-002, Ruminococcaceae_UCG-005, Clostridium_sensu_stricto_1,
and Streptococcus, while Bacteroides and Lachnoclostridium were increased. Correlation anal-
ysis found Paraprevotella, Roseburia, Faecalibacterium, and Ruminococcaceae_UCG-002 were
negatively correlated with blood glucose, while Sutterella, Oscillibacter, and Bifidobacterium
were positively correlated with glucagon-like peptide-1 (GLP-1) levels. Additionally, a
model containing 20 gut microbial genera and glucose levels effectively distinguished
between GDM and normal pregnant groups.

Wei [37] utilized 16S rRNA gene sequencing to examine fecal samples from 15 GDM
patients and 18 pregnant women with NGT. The results suggest a higher abundance of
Ruminococcus bromii, Clostridium colinum, and Streptococcus infantis (S. infantis) in GDM
patients in contrast to NGT. Moreover, S. infantis was positively correlated with glucose
levels regardless of BMI adjustments. Wang [38] et al. compared the gut microbiome and
metabolomic profiles between 59 pregnant women with GDM and 48 healthy pregnant
controls. Correlation analysis revealed associations of specific bacterial taxa with blood
glucose levels and fetal physical parameters. Furthermore, network analysis showed inter-
actions between altered gut bacteria and perturbed metabolites involved in carbohydrate
and amino acid metabolism pathways.

Generally, the microbial changes include a notable decrease in taxa typically associ-
ated with beneficial health outcomes and an increase in taxa that may be detrimental [39].
Specifically, the beneficial taxa that are reduced in GDM patients include the following:
Ruminococcaceae_UCG-002: Known for its butyrate-producing capabilities, this bacterium is
essential for maintaining gut health. Ruminococcaceae_UCG-005: Also a butyrate producer,
its diminished levels may adversely affect gut homeostasis and integrity [40] Clostrid-
ium_sensu_stricto_1: Generally considered to confer probiotic benefits, the decline of this
genus could play a role in the dysbiosis state associated with GDM [41]. Streptococcus: Some
species within this genus exhibit anti-inflammatory and immunomodulatory effects, and
their decreasing levels might disrupt the gut environment [42].

Conversely, potentially harmful taxa that are elevated in GDM patients include the
following: Bifidobacterium: Typically beneficial, but in the context of GDM, it may assume a
role that negatively impacts metabolic processes [35]. Klebsiella pneumoniae: A pathogenic
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bacterium, its increased abundance could contribute to gut inflammation and disturbances
in glucose metabolism [43]. Ruminococcus bromii: A starch-degrading microbe whose
heightened levels in GDM could be linked to hyperglycemia [44]. Clostridium colinum:
While some strains are opportunistic pathogens, their precise role in GDM requires further
investigation [34]. Streptococcus infantis: This bacterium’s positive correlation with blood
glucose levels suggests a potential harmful impact in the context of GDM [45].

Taken together, the dysbiosis of the gut microbiome during mid-pregnancy may
impact host energy homeostasis and glucose regulation through modulating microbial
carbohydrate, lipid, and amino acid metabolism. The resulting alterations in hormone
secretion, substrate availability, and nutrient signaling could undermine insulin sensitivity
and pancreatic β-cell function, contributing to hyperglycemia and the pathogenesis of GDM.
Further elucidation of the metabolic activities of gut microbe dysregulated in pregnancy
may reveal novel diagnostic biomarkers and therapeutic targets for GDM.

2.3. Third Trimester of Pregnancy: Gut Microbiota Dysbiosis and Host Postpartum Diabetes Risk

Recent studies by Ferrocino et al. [46] and Crusell et al. [47] have examined changes
in the gut microbiota composition from the second/third trimester to postpartum and
its associations with GDM diagnosis and future diabetes risk. Both found evidence of
gut microbiota dysbiosis in the third trimester in women with GDM compared to normal
glucose tolerant pregnant controls. Metagenomic prediction suggested enrichment of
carbohydrate metabolism and LPS biosynthesis pathways [44]. Specifically, increases in
certain gut microbes like Faecalibacterium, Blautia, Coprococcus, Dorea, and Lachnospiraceae
were observed during pregnancy in women with GDM. In contrast, taxa like Bacteroides
and Collinsella were decreased. Importantly, microbiota dysbiosis persisted postpartum
as well in women with prior GDM [45]. For instance, Crusell et al. found 13 operational
taxonomic units (OTUs) still differentially abundant between prior GDM and normal
glucose regulation groups at ~8 months postpartum. This suggests an enduring impact of
pregnancy-related microbial changes on the post pregnancy maternal diabetes risk.

Notably, specific microbes were linked to glucose metabolism and inflammatory mark-
ers during pregnancy. Higher Faecalibacterium abundance correlated with lower fasting
glucose, while Collinsella positively associated with insulin resistance [44]. Greater Sutterella
related to higher C-reactive protein [44]. Such relationships provide evidence that micro-
biota changes may directly influence GDM pathophysiology. Proposed mechanisms include
microbiota-driven production of metabolites like SCFAs effects on gut barrier integrity,
regulation of inflammatory signaling pathways, and modulation of insulin sensitivity [48].
Further studies are still needed to firmly establish causality between gut dysbiosis and
abnormal glucose metabolism during and after pregnancy.

2.4. Neonatal Impact: Maternal GDM and Neonatal Microbiota

Mothers with GDM can influence the gut microbiota development of infants. Chen [49]
collected fecal samples from 418 mothers (147 with GDM and 271 controls) and their new-
borns were collected and analyzed by 16S rRNA gene sequencing of the V3 region and
metabolomics. Compared to controls, the relative abundance of Firmicutes increased and
Proteobacteria decreased at the phylum level in newborns of GDM mothers. At the family
level, Streptococcaceae was more abundant in the GDM group. Predicted metagenome func-
tional analysis using PICRUSt2 revealed enrichment of pathways related to carbohydrate
and nucleotide metabolism in the GDM group. These findings suggest maternal GDM sta-
tus is associated with alterations in the neonatal gut microbiota and metabolome. Zhu [50]
et al. demonstrated associations between maternal GDM, the neonatal gut microbiota,
and infant BMI at 12 months of age. Analysis of meconium from 120 mother-infant pairs
showed that maternal GDM was linked to reduced microbial diversity and dysbiosis in
neonates. Specific bacterial genera enriched in infants of healthy mothers were negatively
correlated with infant BMI. Furthermore, a co-abundant group of bacteria depleted in
infants born to mothers with GDM mediated over 20% of the association between maternal
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GDM and increased infant BMI. These results suggest that GDM-induced dysbiosis of the
newborn microbiome may contribute to increase BMI in early infancy.

GDM mothers influence the gut microbiota of infants in two different ways, one is
a vertical transmission of microbiota. GDM leads to dysbiosis in maternal microbiota,
which can get transmitted to the infant gut early in life via routes like vaginal delivery
and breastfeeding. GDM infants exhibit reduced microbial diversity and aberrant abun-
dance of bacteria like Bacteroides, Klebsiella, Staphylococcus compared to infants of healthy
mothers [51–53]. Wang et al. [54] found significant modifications in the oral microbiota
of mothers with GDM, characterized by increased Proteobacteria and decreased Firmicutes.
This altered microbiome was reflected in the neonatal gut microbiota as well, evidenced
by analysis of meconium samples. Specifically, neonates born to mothers with GDM
showed increased abundance of Bacteroides, Parabacteroides, Alistipes genera and decreased
Escherichia, Enterococcus, Lactobacillus compared to infants of healthy mothers. Analysis of
umbilical cord blood also found higher Staphylococcus and lower Bifidobacterium in neonates
of GDM pregnancies [55]. The neonatal gut dysbiosis could be influenced by maternal
hyperglycemia, altered nutritional status, weight gain patterns, mode of delivery and other
factors related to GDM pathophysiology [51].

Breast milk plays an important role in the growth and development of infants. Breast
milk can provide the nutrients that babies need, including the complex carbohydrates,
proteins, antibodies, free fatty acids and hormone. Brest milk also provides a wide range of
biological activities and can promote the development and maturity of the infant immune
system, as well as early healthy intestinal colonization [56]. Breast milk oligosaccharides
and glycoproteins, important components of the breast milk glycobiome, selectively enrich
beneficial bacteria in the infant gut microbiome, with studies indicating that GDM can
alter the concentration and glycosylation of these compounds in breast milk, potentially
impacting the gut microbiota composition of offspring [57,58]. Ponzo et al. [53] investigated
the gut microbiota composition of infants born to mothers with GDM. Fecal samples
from 29 GDM infants were analyzed during the 1st week of life. Compared to their
mothers, the infants showed lower microbial diversity and complexity, with dominance of
Actinobacteria and Proteobacteria. The infant microbiota composition was more associated
with early pregnancy maternal diet than late pregnancy diet. Notably, maternal saturated
fat intake was inversely correlated with Rikenellaceae and Ruminococcus abundance in
infants. Breastfed infants harbored higher Bifidobacterium, while formula-fed had increased
Firmicutes diversity. Compared to healthy infants, the GDM infants exhibited dysbiosis
with higher abundance of pro-inflammatory Escherichia and Parabacteroides.

Probiotic intervention in pregnant mothers GDM may foster the development of a
healthy intestinal microbiota in infants [59], which further implied the maternal–infant
transmission. There is research indicating that treatment of GDM significantly lowers
the risk of various adverse pregnancy outcomes, including fetal macrosomia, large-for-
gestational-age births, and gestational hypertension, with some evidence also pointing to
a reduction in perinatal/neonatal mortality and birth trauma. Furthermore, studies on
probiotics for GDM prevention show promising results, including lower GDM diagnosis
rates and reduced birth weights in infants.

Overall, these studies underscore the significant influence of maternal GDM on the
vertical transmission of microbiota and the development of the neonatal gut microbiome.
The observed dysbiosis in infants born to mothers with GDM, influenced both by vertical
transmission and early feeding practices, points to a potential pathway through which GDM
may predispose infants to altered metabolic trajectories and health outcomes later in life,
including obesity, type 2 diabetes, metabolic syndrome, and allergen sensitization [60,61].

In our review, we delineate marked alterations in the gut microbiota composition
of pregnant women with GDM compared to healthy pregnant counterparts (Figure 2),
exploring correlations and potential implications for GDM (Table 1, Figure 1). Notably, we
noted significant shifts in the relative abundance of microbial genera including Roseburia,
Parabacteroides, Fusobacterium, Bacteroides, and members of the Lachnospiraceae family.
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Table 1. Research on gut microbiota and its metabolic impact in GDM studies.

Title Study Type Timing of
Analysis

Country and/
or Ethnicity

Sample Size Main Results

GDM non = GDM Microbial Abundance
and Correlations Inferred Functional

Gut Microbiota Profile in GDM
Patients in Comparison to
Controls (Phylum/Order/

Family/Genus)

Mokkala
et al. [34]

Prospective
cohort study

12.9 weeks
of gestation Finland 15 60

Ruminococcaceae abundance is
positively correlated with

fasting glucose.

Ruminococcaceae may
impede glucose

homeostasis by affecting
inflammation, insulin

signaling, SCFA
production, and
energy harvest.

Genus: Increased abundance of
an unidentified genus of

Ruminococcaceae family in
GDM patients.

Ma et al.
[33]

Nested
case–control

study

10–15 weeks
of gestation

Chinese Han
ethnicity 98 98

Eisenbergiella and Tyzzerella are
positively correlated with

fasting glucose.
Parabacteroides, Parasutterella,

and Ruminococcaceae were
negatively correlated with

fasting glucose.

Predicted enrichment of
sphingolipid metabolism,

starch/sucrose
metabolism pathways

in GDM.
Reduction in lysine

biosynthesis and nitrogen
metabolism pathways

in GDM.

Genus: Higher Eisenbergiella,
Tyzzerella 4, Lachnospiraceae

NK4A136 in GDM group. Higher
Parabacteroides, Megasphaera,
Ruminococcaceae, Eubacterium

in controls.

Gomez
et al. [31]

Cross-
sectional study

mean 16 weeks
of gestation

Australia,
mostly

Caucasian
18

70 (29 over-
weight,

41 obese)—
18 developed

GDM later

The genus Collinsella (phylum
Actinobacteria) was positively

correlated with insulin,
C-peptide, HOMA-IR,

triglycerides, and
VLDL cholesterol.

The genus Coprococcus (family
Lachnospiraceae) was positively

correlated with GIP.
Bacteroidaceae positively and

Prevotellaceae negatively
correlated with ghrelin.

Maternal metabolic
hormones. Increased Actinobacteria.
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Table 1. Cont.

Title Study Type Timing of
Analysis

Country and/
or Ethnicity

Sample Size Main Results

GDM non = GDM Microbial Abundance
and Correlations Inferred Functional

Gut Microbiota Profile in GDM
Patients in Comparison to
Controls (Phylum/Order/

Family/Genus)

Su et al.
[40]

Cross-
sectional study

24–28 weeks
of gestation

Shanghai, China;
Han ethnicity 21 32

Bacteroidetes positively
correlated with 1hPG, FINS,

1hPIN, and HOMA-IR.
Proteobacteria, Actinobacteria,

and Verrucomicrobia negatively
correlated with 1hPG.

Ruminococcaceae UCG014
negatively correlated with

glycemic traits.
Incertae Sedis positively

correlated with FPG and 1hPG.
Akkermansia negatively
correlated with 1hPG.

GDM patients had higher
microbial gene functions
related to amino sugar

and nucleotide
sugar metabolism.
Bacteroides genus

positively correlated with
amino sugar/nucleotide

sugar metabolism.
Controls had higher gene

functions related to
two-component system,

ABC transporters,
and transporters

Phyla: Bacteroidetes higher, and
Proteobacteria, Actinobacteria,

Verrucomicrobia lower in GDM.
Genera: Bacteroides Parabacteroides
higher, Akkermansia Rhodococcus

lower in GDM.

Wang
et al. [54]

Case–control
study

24–28 weeks
of gestation China 59 48

Lachnospiraceae OTUs positively
correlated with glucose levels.

Enterobacteriaceae OTUs
negatively correlated with

glucose levels.

Disturbances in fecal and
urinary metabolites

related to amino acid and
carbohydrate metabolism.

At the family level, there was
increased Lachnospiraceae and

decreased Enterobacteriaceae and
Ruminococcaceae in GDM.

Wei et al.
[37]

Case–control
study

24–28 weeks
of gestation China 15 18 S. infantis positively correlated

with glucose levels. -

GDM patients had increased
Ruminococcus bromii, Clostridium
colinum, and Streptococcus infantis

at genus level compared
to controls.
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Table 1. Cont.

Title Study Type Timing of
Analysis

Country and/
or Ethnicity

Sample Size Main Results

GDM non = GDM Microbial Abundance
and Correlations Inferred Functional

Gut Microbiota Profile in GDM
Patients in Comparison to
Controls (Phylum/Order/

Family/Genus)

Chen
et al. [49]

Cross-
sectional study

24–28 weeks
of gestation China 30 28

Prevotella and Romboutsia
genera negatively correlated

with 2 h glucose in GDM
Aureimonas, Kosakonia species

positively correlated and
Peptostreptococcus negatively

correlated with fasting glucose
in GDM.

Depletion of beneficial
acetate and

lactate-producing bacteria
like Bifidobacterium, and

butyrate-producing
bacteria like Eubacterium
suggests beneficial SCFA

production may be
reduced in GDM.

At the genus level, 54 differentially
abundant taxa identified, with

42 genera depleted in GDM (e.g.,
Prevotella, Romboutsia).

GDM had lower levels of beneficial
bacteria like Bifidobacterium,

Eubacterium, and Prevotella species.
GDM was enriched in Blautia
hydrogenotrophica and some

Corynebacterium,
Lactobacillus species.

Liang
et al. [36]

Case–control
study

Second
trimester China 35 25

Ruminococcaceae_UCG-002,
Ruminococcaceae_UCG-005,

Clostridium_sensu_stricto_1, and
Streptococcus were more abundant

in controls compared to
GDM patients.

Bacteroides and Lachnoclostridium
were more abundant in GDM
patients compared to controls.

Paraprevotella, Roseburia,
Faecalibacterium, and

Ruminococcaceae_UCG-002 were
negatively correlated with glucose.

Ruminococcaceae_UCG-002 was
negatively correlated with HbA1c.

Bacteroides was positively
correlated with glucose.

Sutterella, Oscillibacter, and
Bifidobacterium were positively
correlated with GLP-1 levels.

Paraprevotella, Roseburia,
and Faecalibacterium

negatively correlated
with glucose.

Bacteroides positively
correlated with glucose.
Sutterella, Oscillibacter,

Bifidobacterium was
positively associated

with GLP-1.

At the phylum level, Firmicutes,
Bacteroidetes, Proteobacteria, and

Actinobacteria were the main
phyla in both groups. Firmicutes
and Bacteroidetes decreased and
increased in GDM, respectively.

At the family level,
Ruminococcaceae, Lachnospiraceae,
and Christensenellaceae were more
abundant in NGT. Bacteroidaceae

increased in GDM.
At the genus level,

Ruminococcaceae_UCG-002,
Ruminococcaceae_UCG-005, and
Clostridium_sensu_stricto_1 were
lower in GDM, while Bacteroides

and Lachnoclostridium were
higher in GDM.
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Table 1. Cont.

Title Study Type Timing of
Analysis

Country and/
or Ethnicity

Sample Size Main Results

GDM non = GDM Microbial Abundance
and Correlations Inferred Functional

Gut Microbiota Profile in GDM
Patients in Comparison to
Controls (Phylum/Order/

Family/Genus)

Sun et al.
[62]

Nested
case–control

study

24–28 weeks
of gestation China 120 120

Fecal short-chain fatty acids
like propionate and butyrate
increased more from first to
second trimester in controls

versus GDM patient.

Microbial pathways
related to dietary fiber

fermentation (e.g.,
mannan degradation)

were lower in abundance
in GDM patients.

At the phylum level, the
Firmicutes-to-Bacteroidetes (F/B)
ratio decreased with advancing
gestation in controls but not in

GDM patients.
Depleted in GDM: Ruminococcus

bromii, Alistipes putredinis,
Bacteroides ovatus, Bifidobacterium

dentium. Enriched in GDM:
Escherichia coli, Fusobacterium

mortiferum, Bacteroides massiliensis,
Eubacterium ramulus,
Anaerostipes hadrus.

Ferrocinoo
et al. [46]

Prospective
cohort study

24–28 weeks
of gestation,

38 weeks
of gestation

Italy 41 0

Predicted metagenomic
analysis suggested enrichment

of pathways involved in
carbohydrate metabolism and

LPS biosynthesis in
third trimester.

Faecalibacterium was
significantly associated

with fasting glucose;
Collinsella (directly) and
Blautia (inversely) were

associated with insulin and
with homeostasis model

assessment of insulin
resistance, while Sutterella

was associated with
C-reactive protein levels.

Consistent with this latter
association, the predicted
metagenomes showed a

correlation between those
taxa and inferred KEGG

genes associated with
lipopolysaccharide

biosynthesis

At the phylum level, Firmicutes
increased and Bacteroidetes and
Actinobacteria decreased from

2nd to third trimester.
At the genus level, Blautia,
Butyricicoccus, Clostridium,

Coprococcus, Dorea,
Faecalibacterium, L-Ruminococcus,

and Lachnospiraceae increased,
while Bacteroides, Collinsella and

Rikenellaceae decreased.
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Table 1. Cont.

Title Study Type Timing of
Analysis

Country and/
or Ethnicity

Sample Size Main Results

GDM non = GDM Microbial Abundance
and Correlations Inferred Functional

Gut Microbiota Profile in GDM
Patients in Comparison to
Controls (Phylum/Order/

Family/Genus)

Kuang
et al. [35]

Cross-
sectional study

21–29 weeks
of gestation china 43 81

Gut microbiota abundance
correlated with glucose levels:
Positively correlated genera:

Parabacteroides, Megamonas,
Klebsiella, etc.

Negatively correlated genera:
Alistipes, Bifidobacterium,

Eubacterium, etc.

Inferred functional
characters in GDM:

Increased membrane
transport, energy

metabolism pathways,
LPS and PTS systems;
Decreased amino acid
metabolism pathways.

Order: Decreased Clostridiales
in GDM

Family: Decreased
Coriobacteriaceae in GDM

Genus: Increased Parabacteroides,
Megamonas, and

Phascolarctobacterium in GDM;
Decreased Ruminiclostridium,

Roseburia, Eggerthella,
Fusobacterium, Haemophilus,

Mitsukella, and Aggregatibacter
in GDM

Crusell
et al. [47]

Cross-
sectional study

Analysis in
third trimester
and 8 months
postpartum

Danish white
pregnant women

In
third

trimester
50,

post-
par-

tum 43

In third
trimester157,

postpartum79

Collinsella positively correlated
with fasting glucose (adjusted

for BMI)
Butyricicoccus negatively
correlated with insulin

sensitivity (adjusted for BMI).
Prevotella and Faecalitalea

positively correlated with 2 h
glucose (adjusted for BMI).

Two species of Blautia
were associated with

lower levels of plasma
hsCRP, pointing to the
occurrence of various

subspecies of Blautia with
opposite functionality

related to host
metabolism.

Phylum Actinobacteria higher
in GDM.

Genera Collinsella, Rothia,
Desulfovibrio higher in GDM.

Genera Faecalibacterium,
Bacteroides, Isobaculum lower

in GDM.
17 species-level OTUs

differentially abundant between
GDM and controls.

HOMA-IR: homeostatic model assessment of insulin resistance; VLDL: very low density lipoprotein; GIP: gastric inhibitory polypeptide; 1hPG: 1 h post-glucose; FINS: fasting insulin;
1hPIN: 1 h post-ingestion; FPG: fasting plasma glucose; OTUs: operational taxonomic units; GDM: gestational diabetes mellitus; HbA1c: hemoglobin A1c; GLP-1: glucagon-like
peptide-1; LPS: lipopolysaccharides; BMI: body mass index; SCFA: short-chain fatty acids; ABC transporters: ATP-binding cassette transporters; KEGG: Kyoto Encyclopedia of Genes
and Genomes; PTS: phosphotransferase system; hsCRP: high-sensitivity C-reactive protein.
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Figure 2. Changes in GDM and healthy pregnancy gut microbes (genera) [32–37,39,40,46,49,50,54].

3. Microbial Metabolites in GDM

The gut microbes play pivotal roles in the catabolism of dietary fibers, proteins, and
carbohydrates, with the capacity to ferment these macronutrients into short-chain fatty
acids (SCFAs) such as propionate, butyrate, and acetate. SCFAs, generated from the
fermentation of dietary fibers by gut microbes, provide energy to intestinal epithelial
cells and shape immune responses [63]. Amino acid metabolites like indoles and phenyl
derivatives influence neurotransmitter synthesis and brain function [64]. Bioactive amines
including histamine and putrescine modulate immune reactions [65]. Lipid metabolites
such as short-chain fatty acid amides enhance gut barrier function [59]. Secondary bile
acid metabolites like deoxycholic acid suppress gut inflammation [60]. The production of
vitamins especially vitamin K and B vitamins by gut microbes is also critical for nutritional
absorption. SCFAs, along with other metabolic byproducts, furnish the host with essential
energy and metabolites, which have significant modulatory effects on the host physiology
and health [66,67]. Through the gut–brain axis, these microbial metabolites extensively
impact the host immune, metabolic, and neurological systems and are implicated in various
diseases. Further understanding the metabolic network of gut microbiota can lead to new
therapeutic approaches targeting human diseases.
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3.1. Role of Different SCFAs

SCFAs are the main products of dietary fiber fermentation by gut microbiota. Humans
lack the enzymes needed to break down dietary fiber [68], which mostly passes through the
upper digestive tract as the undigested forms and is fermented by anaerobic microbes in the
cecum and colon [69]. Faecalibacterium, Prevotella, and some Streptococcus species are known
producers of SCFAs in the gut [70]. A key mechanism of metabolic regulation by the gut
microbiota is the production of SCFAs. Different gut microbes produce varying amounts
of SCFAs, with the three main SCFAs produced in the gut being acetate, propionate, and
butyrate [71].

Acetate is the most abundant SCFA in the human colon and is produced by Bifi-
dobacterium and Lactobacillus fermenting fiber in the proximal colon. It is formed from
acetyl-CoA via the Wood–Ljungdahl pathway [72]. Acetate acts on FFAR2 and FFAR3 in
the human colon and increases fatty acid synthesis via epigenetic mechanisms (histone
acetylation) [73]. Acetate is expressed at the mRNA level in pancreatic β-cell [72], which
significantly inhibits insulin-induced glucose and fatty acid uptake in wild-type mouse
adipocytes. FFAR2 (GPR43) inhibits insulin signaling via the G(I/O)βγ-PLC-PKC-PTEN
pathway, reducing fat accumulation.

Butyrate is formed from two acetyl-CoA molecules, producing acetoacetyl-CoA, which
is further converted to butyryl-CoA via β-hydroxybutyryl-CoA and crotonyl-CoA. A non-
targeted metabolomics study by Sun et al. [62] on serum samples from GDM and NGT
subjects found significant increases in 2-hydroxybutyric acid (2-HB) and l-α-amino butyric
acid in GDM patients. Butyrate can activate AMPK in the liver, inhibiting gluconeogenic
enzyme expression and promoting glycolysis. Furthermore, SCFAs can have an impact on
blood glucose levels through their ability to regulate hormone secretion. They have been
observed to promote insulin and GLP-1 secretion [74], the later inhibits glucagon secretion.

Propionate can be formed from Phosphoenolpyruvate (PEP) via the succinate pathway
or the propionyl-CoA pathway, where lactate is reduced to propionate. Microbes can also
produce propionate from hexoses (such as mannose and rhamnose) via the propanediol
pathway [75]. A study by Sun et al. [62] found that consuming fiber-rich foods can alter the
association between microbial characteristics and host glucose metabolism. Gut microbes
digest dietary fiber into SCFAs, helping maintain normal glucose metabolism during
pregnancy and preventing the onset of GDM.

SCFAs regulate the glycolysis and gluconeogenesis pathways and obstruct insulin
signaling in peripheral tissues through the activation of GPCRs, resulting in hyperglycemia
during pregnancy and diabetes [76]. SCFAs inhibit histone deacetylase activity and signal
transduction via a group of free fatty acid receptors (GPR41, GPR43). After the discovery of
SCFA receptors, GPR41 was renamed free fatty acid receptor 3 (FFAR3), and GPR43 was re-
named FFAR2. FFAR2 and FFAR3 are found in human adipose tissue, colon, small intestine,
and spleen [77]. Both FFAR2 and FFAR3 are associated with metabolic diseases and have
become effective targets for the treatment of T2DM, asthma, cardiovascular diseases, and
metabolic syndrome [78]. A study discovered that gut microbiota, SCFAs, and pancreatic β
cells could potentially and collectively contribute to pregnancy glucose homeostasis mech-
anism in wild-type (WT) mice. During pregnancy, the measurable changes in circulating
SCFA composition, increased FFAR2 expression, enhanced FFAR2 signaling, increased in-
sulin secretion, and β cell proliferation compensate for pregnancy-related insulin resistance
in together. A study by Wang et al. [79] investigated the composition of circulating SCFAs
in pregnant women with GDM and showed its association with placental metabolism.

In summary, dietary fiber fermented by gut microbiota (e.g., Bifidobacterium, Lactobacil-
lus) produces SCFAs including acetate, propionate, and butyrate, which act on FFAR2 and
FFAR3 to inhibit histone deacetylases, suppress insulin signaling, activate AMPK, stimu-
late GLP-1 and insulin secretion, and enhance FFAR2 signaling in pregnancy to stimulate
insulin release and pancreatic β-cell proliferation, thereby maintaining glucose homeostasis
in gestational diabetes.
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3.2. Role of Bile Acids

Elevated total bile acid levels in early pregnancy are positively associated with risk of
GDM, while primary bile acids, cholic acid and chenodeoxycholic acid, are negatively cor-
related with GDM, and secondary bile acids [80], lithocholic acid and deoxycholic acid, are
positively correlated with GDM risk [81]. Bile acids synthesized primarily in the liver can
activate nuclear receptors FXR and TGR5 to regulate glucose and energy metabolism [82].
Gut microbiota can transform bile acids through reactions like dehydrogenation, altering
enterohepatic circulation of bile acids [83] and generating secondary bile acid ligands for
FXR and TGR5 [84], which has been shown experimentally to modulate host lipid and
glucose metabolism [85]. The gut microbiota–bile acid axis is a key mechanism, whereby
microbial bile salt hydrolases mediate bile acid metabolism and signaling [86], and alter-
ations in bile acid profiles impact insulin sensitivity, lipid profiles, gut peptide release, and
other aspects of host metabolism.

Accumulating evidence demonstrates significant alterations in the gut microbiota
composition of GDM patients. For instance, Bifidobacterium [87] and Lactobacillus [88],
which produce secondary bile acids, are decreased in the gut of GDM patients, whereas
bile acid 7α-dehydroxylating bacteria including Clostridium [89], Eubacterium [90], and
Ruminococcin are increased. These changes indicate imbalanced gut microbiota featured by
altered populations of bacteria that promote or inhibit bile acid biotransformation in GDM
patients, implying that dysregulation of the gut microbiota–bile acid axis may be a critical
link in the pathogenesis of GDM.

3.3. Trimethylamine N-Oxide, TMAO

Trimethylamine N-oxide (TMAO) has been closely linked to various metabolism-
related diseases. Research shows a positive correlation between TMAO levels and dia-
betes [91]. Dambrova et al.’s study reveals that TMAO levels are significantly higher in type
2 diabetes patients compared to non-diabetic controls [92]. Additionally, a randomized
controlled trial confirmed that TMAO production is associated with gut microbiota com-
position [93]. Gut microbes play a key role in TMAO generation [94,95]. Dietary choline
and phosphatidylcholine may undergo metabolism by the gut microbiota, resulting in the
production of trimethylamine (TMA) [96,97], which is subsequently oxidized to TMAO in
the liver. In terms of mechanisms, Chen et al. [98] and Seldin et al. [99] demonstrated that
TMAO could activate MAPK, NF-κB and other signaling cascades and ROS production,
consequently eliciting inflammatory responses. Studies by Dambrova et al. [92] and Randri-
anarisoa et al. [91] have demonstrated TMAO’s direct effect on pancreatic β cells, insulin
release inhibition, and positive correlation with dysregulated blood glucose levels. In
conclusion, TMAO may be involved in the pathogenesis of GDM by inducing inflammation
and disrupting the insulin pathway. Thus, modulation of the gut microbiota is a potential
way to reduce TMAO levels and disease risk.

Abnormalities in the metabolism of Palmitoylamides (PAs) and N-acetylglucosamine
(GlcNAc) have been reported in patients with GDM. Lappas et al. [100] found that plasma
concentrations of linoleoyl amide, arachidonoyl amide, and PAs were significantly reduced
in the GDM group. Some PAs such as oleoylethanol amide can mimic GLP-1 and promote
insulin release from pancreatic β cells [101]. PAs may induce insulin secretion by activating
spiral ubiquitin-dependent receptors and GPR119 [102]. Additional research has verified
that Bifidobacterium, an important genus of gut microbiota, is among the significant pro-
ducers of GlcNAc [103]. They secrete extracellular agglomerates to extract aminoglucose
from food and acetylate it to produce GlcNAc [104]. The GlcNAc that is produced can
activate the downstream cAMP-PKA pathway by binding to the carbohydrate sensing
receptor GPR92 on intestinal L cells [105], leading to the stimulation of GLP-1 synthesis and
release. Additionally, by inducing short-chain fatty acid production in the intestinal mucosa
through gut microbiota–epithelial cell interactions, GlcNAc can indirectly promote the
secretion of GLP-1. In summary, the metabolic pathway through which Bifidobacterium and
other gut microbiota stimulate GLP-1 release by producing GlcNAc has been elucidated.
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Changes in gut microbiota composition and function in GDM patients, such as reduced
Bifidobacterium [33] and Lactobacillus [35], may cause modifications in the synthesis and
transformation of metabolites, such as PAs and GlcNAc. These two compounds have
GLP-1-like effects and can enhance insulin sensitivity.

In addition to SCFAs, bile acids, trimethylamine, and N-acetyl amino sugars, some
studies have also identified other related metabolic products [106]. Amino acid metabolic
products, in particular, tyrosine and tryptophan metabolites have been shown to have an
impact on GLP-1 synthesis [107]. The decreased levels of indole compounds, metabolites de-
rived from tryptophan through microbial decarboxylation and dehydrogenation reactions,
in maternal serum during early and mid-gestation are associated with an increased risk of
GDM [108], which may be attributed to reduced populations of tryptophan-metabolizing
bacteria like Bifidobacterium [87] and Lactobacillus [88] in the gut microbiota of GDM pa-
tients, consequently leading to impaired synthesis of indole-3-propionic acid and secretion
of incretins like GLP-1 and GLP-2, further aggravating insulin resistance in GDM [109].
Furthermore, γ-aminobutyric acid can affect insulin sensitivity through the GPR41/43 path-
way [65]. Meanwhile, protein fermentation products, such as fecal p-cresol, have been
found to improve insulin sensitivity, and fecal indole has been shown to inhibit inflam-
matory response [110]. Bioactive amines such as histamine and acetylcholine may have
an impact on glucose homeostasis. Additionally, intestinal microbiota-produced phenyl
propionic acid can chelate iron, potentially affecting glucose absorption [108]. In sum-
mary, various intestinal microbial metabolites participate in the pathogenesis of diabetes
by regulating insulin secretion and sensitivity (Figure 3). Therefore, the gut microbiota’s
integral role and its concomitant metabolic signatures underscore some pathophysiological
landscape of GDM.
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Figure 3. Gut microbes and their metabolites: possible mechanisms of GDM. TMAO Production: Gut
microbiota significantly affect TMAO production, as they convert dietary choline and phosphatidyl-
choline into TMA, which the liver subsequently transforms into TMAO. TMAO activates MAPK
and NF-κB pathways, leading to ROS production and inflammation. TMAO also inhibits insulin
release, contributing to glucose dysregulation. Bile Acid Modification: Gut microbiota modify bile
acids via enzymatic reactions, altering their profiles and impacting lipid and glucose metabolism.
The gut microbiota–bile acid axis plays a crucial role, affecting insulin sensitivity, lipid profiles, and
gut peptide release. SCFAs: Anaerobic microbes ferment undigested dietary fiber, producing SCFAs
(acetate, propionate, and butyrate). SCFAs interact with FFAR2 and FFAR3 receptors, influencing
glycolysis, gluconeogenesis, and insulin signaling. They help maintain glucose homeostasis during
pregnancy, mitigating insulin resistance. GlcNAc and Metabolic Pathways: Specific pathways activate
GLP-1 and promote its secretion indirectly through SCFA production in the intestinal mucosa.
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4. Microbes and Microbial Metabolites in the Prevention and Treatment of GDM

Synthetically, studies have suggested that the gut microbiota altered composition and
metabolic output may be instrumental in the metabolic perturbations of glucose regulation
seen in GDM, which underscores the potential of microbe-centric interventions in miti-
gating GDM. Probiotics harboring Lactobacillus and Bifidobacterium strains demonstrate
efficacy in enhancing insulin sensitivity and glucose metabolism, with supplemental ad-
ministration improving clinical biomarkers in GDM [111,112]. Selected strains within these
probiotics not only attenuate systemic inflammation but also modulate the gut and vaginal
microbiomes, contributing to a reduced GDM risk and less pronounced maternal weight
gain [113].

Dietary prebiotics, serve as fermentable substrates that foster beneficial microbial
populations, thereby promoting glucose homeostasis in GDM contexts [114]. Moreover,
microbial metabolites, particularly SCFAs like butyrate and propionate, are implicated in
enhancing insulin sensitivity and suppressing hepatic gluconeogenesis, alongside their
noted anti-inflammatory properties, all of which are pivotal in GDM management [115].
The combined use of multi-strain probiotics, prebiotics, and symbiotic appears to hold
additive or synergistic potential in regulating glucose metabolism and aiding in weight
management during GDM [116].

4.1. Probiotic Supplements

Recent randomized controlled trials have examined the efficacy of probiotic supple-
mentation for improving outcomes in pregnant women with GDM [117,118]. Some studies
have found certain probiotic strains to modestly improve select biomarkers, including
decreases in fasting plasma glucose, inflammatory markers like high-sensitivity C-reactive
protein (hs-CRP), and lipid parameters such as triglycerides and LDL cholesterol [116].
However, the majority of RCTs have not demonstrated significant improvements in clinical
maternal or neonatal outcomes, including the need for pharmacological therapy, cesarean
section rates, gestational weight gain, preeclampsia risk, and birth weight or gestational
age of the newborn [119].

The effects appear to be strain-specific, with trials using various strains and combina-
tions of Bifidobacterium, Lactobacillus, and other genera with mixed results. Limitations of
these RCTs include small sample sizes (n < 100), short intervention durations (6–12 weeks),
and lack of standardized probiotic dosing [120,121]. Overall, current evidence does not
strongly support probiotics as a standalone therapy for GDM management, but they may
provide subtle metabolic benefits that warrant further mechanistic study. Larger, longer-
term RCTs with optimized probiotic formulations are needed to determine if probiotics can
significantly improve maternal glycemic control and neonatal health outcomes in GDM.
Current guidelines do not recommend probiotics for GDM, but future research may clarify
their clinical utility as adjuvant or preventative therapy.

4.2. Prebiotic Supplementation

Prebiotics, indigestible food components, foster the proliferation of beneficial gut
microbiota by serving as substrates for select bacteria [122]. These substrates, including
inulin from chicory root and fructo-oligosaccharides (FOS) found in bananas and onions,
resist gastric digestion and are fermented in the colon, selectively enhancing populations
of health-promoting bacteria such as Bifidobacterial [123] and Lactobacilli. Such activities
not only support the gut ecosystem but also confer systemic health benefits, including
improved digestive health and immunity [124].

In the context of GDM, prebiotic supplementation is gaining traction as a potential
therapeutic avenue. Non-digestible fibers like inulin, FOS, and galactooligosaccharides
(GOS) have been shown to modulate gut microbiota favorably [125], which can lead to
improved glucose metabolism and insulin sensitivity [126]. Mechanistically, prebiotics
enhance SCFAs production, which, alongside shifts in microbial composition, contributes
to anti-inflammatory effects and improved intestinal barrier integrity [127]. Clinical evi-
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dence points to increased levels of beneficial Lactobacilli and elevated SCFAs biomarkers
in response to prebiotic intake in GDM patients [118]. SCFAs, particularly butyrate, serve
not only as an energy source for enterocytes but also as modulators of inflammation and
insulin response [128]. Further, prebiotics elevate other SCFAs like acetate and propionate,
and metabolites such as indoles and polyamines, which have been implicated in improved
metabolic outcomes [129].

BAs, traditionally recognized for their role in lipid digestion and vitamin absorption,
have gained prominence as key metabolic signaling molecules. Through activation of
the farnesoid X receptor (FXR) and the G protein-coupled bile acid receptor (TGR5), BAs
exert regulatory control over diverse metabolic processes, with dysregulated BAs signaling
emerging as a factor in GDM. Prebiotic interventions are posited to reshape gut microbiota
composition, leading to several BA-related metabolic improvements: By fostering the
growth of BA-metabolizing bacteria, prebiotics may alter the BA pool, transitioning primary
BAs to secondary forms, with implications for pool composition and size [130]. Secondary
BAs, modulated by prebiotic intake, can differentially engage BA receptors, including
FXR and TGR5—receptors integral to glucose and lipid homeostasis [131]. Enhancing
BA excretion fosters hepatic synthesis from cholesterol, potentially offering a therapeutic
benefit in GDM-associated dyslipidemia [132]. Prebiotic-induced microbial shifts may
bolster intestinal barrier function and temper inflammation, contributing to improved
insulin sensitivity [133]. Yet, pregnancy presents a unique physiological milieu, with
intrinsic alterations in BA metabolism necessitating cautious therapeutic interventions [134].
While prebiotic supplementation offers a novel modality for BA modulation in GDM, its
integration into clinical practice mandates a foundation of solid empirical evidence and
nuanced clinical judgment.

TMAO, a byproduct of dietary choline, lecithin, and L-carnitine metabolized by
gut microbiota into TMA, and subsequently oxidized in the liver, has been implicated in
heightened cardiovascular disease (CVD) risk due to its proatherogenic properties [135,136].
In the milieu of GDM—a condition inherently associated with increased cardiovascular
morbidity—the augmented levels of TMAO may contribute to an intensified risk profile [89].
Interventions via prebiotic supplementation to modulate TMAO concentrations present
an attractive therapeutic strategy, albeit one that requires careful consideration due to the
altered physiological landscape of pregnancy.

The influence of prebiotics on TMAO levels within the GDM framework could theoret-
ically extend through multiple avenues: the alteration of intestinal microbiota composition
to curtail the prevalence of TMA-producing microbes [137]. The attenuation of choline,
lecithin, and L-carnitine metabolism into TMA by selective bacterial communities. The
amelioration of metabolic parameters, including glycemic regulation and lipid profile
optimization, which could indirectly influence TMAO pathways [47]. Notwithstanding
these prospective benefits, the dynamics among prebiotic interventions, gut microbial
ecology, TMAO synthesis, and metabolic health during pregnancy are not thoroughly
understood. Research delineating the adverse impact of TMAO has been predominantly
conducted in non-pregnant cohorts [138], and gestational adjustments in renal physiology
could modulate TMAO clearance, further complicating the extrapolation to a GDM context.

In light of these considerations, while prebiotic-driven TMAO modulation offers a
theoretically viable route to mitigate cardiovascular complications in GDM, a rigorous
scientific inquiry is essential. This should be aimed at elucidating the interconnections and
establishing a safe and effective intervention protocol within the specialized context of
maternal and fetal health. The revised paragraph emphasizes the potential of prebiotics
in GDM management while calling for careful, pregnancy-specific research to understand
and utilize the microbiome–TMAO relationship.

Despite these promising mechanisms, clinical data on the efficacy of prebiotics in GDM
management exhibit some variability [139]. Therefore, while prebiotic supplementation
shows potential in correcting dysbiosis and augmenting SCFA levels—thereby ameliorating
glucose dysregulation and reducing GDM complications—the determination of the most
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effective prebiotic types and doses necessitates further investigation. Future studies must
validate both the efficacy and safety of prebiotic interventions in GDM to establish definitive
recommendations. In summary, targeted modulation of gut microbiota using probiotics,
prebiotics, and microbiota-directed foods holds promise as an adjuvant GDM therapy,
warranting further validation in larger, high-quality randomized controlled trials.

5. Conclusions and Future Perspectives

Our review reveals the links between gut dysbiosis, abnormal glucose metabolism,
inflammation, and insulin resistance in GDM. Interestingly, it notes that some of the altered
bacteria in the gut show similar trends in both the mother and her offspring, suggesting
that the mother’s microbiome might be transmitted to the child. This transmission reflects
how the gut microbiota of a GDM mother could influence the colonization process of her
child’s gut microbiota. These insights not only deepen our understanding of the complex
mechanisms underlying GDM but also open potential avenues for therapeutic interventions
targeting the gut microbiome. While lifestyle interventions alone may not be sufficient
for the management of GDM, targeted probiotic supplementation is a promising adjuvant
therapy, although optimal formulations remain to be determined [117,118]. Current un-
derstanding of the complex gut microbiota–host interactions in GDM is limited by the
small, ethnically homogeneous cohorts and conflicting results. Large, multi-ethnic studies
using standardized microbiome workflows and integrated multi-omics approaches (e.g.,
meta transcriptomics, proteomics, metabolomics) through advanced bioinformatics are
warranted to elucidate mechanisms linking specific microbes and functions to GDM patho-
genesis. Such efforts can inform evidence-based diagnostic, preventive, and therapeutic
strategies aimed at restoring gut microbial homeostasis to improve pregnancy outcomes
in GDM.
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