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Abstract: Type 2 diabetes mellitus (T2DM) poses a higher risk for complications in South Asian
individuals compared to other ethnic groups. To shed light on potential mediating factors, we
investigated lipidomic changes in plasma of Dutch South Asians (DSA) and Dutch white Caucasians
(DwC) with and without T2DM and explore their associations with clinical features. Using a targeted
quantitative lipidomics platform, monitoring over 1000 lipids across 17 classes, along with 1H NMR
based lipoprotein analysis, we studied 51 healthy participants (21 DSA, 30 DwC) and 92 T2DM
patients (47 DSA, 45 DwC) from the MAGNetic resonance Assessment of VICTOza efficacy in
the Regression of cardiovascular dysfunction in type 2 dIAbetes mellitus (MAGNA VICTORIA)
study. This comprehensive mapping of the circulating lipidome allowed us to identify relevant lipid
modules through unbiased weighted correlation network analysis, as well as disease and ethnicity
related key mediatory lipids. Significant differences in lipidomic profiles, encompassing various
lipid classes and species, were observed between T2DM patients and healthy controls in both the
DSA and DwC populations. Our analyses revealed that healthy DSA, but not DwC, controls already
exhibited a lipid profile prone to develop T2DM. Particularly, in DSA-T2DM patients, specific lipid
changes correlated with clinical features, particularly diacylglycerols (DGs), showing significant
associations with glycemic control and renal function. Our findings highlight an ethnic distinction in
lipid modules influencing clinical outcomes in renal health. We discover distinctive ethnic disparities
of the circulating lipidome and identify ethnicity-specific lipid markers. Jointly, our discoveries show
great potential as personalized biomarkers for the assessment of glycemic control and renal function
in DSA-T2DM individuals.

Keywords: lipidomics; Dutch South Asian; Dutch white Caucasian; type 2 diabetes mellitus; diabetic
nephropathy

1. Introduction

One of the major challenges to public health in the twenty-first century is the world-
wide rise in type 2 diabetes mellitus (T2DM) prevalence. T2DM is characterized by insulin
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resistance and insufficient compensatory insulin secretion, the mechanism of which varies
by ethnicity [1]. South Asians (SAs), as one of the high-risk populations, have a higher
T2DM incidence than other ethnic groups [2]. As a result the South Asian (SA) population
with T2DM tend to develop the disease at an earlier age, around 5–10 years ahead, and often
with a lower body mass index (BMI), compared to white Caucasians (wC), thus revealing
a distinct disease phenotype [2]. SAs possess a distinct body composition characterized
by a higher prevalence of abdominal obesity and a larger proportion of visceral fat [3].
This unique phenotype contributes to the production and secretion of specific inflamma-
tory cytokines, which can result in an elevated chronic low-grade inflammatory state and
increasing the risk of developing T2DM among this population [4,5]. Furthermore, SA
patients with T2DM were found to be more prone to develop microvascular complications
such as diabetic nephropathy (DN), as well as progressing to end-stage renal disease at a
faster rate than Caucasian European patients with T2DM [6,7].

While emerging lipidomic approaches generally revealed specific molecular lipid
changes leading to T2DM (6–8), most of these studies were only performed in single eth-
nicity lacking differential information on T2DM development between different ethnic
groups. Of note, a number of epidemiological studies highlighted the role of dyslipidemia
in relation to the incidence of T2DM [8,9], hinting that development of dyslipidemia may
be a sign of future T2DM. Additionally, several studies found that dyslipidemia was as-
sociated with an increased risk of diabetes-related microvascular complications such as
nephropathy, neuropathy, and retinopathy [10–12]. Given that dyslipidemia patterns differ
by race/ethnicity [13] and may influence disease outcome [14], this suggests that lipid
metabolism may play a vital role in ethnic differences in risk and progression of T2DM. In
the present study, we measured lipidomic phenotypes in Dutch South Asian (DSA) and
Dutch white Caucasian (DwC) participants, with or without T2DM, using the differential
mobility mass spectrometry (DMS/MS)-based Shotgun Lipidomics Assistant (SLA) plat-
form [15]. Based on this platform, we sought to investigate differences in lipid class and
lipid species correlating with disease risk and progression between these two ethnic groups.

2. Materials and Methods
2.1. Study Population

For the present study, baseline samples were used from the MAGNetic resonance
Assessment of VICTOza efficacy in the Regression of cardiovascular dysfunction in type 2
dIAbetes mellitus (MAGNA VICTORIA) cross-sectional study from two previous random-
ized controlled trials (RCT, ClinicalTrials.gov [NCT01761318] [16] and [NCT02660047] [17],
respectively), together with age and gender matched healthy controls from both ethnic
groups [18]. The details of both trials can be found elsewhere [16,17]. Both trials had
the following inclusion criteria: BMI ≥ 23, age between 18 and 74 years, and glycated
hemoglobin HbA1c levels between 6.5% and 11.0% (≥47.5 and ≤96.4 mmol/mol). Patients
were allowed to take specific glucose-lowering medication (metformin, sulfonylurea deriva-
tives, or insulin) at a stable dosage for at least 3 months prior to participating in the study.
They could also use antihypertensives and statins. Exclusion criteria included the use of
glucose-lowering medication other than those specified, pre-existing renal diseases of non-
diabetic origin, congestive heart failure (NYHA class III-IV), uncontrolled hypertension
(systolic blood pressure > 180 mmHg and/or diastolic blood pressure > 110 mmHg), or
recent acute coronary or cerebrovascular events within 30 days before study enrolment.
We excluded samples with missing plasma, diagnosed with T1DM, and individuals who
withdraw from the randomized clinical trial. In total, 47 DSA with T2DM (DSA-T2DM, age
54.9 [SD: 10.1] years, 59.6% women, BMI: 29.5 [4.0] kg/m2), 21 DSA healthy individuals
(DSA-C, age 48.3 [SD: 8.1] years, 71.4% women, BMI: 23.5 [3.0] kg/m2), 45 DwC with T2DM
(DwC-T2DM, age 59.0 [SD: 6.5] years, 44.4% women, BMI: 32.3 [3.9] kg/m2), and 30 DwC
healthy individuals (DwC-C, age 57.9 [SD: 7.9] years, 46.7% women, BMI: 24.3 [3.3] kg/m2)
were included (Table S1). Ethnicity was based on the self-identified and self-reported bio-
logical parents’ and ancestors’ origins. Participants with complete informed consent were
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included. The study was conducted in accordance with the revised Helsinki Declaration,
and the Institutional Review Board granted ethical approval (Leiden University Medical
Center, Leiden, The Netherlands).

2.2. Lipidomics Profiling Using the SLA Platform

Plasma samples were prepared according to Ghorasaini et al. [19], and analyzed
on the Shotgun Lipidomics Assistant (SLA) platform (Figure 1). The SLA consists of
a SCIEX QTRAP 5500 mass spectrometer with a SelexION differential mobility spec-
troscopy (DMS, Sciex LLC, Framingham, MA, USA) interface and a Nexera X2 ultrahigh-
performance liquid chromatography system that is controlled by the SLA software (ver-
sion 1.3; https://github.com/syjgino/SLA/releases). Detailed protocols on its operation
can be found elsewhere [15,19]. Based on the SLA platform, we could generate 17 lipid
classes including cholesteryl ester (CE), ceramide (CER), diacylglyceride (DG), dihydroce-
ramide (DCER), fatty acid (FA), hydroxyceramide (HexCER), lactosylceramide (LacCER),
lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidic acid
(PA). phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI),
phosphatidylserine (PS), sphingomyelin (SM), triglyceride (TG).

2.3. 1H Nuclear Magnetic Resonance (NMR) Spectroscopy Measurement and Processing

Sample preparation was performed consistently with the requirements of the Bruker
B.I.LISA lipoprotein analysis protocol as detailed in our previous study [20]. Lipoprotein
values were extracted from the NOESY1D plasma spectra employing the Bruker IVDr
Lipoprotein Subclass Analysis (B.I.LISA) platform [21–26]. This approach extracts informa-
tion about lipoproteins and lipoprotein subfractions in plasma.

2.4. Statistical Analyses

For the SLA data pre-processing we first calculated the missing values per lipid class
for all individuals per group (DSA-T2DM, DSA-C, DwC-T2DM, and DwC-C). Per lipid
class, specific lipids with more than 30% missing values in each group were excluded.
Missing values were imputed with half of the minimum concentration per lipid class
(Figure S1 and Table S2).

Next, to determine the relative abundance of each lipid class, we performed a cal-
culation by normalizing the concentration of each lipid class. This involved summing
up the concentrations of all lipid species within each class and dividing it by the total
concentration across all lipid classes. By applying this normalization process, a more
accurate understanding of how each lipid class contributes to the overall lipid composition
is obtained and it allows clear assessment of the proportional representation of different
lipid classes. Subsequently, principal component analysis (PCA) and hierarchical cluster
analysis (HCA) were performed in all participants in both ethnicities based on relative lipid
class abundance. Differences in relative lipid class abundance between healthy controls
and T2DM, as well as between healthy individuals and T2DM from two ethnic groups
were examined.

Multinomial logistic regression analysis (MLR) was used to differentiate the various
specific lipids. The four groups were considered as outcomes (DSA-T2DM, DSA-C, DwC-
T2DM, and DwC-C). The lipid concentrations were scaled (z-score normalization). When
comparing DSA-T2DM to DSA-C, we used DSA-C as reference, and when comparing
DWC-T2DM to DwC-C, we used DwC-C as reference. Age (continuous variable), sex
(dichotomous variable), and current smoking status (dichotomous variable) were adjusted
for the complete model. Multiple testing corrections were used, with a false discovery rate
(FDR) of 0.05 considered significant. To assess the relationship between lipid concentrations
and T2DM, the results were expressed as a regression coefficient (β) with a 95% confidence
interval (CI).

https://github.com/syjgino/SLA/releases
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For weighted correlation network analysis, the “WGCNA” R package was used to
investigate the role of lipid species in association with observed clinical features [27]. Using
this algorithm, a proper soft threshold was first chosen and lipids with similar concentration
patterns could be grouped into multiple modules tagged with multiple colour codes, each
of which was linked to a concomitant clinical feature. This makes it possible to identify
some clinically relevant lipids within potential lipid modules in relation to respective
clinical features. Diabetes-related complications-associated lipid modules were considered
key modules in this study. Key mediatory lipids that correspond to the clinical parameters
were derived from key lipid modules and the differentiated lipids (between the various
groups, Figure S2). Pearson’s correlation analysis was used to determine the relationship
between those key mediatory lipids and clinical parameters related to dyslipidaemia,
kidney function, and glycemic control.

To validate our observations, we used a published external dataset of Chinese IgA
nephropathy patients to investigate the relationship between commonly changed lipids
and renal function [28]. To this end, we first examined the changes in these lipids between
healthy controls and IgA nephropathy patients. Next, the relationship between these lipids
and kidney function parameters was determined using Pearson’s correlation analysis.

To assess the associations between key mediatory lipids and lipoprotein and lipopro-
tein subfractions, Pearson’s correlation analysis was performed in the diabetic populations
of both ethnic groups.

For each ethnic group, the Wilcoxon signed-rank test was used to assess the statistical
differences between cases (i.e., those with diabetes-related complications) and controls
(i.e., those without diabetes-related complications). R (version 4.1.0) and GraphPad Prism
version 8 (Graphpad Inc., La Jolla, CA, USA) were used for statistical analysis.

3. Results
3.1. Pre-Processing of Plasma Lipidome Profiles of Individuals with T2DM vs. Healthy Participants

Targeted lipidomic analysis quantified lipids from 17 different lipid classes (Figure 1).
After exclusion of lipids with 30% missing values, we distinguished 689, 686, 679, 699,
and 668 lipids in DSA-T2DM, DSA-C, DwC-T2DM, and DwC-C, respectively (Figure S1),
of which 654 common lipid species across lipid classes (CE, cholesteryl ester; CER [Cer
d18:1/FA], ceramide; DG, diacylglyceride; DCER [Cer d18:0/FA], dihydroceramide; FA,
fatty acid; HexCER, hydroxyceramide; LacCER, lactosylceramide; LPC, lysophosphatidyl-
choline; LPE, lysophosphatidylethanolamine; PA, phosphatidic acid; PC, phosphatidyl-
choline; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine;
SM, sphingomyelin; TG, triglyceride) were chosen for further analysis (Figure S1 and
Table S2).

3.2. Healthy Individuals of Dutch South Asian Ethnicity Reveal a pre-Diabetes Lipid Class Profile

We first applied PCA analysis to identify clusters of subjects based upon similarities
in their relative abundance of lipid classes in both ethnic groups, regardless of their pre-
specified group. Although the distinction was not perfect, we observed that relative lipid
class abundance had better power to distinguish patients with T2DM from healthy controls
in DwC than in DSA (Figure S3A,B). Hierarchical cluster analysis revealed that in DSA, all
subjects were clustered into two main subclusters, one with patients with T2DM only and
the other with patients with T2DM and healthy individuals; whereas in DwC, most of the
healthy subjects were clustered together and separated from patients with T2DM (Figure 2).
Between DSA-T2DM and DSA-C, 10 lipid classes (9 lower and 1 higher), and between
DwC-T2DM and DwC-C, 11 lipid classes (10 lower and 1 higher) were changed significantly
(Figure S3C,D). When DSA-T2DM and DwC-T2DM were compared, the DG lipid class was
found to be more abundant, with the greatest relative difference, in DSA with T2DM than
in DwC with T2DM (Figure S3E). Similarly, we also found that the abundance of DG lipid
class was higher in DSA than DwC among healthy individuals (Figure S3F). These findings
indicated that based on lipid class abundance, DSA-C already had a phenotype more
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closely related to DSA-T2DM; there were marginal differences in lipid class abundance
between T2DM in the two ethnic groups.
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Figure 2. Lipid class abundance between patients with T2DM and healthy controls. (A) Stack plot
with the hierarchical cluster in Dutch South Asian. (B) Stack plot with the hierarchical cluster in
Dutch white Caucasian. Abbreviations: CE cholesteryl ester; CER ceramide; DCER dihydroceramide;
DG diacylglyceride; FA fatty acid; HC healthy control; HexCER hydroxyceramide; LacCER lactosylce-
ramide; LPC lysophosphatidylcholine; LPE lysophosphatidylethanolamine; PA phosphatidic acid; PC
phosphatidylcholine; PE phosphatidylethanolamine; PI phosphatidylinositol; PS phosphatidylserine;
SM sphingomyelin; T2DM type 2 diabetes mellitus, TG triglyceride.

3.3. Comparison of Differential Lipids between Patients with T2DM and Healthy Controls in
Two Ethnicities

After multinomial logistic regression analyses and multiple testing corrections, we
found 436 differential lipids (396 higher and 40 lower) in DSA-T2DM compared to DSA-C
(Figure 3A and Table S3); 519 differential lipids (471 higher and 48 lower) in DwC-T2DM
compared to DwC-C (Figure 3A and Table S4). To further investigate the significance of
each lipid change between two ethnicities, we compared the regression coefficients (T2DM
vs healthy controls) and discovered that lipids from the DGs and TGs classes in DSA
showed higher regression coefficients than those in DwC, while the CEs in DwC showed
lower regression coefficients; the remaining lipids behaved similarly (Figure 3A).

We found 9 lipids that were specifically lower in DSA-T2DM (mostly from the CEs
and LPCs) and 17 lipids that were specifically lower in DwC-T2DM (including lipids
from the FAs, PCs, SMs, and TGs) (Figure 3B,D, and Table S5). Furthermore, 13 lipids
were specifically higher in DSA-T2DM (primarily from the DGs, PEs, and TGs), while
88 lipids were specifically higher in DwC-T2DM (primarily from the CEs, DGs, PCs, PEs,
and TGs) (Figure 3C,E and Table S5). These findings indicate that different lipid metabolism
phenotypes were found in both ethnicities, and differential lipids, particularly DGs and
TGs, showed the greatest associations with the risk of T2DM in DSA.
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associations (FDR > 0.05), the colour blue represents lipids lower in T2DM, and the colour red
represents lipids higher in T2DM. The dot size represents −log2FDR. Venn diagram of (B) lipids
lower in T2DM and (C) higher in T2DM than healthy controls (HC) in DSA and DwC. Heatmap
of lipids that are commonly/uncommonly (D) lower and (E) higher in DSA and DwC with T2DM.
Abbreviations: CE cholesteryl ester; CER ceramide; DCER dihydroceramide; DG diacylglyceride;
DwC Dutch white Caucasian; DSA Dutch South Asian; FA fatty acid; FDR false discovery rate;
HexCER hydroxyceramide; LacCER lactosylceramide; LPC lysophosphatidylcholine; LPE lysophos-
phatidylethanolamine; PA phosphatidic acid; PC phosphatidylcholine; PE phosphatidylethanolamine;
PI phosphatidylinositol; PS phosphatidylserine; SM sphingomyelin, TG triglyceride.

3.4. Ethnic Distinction in Associations of Lipid Correlation Network Modules with Clinical Features

To identify highly connected lipid modules and the relevance between baseline clinical
traits and each lipid module, we performed a weighted correlation network analysis
(WGCNA, Figure S4). Except for the grey module, which corresponded to the set of lipids
that were not clustered in any module, the other lipids in both ethnicities were clustered
into 12 modules.

Total TG concentration measured on the SLA platform matched the clinical routine
measurements. In both ethnic groups, we did observe lipid modules consisting of TG species
that had a positive correlation with total TG concentration (Figure 4 and Tables S6–S9).
Surprisingly, there were noticeable differences between the two ethnic groups. In DSA-T2DM,
the lipid modules were positively correlated with glycemic control parameters, and negatively
correlated with high-density lipoprotein (HDL)-cholesterol (Figure 4A and Table S8). While in
DwC-T2DM, the lipid modules showed positive correlations with anthropometric parameters,
total cholesterol, and low-density lipoprotein (LDL)-cholesterol and negative correlations with
blood pressure and kidney function (Figure 4B and Table S9). We also found several modules
associated with diabetes-related complications. In DSA-T2DM, the ‘royal blue’ module, as
only module, was correlated with diabetic nephropathy (DN); whereas in DwC-T2DM, the
‘light green’, ‘black’, and ‘grey60’ modules were associated with diabetic retinopathy (DR) and
DN, respectively (Figure 4 and Tables S8 and S9).

By combining lipids in diabetes-related-complications modules with differential lipids,
we identified 7 lipids from the DG class (two lipids showed ethnicity-specific difference; DG
16:0_18:2 and DG18:1_18:2) which were specifically higher in DSA and 5 lipids from the CEs,
TGs, and DG classes which were lower in DwC (Figure S2 and Tables S8 and S9). These
lipids were considered as key mediatory lipids. Our findings revealed ethnic differences in
the associations between lipid modules and clinical features, particularly in DSA-T2DM,
where lipid modules were correlated with high TGs, low HDL-cholesterol, and poor
glycemic control.

3.5. Clinical Relevance Screening for Key Mediatory Lipids from Two Ethnicities

The key mediatory lipids of DSA were first investigated in relation to clinical features
such as dyslipidaemia, kidney function, and glycemic control parameters in both ethnicities.
These lipids correlated positively with total TGs, total cholesterol, albumin/creatinine ratio,
and HbA1c in DSA-T2DM, but negatively with HDL-cholesterol and LDL-cholesterol
(Figure 5A and Table S10). Since these lipids were derived from a DN-related module, we
next compared the lipid concentrations in patients with and without DN. All the lipids,
except DG 18:2_20:4, were higher in DN than T2DM in DSA (Figure 5B). However, we
found only a few correlations between these lipids and LDL-cholesterol in DwC-T2DM
(Figure 5C and Table S11). In DwC, between T2DM and DN, those lipids exhibited the
opposite behaviour (Figure 5D).
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Asians with T2DM and (B) Dutch white Caucasians with T2DM. The colour grey denotes a lipid
cluster with no significant associations with clinical features, the colour blue denotes a lipid cluster
with a negative association with clinical features, and the colour red denotes a lipid cluster with a
positive association with clinical features. The correlation coefficients are represented by the size of
the dots (Spearman’s rank correlation test). Abbreviations: BP blood pressure; BMI body mass index;
HbA1c hemoglobin A1c; HDL high-density lipoprotein; LBM lean body mass; LDL low-density
lipoprotein; SAT subcutaneous adipose tissue, VAT visceral adipose tissue.

Key mediatory lipids derived from modules in DwC were then examined. Only
limited correlations with clinical parameters could be observed in both ethnic groups
(Figure S5A,C). None of them showed associations with DR or DN in either ethnicity
(Figure S5B,D). These findings suggested that DGs were more strongly associated with
DSA-T2DM than DwC-T2DM and with DN and kidney function.

We finally investigated key mediatory lipids of DSA in an external Chinese cohort of
patients with IgA nephropathy and found that they were all higher in patients with IgA
nephropathy than in healthy controls, with DG 18:1_18:2 showing the strongest correlation
with renal function parameters (Figure S6).
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Figure 5. Correlations between key mediatory lipids in diabetic nephropathy-associated module of
Dutch South Asians and lipoproteins, kidney function, and glycemic control. (A) Bubble plot depicting
the correlations of lipids with lipoproteins, kidney function, and glycemic control in Dutch South
Asians with T2DM. (B) Violin plots of lipids between T2DM with and without diabetic nephropathy
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in Dutch South Asians. (C) Bubble plot depicting the correlations of lipids with lipoproteins, kidney
function, and glycemic control in Dutch white Caucasians with T2DM. (D) Violin plots of lipids
between T2DM with and without DN in Dutch white Caucasians. Lipids in bold indicated that they
were specifically different in Dutch South Asians. The colour grey indicates no significant correlations
with clinical features; the colour blue indicates a negative correlation with clinical features, and
the colour red indicates a positive correlation with clinical features. The size of the dots represents
the correlation coefficients (Pearson’s correlation). The Wilcoxon signed-rank test was performed;
* p < 0.05, ** p < 0.01, ns not significant. Abbreviations: DG diacylglyceride; DN diabetic nephropathy;
HbA1c hemoglobin A1c; HDL high-density lipoprotein; LDL low-density lipoprotein, T2DM type 2
diabetes mellitus.

4. Discussion

In the current lipidomic phenotyping study, we discovered differences in lipid classes
and lipid species between patients with T2DM and healthy individuals in both the Dutch
South Asian (DSA) and Dutch white Caucasian (DwC) populations. Specifically, lipid
changes in individuals with T2DM of DSA were found to be more strongly associated with
clinical parameters than DwC, with diacylglycerols (DGs) showing strong associations to
diabetic nephropathy and renal function. Furthermore, we observed that healthy DSA
individuals already had a diabetes-prone lipid distribution. These findings imply that
impaired DG metabolism in DSA could be a potential hallmark and that lipidomic pheno-
typing could provide detailed insights into lipid metabolic complexity and interindividual
variations among T2DM patients of various ethnic groups.

Previous studies suggested that SAs may have a lower ability to secrete insulin, lower
muscle mass and a higher ectopic fat deposition which contributed to the higher T2DM
prevalence [3,29]. In the current study, it is worth noting that healthy DSA individuals
already revealed a diabetic lipid distribution, which partly could predict the higher risk
in developing T2DM in this population. Additionally, our study revealed remarkable
differences in lipidomic profiles between both ethnic groups, lending credence to previously
established associations between T2DM and dysregulated lipoprotein composition using
1H NMR lipoprotein profiling [20]. Comparing DG 18:1_18:2 to these plasma lipoprotein
profiling data in DSA-T2DM (Figure S7) revealed positive correlations with numerous
of these markers while in DwC-T2DM associations with all HDL subfractions, most IDL
subfractions, and a few LDL subfractions were absent. Our results demonstrate distinct
differences in the lipidome between patients with T2DM and healthy controls, mainly
related to CE, DG, PE, SM, and TG metabolism. This was consistent with previous findings
observed in the case-cohort study nested within the PREDIMED (PREvención con DIeta
MEDiterránea) trial [30] and the longitudinal METSIM (METabolic Syndrome In Men)
study [31]. However, conflicting results were reported in two studies based on Chinese
populations [32,33]; for instance, compared to healthy controls, free-fatty acids (FFA),
sphingomyelin (SM) and lysophosphatidylcholine (LPC) lipid species were higher in
Chinese patients with T2DM, whereas we found opposite results in Dutch patients with
T2DM, further highlighting the variability in lipidomics profile between ethnicities.

The comprehensive analysis for lipidomics profiling performed in the current study
allows for testing clinically relevance. As a hallmark of T2DM, insulin resistance affects
regulation of lipid and lipoprotein metabolism [34,35]. In line with previous studies, we
found that lipid modules in DSA-T2DM positively correlated with TG, total cholesterol
and negatively correlated with HDL-C; whereas lipid modules in DwC-T2DM correlated
with total TG, cholesterol, and LDL-C, suggesting an ethnic preference in correlation
with dyslipidemia patterns. Insulin resistance also impairs glucose metabolism and TG
metabolism [36–38]. Interestingly, we discovered ethnicity differences in lipid modules
(mainly consisting of TGs and DGs) demonstrating a correlation with both short- and
long-term glycemic control exclusively in DSA-T2DM, rather than in the DwC-T2DM
population. Also, our observation that certain lipid modules correlated with DN in both
ethnic groups was in line with the reported dyslipidemia as a hallmark of chronic kidney
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disease (CKD) [39]. Moreover, a previous study revealed that patients with CKD had
abnormalities in glycerolipid metabolism such as monoradylglycerolipids (MG), DGs, and
TGs [40], which is also consistent with our findings in DSA-T2DM. However, we did not
observe these associations in DwC-T2DM; one possible hypothesis might be a shorter
duration in diabetes, which resulted in the more excessive changes in lipid metabolism.

By combining lipid abundance and lipid species analysis, we have identified a specific
lipid class, DG, which is associated with the increased risk in development and progression
of T2DM among SAs. DG is derived from lipoprotein lipase (LPL)-mediated hydrolysis of
TGs, and our observations reveal low DG abundance alongside high TG levels in T2DM in
both ethnicities. However, DG lipid class abundance was much higher in DSA than DwC
in both healthy and diabetic individuals, hinting to possible lipolysis dysregulation in SAs.
Insulin resistance, a crucial factor in T2DM development, has been found to be higher in
SAs than in wCs [41,42]. LPL has been associated with insulin resistance [43,44], and this
could potentially explain the higher proportion of DG observed in our study, as higher
insulin resistance in SAs impairs the ability of insulin to suppress lipolysis, leading to an
increased release of fatty acids that are subsequently converted to DGs. Previous research
has reported the impact of DGs on hepatic insulin resistance. Increased levels of DGs are
commonly observed in animal models of lipid-induced hepatic insulin resistance [45,46].
Furthermore, several human studies have demonstrated significant associations between
total hepatic DG content or specific DG species and insulin resistance markers, such as
homeostasis model assessment-estimated insulin resistance (HOMA-IR) [47–50]. These
associations were found to be stronger than those observed with variables like body mass
index, ceramide content, and markers of endoplasmic reticulum stress [47]. Interestingly,
DGs and their targets protein kinase C (PKC) and protein kinase D (PKD) have been
shown to regulate multiple critical cellular responses [51], which might be a plausible
mechanism for inhibition of insulin signalling leading to hepatic insulin resistance. Once
DG accumulates, it could lead to hyperactivation of PKC/PKD and play an important role
in development of diabetic nephropathy [52,53]. Our observation that DG metabolism in
the circulation was disturbed, with a higher correlation to clinical outcomes, may argue
that a dysregulated DG-PKC/PKD signalling network could disrupt the redox balance and
lead to more oxidative stress [53], and in part could explain why DSA-T2DM patients are
more vulnerable to diabetic nephropathy progression.

The strength of our study is that we measured detailed lipidomic profiles in two ethnic
groups of diabetic and healthy individuals. Our findings confirmed lipidomic perturbations
in patients with T2DM in both ethnic groups; meanwhile, we revealed an ethnic distinction
of lipid modules in relation to clinical outcomes (e.g., glycemic control). Notably, there are
still several limitations to our study. First, our study is a cross-sectional study; therefore, we
cannot address issues of causality in the association of T2DM. Second, the relatively small
sample size limits the power of generalization and precludes stratification analyses. Third,
as waist-to-hip ratio (WHR) was found to be the most reliable predictor of T2DM in the
HELIUS (HEalthy LIfe in an Urban Setting)study, regardless of ethnicity [54], lack of a WHR
matching design might be a shortcoming in our study. Fourth, oxidized lipids induced by
oxidative stress play a critical role in the development and progression of T2DM [55,56],
however, we were not able to detect oxidized lipids using this high-throughput platform.
Fifth, for renal function validation we only used an external cohort of patients with IgA
nephropathy instead of diabetic nephropathy, and in a singular ethnic group. Therefore,
further longitudinal studies with multiple ethnic groups and larger sample sizes are needed
to verify our findings. Sixth, it is important to consider the influence of dietary factors on
lipid profiles [57–59], especially since substantial differences in dietary patterns have been
observed between Dutch South Asians and Dutch white Caucasians [60]. However, our
study did not gather specific information regarding the participants’ dietary patterns.
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5. Conclusions

In conclusion, Dutch patients with T2DM of both white Caucasian and South Asian
descent exhibited altered circulating lipidomes when compared to healthy individuals
of the same ethnicity. In DSA the lipid changes of especially DGs, were clinically more
relevant than in DwC. These DGs, particularly DG 18:1_18:2, were associated with glycemic
control and renal function in DSA patients with T2DM and Chinese patients with IgA
nephropathy (validation cohort). These observations suggest that they could be used as
ethnicity-specific biomarkers for diabetic nephropathy patients. In addition, lipidomics
phenotyping provides detailed insight into lipid metabolic complexity and interindividual
variations among patients with T2DM from various ethnic groups.
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