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Abstract: Autoimmune diseases, characterized by the immune system’s loss of self-tolerance, lack
definitive diagnostic tests, necessitating the search for reliable biomarkers. This systematic review
aims to identify common metabolite changes across multiple autoimmune diseases. Following
PRISMA guidelines, we conducted a systematic literature review by searching MEDLINE, ScienceDi-
rect, Google Scholar, PubMed, and Scopus (Elsevier) using keywords “Metabolomics”, “Autoimmune
diseases”, and “Metabolic changes”. Articles published in English up to March 2023 were included
without a specific start date filter. Among 257 studies searched, 88 full-text articles met the inclusion
criteria. The included articles were categorized based on analyzed biological fluids: 33 on serum, 21
on plasma, 15 on feces, 7 on urine, and 12 on other biological fluids. Each study presented different
metabolites with indications of up-regulation or down-regulation when available. The current study’s
findings suggest that amino acid metabolism may serve as a diagnostic biomarker for autoimmune
diseases, particularly in systemic lupus erythematosus (SLE), multiple sclerosis (MS), and Crohn’s
disease (CD). While other metabolic alterations were reported, it implies that autoimmune disorders
trigger multi-metabolite changes rather than singular alterations. These shifts could be consequential
outcomes of autoimmune disorders, representing a more complex interplay. Further studies are
needed to validate the metabolomics findings associated with autoimmune diseases.

Keywords: autoimmune disease; metabolomics analysis; metabolites; biomarker and diagnosis

1. Introduction

Autoimmune diseases include a wide range of clinical disorders, including rheumatoid
arthritis (RA), multiple sclerosis (MS), inflammatory bowel diseases (IBDs), autoimmune
liver diseases, and systemic lupus erythematosus (SLE), characterized by loss of self-
tolerance by the immune system. Autoimmune diseases may be systemic or organ-specific,
resulting in various complications and disabilities. Incidence of autoimmune disease varies
owing to the diversity of diseases, affecting 5–10% of the population around the globe [1,2].
Several factors (genetic, environmental, and epigenetic factors) are involved in the devel-
opment of autoimmune diseases [3]. Autoimmune diseases are poorly diagnosed owing
to obscure symptoms and overlapping symptoms of various diseases. The majority of
autoimmune diseases are multi-genic, with multiple susceptibility genes interacting to
create the abnormal phenotype [4]. Several gene variants have been discovered for au-
toimmune diseases; however, their relationship with disease susceptibility remains elusive.
Hence, a novel approach is required for comprehensive understanding of autoimmune
disease biology, especially underlying molecular mechanisms and treatment strategies.
Metabolomics is an emerging technology that has drawn the attention of the scientific
community in order to identify disease biomarkers due to its cost-effectiveness, short time
period for repeated measurements, and very close observation of the metabolic state of
patients [5,6]. Metabolomics is employed to assess metabolites, which are the end products
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of biochemical processes, in both a quantitative and qualitative manner. Metabolomics
provides better information about the status of metabolites that occur due to changes in
gene expression. It is widely used in pharmaceutical industries and R&D for detecting
biomarkers for diseases, identifying their signaling pathways, and assessing their efficacy.
Metabolomics is classified into two categories: targeted metabolomics and untargeted
metabolomics. Targeted metabolomics analyses specific metabolites, whereas non-targeted
metabolomics is utilized to analyze the metabolites extracted from organisms systemati-
cally and comprehensively [7]. Metabolomics consists of various steps to identify novel
disease biomarkers. Several biological specimens, including urine, cerebrospinal fluids,
fecal extracts, serum, cyst fluid blisters, synovial fluids, plasma, seminal fluids, tissue
extracts, dialysis fluids, exhaled breath condensates, bile fluids, and tissue biopsy extracts
(aqueous and lipid), are the most common specimens utilized in metabolomics [8]. Analyti-
cal techniques, specifically mass spectroscopy (MS) in combination with various separation
techniques (gas chromatography, liquid chromatography, HPLC, UPLC, and capillary
electrophoresis) and nuclear magnetic resonance (NMR), are utilized for metabolomics
studies [9–11]. Compared to NMR, MS is preferred for metabolomics as it requires small
sample volumes and has high sensitivity and simple sample preparation [12]. pH is one of
the major disadvantages of NMR, especially when dealing with urine samples. Several lines
of evidence show the importance of metabolomics in the detection of various autoimmune
diseases. Evidence from clinical trials has shown that metabolites can act as potential
biomarkers for various diseases [13–16]. Previous clinical studies have reported that on-
cometabolites may act as diagnostic biomarkers for various carcinomas [17–20]. In addition
to blood glucose, phospholipid profiling is also useful in identification of type 2 diabetes
mellitus [21]. Trimethylamine N-oxide (TMAO) can also be used as a prognostic marker
for patients with acute ischemic stroke who are at an increased risk of unfavorable clinical
outcomes [22,23]. Another study reported a link between heart failure and urobilin and
sphingomyelin (30:1) [24]. An association between carcinoma and eicosanoid metabolites
was also reported [25]. For autoimmune diseases, serum, plasma, fecal extracts, urine,
and other biological samples differ depending on the specific disease. Few studies have
investigated biomarkers for diagnosis [26–28]. However, there is currently only specific
tests for diagnosis for some autoimmune diseases. As a result, the current study aims to
identify common metabolite changes across multiple autoimmune diseases.

2. Materials and Methods
2.1. Literature Search and Data Curation

The current systematic review was performed by following the guidelines of Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). MEDLINE, Sci-
enceDirect, Google Scholar, PubMed, and Scopus (Elsevier) were searched for articles by
using the following terms: “Metabolomics”, “Autoimmune diseases”, “Biological samples”,
and “Metabolic changes”. Articles published in the English language up to March 2023
were included with no specific start date filter. Two hundred and fifty-seven articles were
retrieved through a search strategy. After careful assessment of titles and abstracts, a total of
136 studies were un-contextualized for this study. Thus, 121 abstracts were left for further
scanning. Then, 21 out of 121 studies were excluded due to repetition, and an additional
12 articles did not meet the predefined inclusion criteria, specifically those that were not
published in English and lacked control groups. As a result, a final collection of 88 full-text
articles were eligible for analysis. The selection process is depicted in Figure 1 using a
PRISMA flow chart, outlining the study’s progression through these stages. The protocol
of the study was registered with PROSPERO (registration number: CRD42023447059).
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Figure 1. PRISMA flow chart illustrating the selection process of the studies.

The initial screening of titles was conducted by the first reviewer (AM). Subsequently,
two reviewers (AM and KSA) independently assessed the title and abstracts using an
eligibility checklist to exclude irrelevant studies. Full texts of potentially eligible studies
were retrieved for a comprehensive evaluation and final selection. Two reviewers (WFF and
AAO) critically evaluated the quality and validity of the included studies. The first reviewer
extracted the data, which were then verified by the second and third reviewers (KSA,
AAO), and finally reviewed by the fourth reviewer (WFF) for accuracy and completeness.
Consensus discussions were held to address any discrepancies and ensure study eligibility.

2.2. Data Synthesis

The outcomes of the included studies were summarized in tables mentioning the
author, analytical technique, biological fluids, models, and the number of patients and
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controls. Metabolic changes with respect to different biological fluids were also summarized
in tables.

2.3. Risk of Bias Assessment

For both the fluid samples and the studies, the risk of bias was assessed by using
the AMSTAR 2 tool. We assessed the patient recruitment process and examined the
information available/lack of information about the patients. Contrasting targeted and
non-targeted metabolic analysis tactics were also evaluated and, finally, fluid sample
collection techniques were also taken into consideration.

3. Results

The systematic search of different databases of published articles produced 88 studies.
General characteristics of the included studies are shown in Table 1, which includes the
author, biological fluids, analytical techniques, models, and sample sizes of different
groups which allowed for further categorization of metabolomics changes in the biological
fluids that were analyzed in the included studies: plasma, serum, feces, urine, and other
biological fluids (synovial fluids, CSF, tears, peripheral blood monocytes, in vivo white
matter, peripheral blood, and lymphocytes). In 12 out of 88 studies, other fluid samples
were used in contrast to plasma, urine, feces, and serum [29–40].

Table 1. General characteristics of the included studies.

S. No. Author Species Fluid Sample Analysis
Technique Sample Size

1 Madsen et al., 2011 [41] Human Plasma GC-MS, UPLC-MS RA = 20, HC = 10
2 Young et al., 2013 [30] Human Synovial fluid GC-TOF MS RA = 16, HC = 14
3 Yang et al., 2015 [29] Human Synovial fluid GC-TOF MS RA = 25, HC = 10
4 Fang et al., 2016 [42] Human Plasma LC-MS RA = 32, HC = 84
5 Zabek et al., 2016 [43] Human Serum 1H-NMR RA = 20, HC = 30
6 Zhou et al., 2016 [44] Human Serum GC-MS RA = 33, HC = 32
7 Li et al., 2018 [45] Human Serum UPLC-HRMS RA = 30, HC = 32
8 Sasaki et al., 2019 [46] Human Plasma CE-Q-TOFMS RA = 49, HC = 10
9 Takahashi et al., 2019 [47] Human Serum CE-TOF-MS RA = 43, HC = 43
10 Hur et al., 2021 [48] Human Plasma UPLC-MS/MS RA = 128, HC = 12
11 Ouyang et al., 2011 [49] Human Serum 1H-NMR SLE = 64, HC = 35
12 Wu et al., 2012 [50] Human Serum GC-MS, LC-MS SLE = 20, HC = 9

13 Perl et al., 2015 [31] Human Peripheral blood
and lymphocytes GC-MS, LC-MS SLE = 36, HC = 39

14 Bengtsson et al., 2016 [51] Human Serum GC-MS SLE = 30, HC = 05
15 Guleria et al., 2016 [52] Human Serum NMR SLE = 22, HC = 30

16–17 Yan et al., 2016 [53,54] Human Urine and serum GC-MS SLE = 28, HC = 44

18 Åkesson et al., 2018 [55] Human Plasma GC-MS, LC-MS,
NMR SLE = 132, HC = 30

19 Shin et al., 2018 [56] Human Plasma GC-MS SLE = 41, HC = 41
20 Li et al., 2019 [57] Human Serum HPLC-MS SLE = 17, HC = 17
21 Zhang et al., 2019 [58] Human Feces UHPLC-MS SLE = 32, HC = 26
22 Zhang et al., 2022 [59] Human Serum UPLC-MS/MS SLE = 52, HC = 21

23 Gonzalo et al., 2012 [32] Human CSF LC-MS/UHPLC-
MS MS = 11, HC = 12

24 Mehrpour et al., 2013 [60] Human Serum NMR MS = 23, HC = 28

25 Vingara et al., 2013 [33] Human In vivo white
matter MRS with MRI MS (RR) = 27, HC = 14

26 Dickens et al., 2014 [61] Human Serum NMR MS (RR) = 22, HC = 14
27 Reinke et al., 2014 [34] Human CSF NMR MS = 15, HC = 17

28 Pieragostino et al., 2015 [35] Human CSF MALDI-TOF-MS,
LC-MS/MS MS(RR) = 12, HC = 13

29 Cocco et al., 2016 [62] Human Plasma NMR MS = 73, HC = 88
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Table 1. Cont.

S. No. Author Species Fluid Sample Analysis
Technique Sample Size

30 Gebregiworgis et al., 2016 [63] Human Urine NMR MS (RR) = 8, HC = 07
31 Lim et al., 2017 [64] Human Serum UHPLC, GC-MS MS (RR) = 50, HC = 49
32 Herman et al., 2018 [36] Human CSF LC-MS/ELISA MS (RR) = 30, HC = 10
33 Stoessel et al., 2018 [65] Human Plasma LC-MS MS (RR) = 10, HC = 63
34 Bhargava et al., 2019 [66] Human Plasma GC-MS/LC-MS MS = 18, HC = 18

35 Andersen et al., 2019 [67] Human Serum 2D
GCxGC-TOFMS MS = 12, HC = 13

36 Cicalini et al., 2019 [37] Human Tears LC–MS/MS MS = 12, HC = 21
37 Lorefice et al., 2019 [68] Human Plasma NMR MS = 21, HC = 21
38 Kasakin et al., 2019 [69] Human Plasma LC–MS/MS MS (RR) = 22, HC = 22
39 Podlecka-Piętowska et al., 2019 [38] Human CSF NMR MS = 19, HC = 19

40 Carlsson et al., 2020 [39] Human CSF LC-HRMS,
FIA-HRMS MS = 12, HC = 12

41 Sylvestre et al., 2020 [70] Human Plasma NMR MS (RR) = 28, HC = 18
42 Gaetani et al., 2020 [71] Human Urine HPLC–MS/MS MS (RR) = 47, HC = 43

43–44 Zahoor et al., 2022 [40] Human
Peripheral blood
monocytes and

serum
UPLC-MS/MS MS (RR) = 35, HC = 14

45 Murgia et al., 2023 [72] Human Plasma 1H-NMR MS = 42, HC = 22
46 De Preter et al., 2015 [73] Human Feces GC-MS CD = 83, HC = 16
47 Bjerrum et al., 2015 [74] Human Feces 1H-NMR CD = 44, HC = 21
48 Lamas et al., 2016 [75] Human Feces HPLC, LC-MS IBD = 102, HC = 37
49 Coburn et al., 2016 [76] Human Serum HPLC UC = 137, HC = 38

50 Lee et al., 2017 [77] Human Feces HRMS CD = 31, UC = 22,
HC = 19

51 Jacobs et al., 2016 [78] Human Feces UPLC-MS CD = 26, UC = 10,
HC = 54

52–53 Kolho et al., 2017 [79] Human Serum and feces UPLC-MS/MS IBD = 69, HC = 29
54 Nikolaus et al., 2017 [80] Human Serum HPLC IBD = 291, HC = 291

55 Santoru et al., 2017 [81] Human Feces
1H-NMR, GC-MS,

LC-QTOF-MS
CD = 50, UC = 82,

HC = 51

56 Scoville et al., 2018 [82] Human Serum HILIC/UPLC-
MS/MS

CD = 20, UC = 20,
HC = 20

57 Das et al., 2019 [83] Human Feces LC-MS IBD = 25, HC = 14

58 Weng et al., 2019 [84] Human Feces GC-MS, LC-MS CD = 172, UC = 107,
HC = 42

59 Franzosa et al., 2019 [85] Human Feces Untargeted LC-MS CD = 68, UC = 53,
HC = 34

60 Diederen et al., 2020 [86] Human Feces 1H-NMR, HPLC CD = 43, HC = 15
61 Bushman et al., 2020 [87] Human Feces UPLC-LC/MS IBD = 28, HC = 37
62 Wang et al., 2021 [88] Human Feces UPLC-MS/MS CD = 29, HC = 20
63 Yang et al., 2021 [89] Human Feces UPLC-MS/MS UC = 32, HC = 23
64 Wu et al., 2022 [90] Human Plasma UHPLC-HRMS IBD = 30, HC = 15

65 Dutta et al., 2012 [91] Human Plasma Untargeted
UPLC-ToF MS T1D = 07, HC = 07

66 Deja et al., 2013 [92] Human Urine 1H-NMR T1D = 30, HC = 14
67 Balderas et al., 2013 [93] Human Plasma LC-MS and CE-MS T1D = 34, HC = 15
68 Galderisi et al., 2018 [94] Human Urine LC-MS T1D = 56, HC = 30
69 Frohnert et al., 2020 [95] Human Serum LC-MRM/MS T1D = 42, HC = 25
70 Lanza et al., 2010 [96] Human Plasma 1H-NMR, LC-MS T1D = 09, HC = 09
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Table 1. Cont.

S. No. Author Species Fluid Sample Analysis
Technique Sample Size

71 Dutta et al., 2016 [97] Human Plasma UPLC-TOF-MS T1D = 14, HC = 14

72 Brugnara et al., 2012 [98] Human Serum
1H-NMR and

GC-MS
T1D = 10, HC = 11

73 Knebel et al., 2016 [99] Human Plasma GC-MS, LC-MS T1D = 127, HC = 129
74 Lamichhane et al., 2019 [100] Human Plasma GC-TOF-MS T1D = 40, HC = 40
75 Bervoets et al., 2017 [101] Human Plasma 1H-NMR T1D = 07, HC = 07
76 Zhang et al., 2022 [102] Human Serum GC-TOF-MS T1D = 76, HC = 65

77 Noso et al., 2023 [103] Human Serum CE-FTMS,
LC-TOF-MS T1D = 23, HC = 03

78 Haukka et al., 2018 [104] Human Serum UPLC-MS T1D = 102, HC = 98
79 Wang et al., 2014 [105] Human Serum 1H-NMR PBC = 41, HC = 14
80 Lian et al., 2015 [106] Human Serum UPLC-MS PBC = 20, HC = 25

81 Trottier et al., 2012 [107] Human Serum LC-MS/MS PBC = 12, PSC = 06,
HC = 60

82 Bell et al., 2015 [108] Human Serum UHPLC– MS/MS
and GC– MS

PBC = 18, PSC = 21,
HC = 10

83–84 Tang et al., 2015 [109] Human Serum and urine UPLC/QTOF MS PBC = 32, HC = 32
85 Hao et al., 2017 [110] Human Serum 1H-NMR PBC = 29, HC = 41

86–87 Vignoli et al., 2018 [111] Human Serum and urine 1H-NMR PBC = 20, HC = 19
88 Banales et al., 2019 [112] Human Serum UHPLC-MS PSC = 20, HC = 20

ELISA—Enzyme-linked immunosorbent assay, GC—Gas chromatography, LC—Liquid chromatography,
MS—Mass spectroscopy, TOF—Time of flight, CE—Capillary electrophoresis, FTMS—Fourier transform mass
spectroscopy, Q—Quadruple, HILIC—Hydrophilic interaction liquid chromatography, HRMS—High-resolution
mass spectroscopy, MALDI—Matrix-assisted laser desorption/ionization, 2D GCxGC—Two-dimensional gas
chromatography × gas chromatography, MRS—Magnetic resonance spectroscopy, MRI—Magnetic resonance
imaging, TOFMS FIA—Flow injection analysis, MRM—Multiple reaction monitoring, UPLC—Ultra-pressure
liquid chromatography, HPLC= High-pressure liquid chromatography, UHPLC—Ultra-high-pressure liquid
chromatography, 1H-NMR—Proton nuclear magnetic resonance, HC—Healthy control, RA—Rheumatoid arthri-
tis, SLE—Systemic lupus erythematosus, MS—Multiple sclerosis, T1D—Type 1 diabetes, CD—Crohn’s disease,
PBS—Primary biliary cirrhosis, PSC—Primary sclerosing cholangitis, UC—Ulcerative colitis, IBD—Inflammatory
bowel disease, RR—Remitting relapse.

3.1. Serum

A total of 33 studies assessed the metabolite changes in the serum of patients. In all
studies, the analysis was performed on a human model. While changes were observed
in various metabolites, not a single metabolite was found to be statistically significant
across all the studies. In 11 studies, aromatic amino acids (tyrosine, tryptophan, and
phenylalanine) were altered [44,45,49,51,53,57,79,80,105,110,111], four of which were found
to be associated with SLE and PBC. Ten studies reported an alteration in branched amino
acids (leucine, isoleucine and valine) [44,45,49,52,53,59,79,98,105,110], of which four studies
found an association with SLE [49,52,53,59]. Alterations in fatty acids were observed in
eight studies [44,50,53,57,61,104,106,108]. Among the eight studies, three were related to
SLE [50,53,57]. The remaining metabolites that were shown to be significantly changed in
the serum samples were linked to numerous metabolic pathways, including those related
to lipid metabolism, ATP storage, nucleotide metabolism, oxidative stress, amino acid
metabolism, and the TCA cycle (Table 2).
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Table 2. Metabolite changes found in serum.

Author Model Metabolites/Metabolic Pathway

Zabek et al., 2016 [43] Human

Up-regulated: 3-Hydroxyisobutyrate,
acetate,

NAC, acetoacetate,
acetone

Down-regulated: Isoleucine, lactate, alanine,
creatinine, valine, histidine

Zhou et al., 2016 [44] Human

Up-regulated: Docosahexaenoate,
palmitelaidate, oleate,
trans-9-octadecenoate,
D-mannose, glycerol,

ribose
Down-regulated: 2-Ketoisocaproate, isoleucine,

leucine, serine, phenylalanine,
pyroglutamate, methionine, proline,

threonine, valine, urate

Li et al., 2018 [45] Human

Up-regulated: 4-Methoxyphenylacetic acid, glutamic acid, argininosuccinic
acid, L-leucine, L-phenylalanine, L-tryptophan, L-proline,

glyceraldehyde, fumaric acid, cholesterol
Down-regulated: Capric acid, bilirubin

Takahashi et al., 2019 [47] Human
Up-regulated: Betonicine, citric acid, quinic acid

Down-regulated: Glycerol 3-phosphate, N-acetylalanine, hexanoic acid, taurine,
3-aminobutyric acid

Ouyang et al., 2011 [49] Human

Up-regulated: Glucose, glycoprotein,
lactate, VLDL, LDL

Down-regulated: Valine, tyrosine, pyruvate, lysine, phenylalanine, HDL, cholesterol,
isoleucine, histidine, alanine, phosphocholine, glycerol, glutamine, glutamate,

creatinine, citrate

Wu et al., 2012 [50] Human

Up-regulated: Medium-chain FA, 9-HODE, 13-HODE, LTB4, 5-HETE,
gamma-glutamyl peptides

Down-regulated: 1,2 Propanediol, 3-hydroxybutyrate, alpha ketoglutarate,
citrate, G3P, lactate, malate, pyruvate, phosphocholine, essential

polyunsaturated fatty acids (PUFAs), long-chain FA, acyl carnitines,
GSH, methionine, cysteine, choline, pyridoxate, vitamin B6

Bengtsson et al., 2016 [51] Human

Up-regulated: Urea, cystine, threonine, glucose
Down-regulated: Lysine, fumaric acid, malic acid, methionine, tyrosine,
alanine, asparagine, threonic acid, histidine, lactic acid, cysteine, citric

acid, tryptophan

Guleria et al., 2016 [52] Human

Up-regulated: Glucose and N-acetyl
glycoprotein

Down-regulated: Amino acids (leucine,
valine, alanine, glycine, proline), citrate, choline, lactate

Yan et al., 2016 [53] Human

Up-regulated: Methionine, glutamate, cystine, 1-monopalmitin, 1-
monolinolein, 1-monoolein, 2-hydroxyisobutyrate

Down-regulated: Amino acids (tryptophan, alanine, proline, glycine, serine,
threonine, aspartate, glutamine, asparagine, lysine, histidine, tyrosine,

valine, leucine, isoleucine), fructose, mannose, glucose, gluconic acidlactone,
glycerol, oleic acid, arachidonic acid, fumarate,

aminomalonate, threonate, alpha tocopherol

Li et al., 2019 [57] Human

Up-regulated: Ceramides, phosphatidylethanolamine, ether
phosphatidylcholine, diacylglycerol, sphingomyelin (SM), arachidonic

acid, amino acids (arginine, L-glutamic acid, L-histidine), drug
metabolites, 2-coumaric acid, acetylcholine, beta-guanidino propionic

acid, xanthine, inosine, galacturonic acid, rac-glycerol 3 phosphate,
trimethylamine N-oxide (TMAO)

Down-regulated: Acylcarnitines, caffeine, hydrocortisone, itaconic acid,
serotonin
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Table 2. Cont.

Author Model Metabolites/Metabolic Pathway

Zhang et al., 2022 [59] Human

Up-regulated: DG, SM, 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose,
8-(4-methoxy-2,3,6-trimethyl-phenyl)-6-methyl-octa-3,5-dien-2-one, Cer-BDS,

phenylacetyl-L-glutamine, a-amino-g-cyanobutanoate, Pro-Leu, lysoDGTS, LDGTS,
glycidyloleate

Down-regulated: PE,
1-hexadecylthio-2-hexadecanoylamino-1,2-dideoxy-sn-glycero-3-phosphocholine,

PC, Cer-NS, diisononyl phthalate, serylisoleucine, nervonic acid

Mehrpour et al., 2013 [60] Human
Up-regulated:

Glucose
Down-regulated: Valine

Dickens et al., 2014 [61] Human
Up-regulated:

Fatty acids, beta-hydroxybutyrate
Down-regulated: Glucose, phosphocholine,

Lim et al., 2017 [64] Human Up-regulated: Quinolinic acid
Down-regulated: Kynurenic acid

Andersen et al., 2019 [67] Human
Up-regulated:

Pyroglutamate, laurate, acylcarnitine C14:1, N-methylmaleimide,
phosphatidylcholines

Zahoor et al., 2022 [40] Human Down-regulated: Glucose, lactate

Coburn et al., 2016 [76] Human Up-regulated: L-citrulline (L-Cit), the L-Cit/L-Arg ratio
Down-regulated: L-arginine

Kolho et al., 2017 [79] * Human

Up-regulated in UC: Glycocholic acid, L-isoleucine, symmetric dimethylarginine,
serine, phosphoethanolamine, proline, hexanoylcarnitine

Up-regulated in CD: Neopterin, urea cycle, arginine and methionine metabolisms,
namely L-arginine, dimethylglycine, asymmetric dimethylarginine, guanosine,

L-octanoylcarnitine, betaine, L-cystathionine, citrulline, decanoylcarnitine
Down-regulated: L-tryptophan, kynurenic acid, trimethylamine-N-oxide

Nikolaus et al., 2017 [80] Human Up-regulated: Quinolinic acid,
Down-regulated: Tryptophan

Scoville et al., 2018 [82] Human Up-regulated: 54 metabolites in case of CD
Down-regulated: 232 metabolites in case of CD and all decreased in case of UC

Frohnert et al., 2020 [95] Human Up-regulated: Serum glucose, ADP fibrinogen,
mannose

Brugnara et al., 2012 [98] Human Up-regulated: Alanine and lactate, citrate, malate, fumarate, succinate
Down-regulated: Valine, leucine

Zhang et al., 2022 [102] Human

Up-regulated: TCA cycle metabolites (pyruvate, fuma indoleacetic acid
rate, malate, linoleic acid), α-lactose, sorbitol, myo-inositol, sucrose, glycerol

Down-regulated: 1,5-Anhydrosorbitol (1,5-anhydroglucitol), indoleacetic acid,
d-mannose, d-galactose

Noso et al., 2023 [103] Human Up-regulated: 3-Phenylpropionic acid
Down-regulated: Hypotaurine

Haukka et al., 2018 [104] Human Up-regulated: Carbohydrates, fatty acid, nucleotides, amino acids
Down-regulated: γ-Glutamyl amino acids

Wang et al., 2014 [105] Human Up-regulated: Aromatic amino acids
Down-regulated: Branched-chain amino acids

Lian et al., 2015 [106] Human
Up-regulated: Bile acids

Down-regulated: Free fatty acids, phosphatidylcholines, sphingomyelin,
lysolecithins

Trottier et al., 2012 [107] Human

Up-regulated: Total bile acids, taurine and glycine conjugates of primary bile acids
in both PBC and PSC

Down-regulated: Ratio
of total glycine versus total taurine conjugates in case of PBC and secondary acids in

case of PSC
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Table 2. Cont.

Author Model Metabolites/Metabolic Pathway

Bell et al., 2015 [108] Human
Up-regulated:

Free fatty acid, acyl-carnitine, acetoacetate, BHBA
Down-regulated: Lysolipids

Tang et al., 2015 [109] Human
Up-regulated: Level of bile acid

Down-regulated: Propionyl carnitine,
butyryl carnitine

Hao et al., 2017 [110] Human

Up-regulated: VLDL/LDL, taurine, glycine, phenylacetate, citrate, caprate,
glycylproline, glucose, 3-hydroxyisovalerate, methionine, alanine

Down-regulated: 4-Hydroxyproline, carnitine, 2-phosphoglycerate, citraconate,
tyrosine, 3-hydroxyisobutyrate, inosine,

thymidine, ornithine, tiglylglycine, urocanate, hippurate, n-acetylcysteine,
isoleucine

Vignoli et al., 2018 [111] Human Up-regulated: Pyruvate, citrate, glutamate, glutamine, serine, tyrosine,
phenylalanine, lactate

Banales et al., 2019 [112] Human Up-regulated: Glycholic acid, phosphatidylcholines
Down-regulated: D(-)-2-aminobutyric acid

* Based on a partial least squares discriminant analysis (PLS-DA).

3.2. Plasma

A total of 21 studies assessed the metabolite changes in the plasma of patients. The
analysis was conducted on human models in all studies. In all 21 plasma-based metabo-
lite studies, not a single metabolite exhibited a consistent statistical significance across
all experiments. Eleven out of twenty-one studies showed alterations in amino acid
metabolism [41,46,62,68–70,72,91,96,100,101], of which five were shown to be associated
with MS [62,68–70,72] and four with T1D [91,96,100,101]. Seven out of twenty-one stud-
ies showed an alteration in aromatic amino acids [41,46,62,68,70,96,101]. The alteration of
metabolite levels in lipid metabolism has been reported in seven studies [41,56,65,66,93,99,101].
Of these, three and two studies were associated with MS [65,66] and T1D [93,99,101]. Fang
et al. reported the alteration in membrane phosphoproteins and dihydroceramides [42].
Åkesson et al. reported the metabolic alteration in kynurenine pathways [55]. The remain-
ing metabolites that were shown to be significantly changed in the plasma samples were
linked to numerous metabolic pathways. These pathways included nucleotide metabolism,
oxidative stress, amino acid metabolism, glycolytic metabolism, and the TCA cycle (Table 3).

Table 3. Metabolites changes found in plasma.

Author Model Metabolites/Metabolic Pathway

Madsen et al., 2011 [41] Human

Up-regulated: Glyceric acid,
D-ribofuranose,
hypoxanthine

Down-regulated: Histidine, threonic acid, methionine,
cholesterol, asparagine, threonine

Fang et al., 2016 [42] Human
Up-regulated: Lysophosphatidylinositol

Down-regulated: Dihydroceramides, alkylphosphatidylethanolamine,
alkenylphosphatidylethanolamines, phosphatidylserines

Sasaki et al., 2019 [46] Human Up-regulated: Tyrosine, phenylalanine
Down-regulated: Lactate

Hur et al., 2021 [48] Human Up-regulated: Glucuronate, hypoxanthine
Åkesson et al., 2018 [55] Human Up-regulated: Kynurenine, quinolinic acid

Shin et al., 2018 [56] Human
Up-regulated: Myristic, palmitoleic, oleic, and eicosanoic acid

Down-regulated: Caproic, caprylic, linoleic, stearic, behenic, lignoceric,
arachidonic, and hexacosanoic acid
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Table 3. Cont.

Author Model Metabolites/Metabolic Pathway

Cocco et al., 2016 [62] Human
Up-regulated: 3-OH-butyrate, acetoacetate, acetone, alanine,

choline
Down-regulated: Glucose, 5-OH-tryptophan, tryptophan

Stoessel et al., 2018 [65] Human Down-regulated: Glycerophospholipids, linoleic acid, lysoPC

Bhargava et al., 2019 [66] Human
Up-regulated:

Phospholipids, lysophospholipids, plasmalogen
Down-regulated: Saturated and polyunsaturated fatty acids

Lorefice et al., 2019 [68] Human
Up-regulated: Tryptophan

Down-regulated: Acetoacetate, acetone, 3-
hydroxybutyrate, glutamate, methylmalonate

Kasakin et al., 2019 [69] Human Up-regulated: Glutamate
Down-regulated: Decenoylcarnitine, leucine–isoleucine

Sylvestre et al., 2020 [70] Human Down-regulated: Arginine, isoleucine, citrate, serine, phenylalanine,
methionine, asparagine, histidine, myo-inositol

Murgia et al., 2023 [72] Human Up-regulated: Leucine
Down-regulated: Circulating branched-chain AAs, valine, isoleucine

Wu et al., 2022 [90] Human Up-regulated: Phosphoethanolamine
Down-regulated: Phosphotydilcholine

Dutta et al., 2012 [91] Human Up-regulated: Ketogenic and gluconeogenic amino acid, BCAA, glycerol,
beta-hydroxybutyrate

Balderas et al., 2013 [93] Human
Up-regulated: Free or non-esterified fatty acids, acetylarginine,

hydroxytrimethyllysine, trimethyllysine
Down-regulated: Tetrahydroaldosterone3-glucuronide

Lanza et al., 2010 [96] Human
Up-regulated: Lactate, acetate, allantoin, ketones, leucine, isoleucine, valine,

phenylalanine, tyrosine
Down-regulated: Glycine, glutamate, threonine

Dutta et al., 2016 [97] Human

Up-regulated: Carbohydrate metabolites: glucose, glucosamine, lactaldehyde,
methylglyoxal, lactate, acetate, acetoacetate

Down-regulated: Glycolytic metabolites such as pyruvate, dihydroxyacetone
phosphate, TCA cycle metabolites

Knebel et al., 2016 [99] Human

Up-regulated: PC species, biogenic
amines, H1, AC C18:2, arachidonic acid

levels
Down-regulated: δ-6-Desaturase (D6D), Val/Gly

Lamichhane et al., 2019 [100] Human Up-regulated: Methionine
Down-regulated: Glutamic and aspartic acids

Bervoets et al., 2017 [101] Human
Up-regulated: Glucose

Down-regulated: Triglycerides, phospholipids and cho-
linated phospholipids, serine, tryptophan, cysteine

3.3. Feces

A total of 15 studies assessed the metabolite changes in the feces of patients. The
analysis was conducted on human models in all studies. Seven out of fifteen studies
showed metabolic alterations in amino acid metabolism [58,74,75,77,81,85,88]. Of these,
five studies were linked to CD [74,77,81,85,88]. Five out of fifteen studies showed an
alteration in aromatic amino acids [58,74,75,78,81]. Of these, three studies were linked to
CD [74,78,81]. Eight out of fifteen studies showed an alteration in bile acids [78,83–89]. Of
these, five studies were linked to CD [78,84–86,88]. The remaining metabolites that were
shown to be significantly changed in the fecal samples were linked to numerous metabolic
pathways. These pathways included nucleotide metabolism, lipid metabolism, amino acid
metabolism, and the TCA cycle (Table 4). Nonetheless, it is important to highlight that none
of the identified metabolites exhibited consistent and significant alterations throughout
all analyses.
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Table 4. Metabolites changes found in feces.

Author Model Metabolites/Metabolic Pathway

Zhang et al., 2019 [58] Human

Up-regulated: Proline, L-tyrosine, L-methionine, L-asparagine, DL-pipecolinic
acid, glycyl-L-proline, xanthurenic acid, kynurenic acid, L-carnosine,

monoacylglycerol (MG) 22:6, MG 16:5, lysophosphatidylethanolamine
(lysoPE) 16:0, lysophosphatidylcholine (lysoPC) 22:5,

phosphatidylglycerol (PG) 27:2, 1,2-dioleoyl-rac-glycerol
Down-regulated: Adenosine, adenosine 5′

-diphosphate (ADP), D-alaninyl-dalanine (D-Ala-D-Ala), lauryl diethanolamide,
sulfoquinovosyl

diacylglyceride (SQDG) 26:5, thiamine pyrophosphate, trigonelline, mucic acid

De Preter et al., 2015 [73] Human
Up-regulated: 1-Ethyl3-methylbenzene, benzene acetaldehyde, phenol, 2-methyl

propanal, carbon disulfide, 1-methoxy-4-methylbenzene
Down-regulated: Pentanoate, hexanoate, heptanoate, octanoate, nonanoate

Bjerrum et al., 2015 [74] Human Up-regulated: Glycine, isoleucine, leucine, valine, alanine, tyrosine
Down-regulated: Butyl, propyl

Lamas et al., 2016 [75] Human Down-regulated: Tryptophan, kynurenin

Lee et al., 2017 [77] Human Up-regulated: LysoPA
Down-regulated: Pyridoxate

Jacobs et al., 2016 [78] Human Up-regulated: Bile acids, taurine, tryptophan, calprotectin

Kolho et al., 2017 [79] *

Up-regulated in UC: Aspartate, glycine, threonine, ornithine, creatinine, asparagine,
glyceraldehyde, choline, kynurenine, histidine, taurine, phenylalanine, alanine,

normetanephrine, allantoin, citrulline, carnosine, tryptophan, serine. None of the
metabolites as significant as in CD

Down-regulated in UC: CytosineDown-regulated in CD: Aspartate, threonine,
asparagine, cytosine, histidine, taurine

Santoru et al., 2017 [81] Human Up-regulated: Biogenic amines, amino acids, lipids
Down-regulated: B group vitamins

Das et al., 2019 [83] Human Up-regulated: Primary bile acids
Down-regulated: Secondary bile acids

Wenig et al., 2019 [84] Human Down-regulated: Arachidic, oleic acid, ebacic acid, isocaproic acid, bile acids,
riboflavin, nicotinate, pantothenate, 25-hydroxyvitamin D3

Franzosa et al., 2019 [85] Human

Up-regulated: Sphingolipids, carboximidic acids, bile acids, cholesteryl esters,
phosphatidylcholines, α-amino acids

Down-regulated: Lactones, alkyl-phenylketones, ergosterols, quinolines, vitamin D,
cholestrol

Diederen et al., 2020 [86] Human
Up-regulated: Propionate, primary and

conjugated bile acids
Down-regulated: Secondary bile acids

Bushman et al., 2020 [87] Human Up-regulated: Calprotectin, cholate, chenodeoxycholate

Wang et al., 2021 [88] Human
Up-regulated: Unconjugated bile acids, amino acids, including L-aspartic acid,

linoleic acid, L-lactic acid
Down-regulated: Conjugated bile acids

Yang et al., 2021 [89] Human

Up-regulated: TGR5, taurocholic acid, cholic acid, taurochenodeoxycholate,
glycochenodeoxycholate

Down-regulated: VDR, secondary Bas, such as lithocholic acid, deoxycholic acid,
glycodeoxycholic acid, glycolithocholic acid, taurolithocholate

* Based on a partial least squares discriminant analysis (PLS-DA).

3.4. Urine

A total of seven studies assessed the metabolite changes in the urine of patients. The
analysis was conducted on human models in all studies. However, none of the identified
metabolites showed consistent significant alterations across all studies. Four out of seven
studies showed metabolic alterations in amino acid metabolism [54,71,92,94]. Of these, two
studies were linked to T1D [92,94]. Three out of seven studies showed metabolic alterations
in aromatic amino acids, especially tryptophan [54,71,94]. One of the studies reported a
decrease in trigonelline and hippurate [111]. Deja et al. observed an increase in urea [92].
Another study reported an increase in bile acids [109]. The remaining metabolites that were
shown to be significantly changed in the urine samples were linked to numerous metabolic
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pathways. These pathways included lipid metabolism, amino acid metabolism, and the
TCA cycle (Table 5).

Table 5. Metabolites changes found in urine.

Author Model Metabolites/Metabolic Pathway

Yan et al., 2016 [54] Human

Up-regulated: Valine, leucine, 3-hydroxyisobutyrate, fumarate, malate,
cystine, pyroglutamarate, cysteine, threonate, uracil, pseudouridine,
xanthine, urate, p-cresol, 2-hydroxyisobutyrate, tryptophan, glyceric

acid, myo-inositol, 2,3-dihydroxybutyrate, 2,4-dihydroxybutyrate, 3,4-
dihydroxybutyrate, 3,4,5-trihidroxypentanoic acid glutarate

Gebregiworgis et al., 2016 [63] Human

Up-regulated: Trimethylamine N-oxide,
3-hydroxyisovalerate,
hippurate, malonate

Down-regulated: Creatinine,
3-hydroxybutyrate,

methylmalonate

Gaetani et al., 2020 [71] Human

Up-regulated:
Indole-3-propionic acid

Down-regulated: Urinary tryptophan, kynurenine, anthranilate, serotonin,
K/T ratio

Deja et al., 2013 [92] Human Up-regulated: Urea
Down-regulated: Pyruvate, citrate, succinate, glycine, phenylalanine, valine, alanine

Galderisi et al., 2018 [94] Human Up-regulated: Tryptophan, phenylalanine

Tang et al., 2015 [109] Human
Up-regulated: Level of bile acid

Down-regulated: Propionyl carnitine,
butyryl carnitine

Vignoli et al., 2018 [111] Human Down-regulated: Trigonelline, hippurate

3.5. Other Biological Fluids

A total of 12 studies assessed the metabolite changes in the other biological fluids
(synovial fluids, CSF, tears, peripheral blood monocytes, in vivo white matter, and pe-
ripheral blood and lymphocytes) of patients. The analysis was conducted on human
models in all studies. In all 12 other biological fluid-based metabolite studies, not a single
metabolite showed significant changes that were consistent across all experiments. Six out
of twelve studies performed metabolomics analysis on CSF [32,34–36,38,39]. Two stud-
ies performed metabolomics analysis on synovial fluid [29,30]. Two studies performed
metabolomics analysis on peripheral blood lymphocytes and monocytes [31,40]. One out
of twelve studies performed metabolomics analysis on tears [37]. One study carried out
metabolomics analysis on in vivo white matter [33]. Among the twelve studies, six reported
metabolic changes in amino acid metabolism [30,31,33,37–39]. Of these, three studies were
linked to MS [37–39]. A study conducted on blood samples from patients with MS observed
a decrease in glucose and lactate levels [40]. There was another study conducted on CSF
specimens from patients with MS, which observed a decrease in glycine, dimethylarginine,
and glycerophospholipid PC-O (34:0), as well as hexoses [39]. Podlecka-Piętowska et al.
analyzed the metabolic alteration in CSF from MS patients and observed a decrease in
acetone, choline, urea, 1,3-dimethylurate, creatinine, isoleucine, myo-inositol, leucine, 3-OH
butyrate, and acetyl-CoA [38]. A study conducted by Cicalini et al. reported an increase
in amino acids and acylcarnitines in the tears of MS patients [37]. A study performed by
Herman et al. reported a decrease in 3-methoxytyramine and caffeine in the CSF of MS
patients [36]. Pieragostino et al. reported a decrease in phosphatydic acid and an increase
in phosphatidylcholine and phosphatidylinositol in patients with MS [35]. Vingara et al.
analyzed the metabolic alteration in in vivo white matter and reported a decrease in lipid
metabolism in patients with MS [33]. Gonzalo et al. analyzed the metabolic alteration
in CSF and reported a decrease in PPARγ and an increase in 8-iso-prostaglandin F2α in
patients with MS [32]. The remaining metabolites that were shown to be significantly
changed in the other biological fluid samples were linked to numerous metabolic pathways.
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These pathways included nucleotide metabolism, lipid metabolism, amino acid metabolism,
glycolytic metabolism, and the TCA cycle (Table 6).

Table 6. Metabolite changes found in other biological fluids.

Author Model Fluid Metabolites/Metabolic Pathway

Young et al., 2013 [30] Human Synovial fluid

Up-regulated: 3-Hydroxybutyrate, lactate,
acetylglycine, taurine, glucose

Down-regulated: LDL-lipids, alanine,
methylguanidine

Yang et al., 2015 [29] Human Synovial fluid

Up-regulated: Lactic acid, carnitine,
diglycerol, pipecolinic

acid, betamannosylglycerate
Down-regulated: Valine, citric acid, gluconic lactone,

glucose, glucose-1-phosphate,
mannose, 5-methoxytryptamine,

D-glucose, ribitol

Perl et al., 2015 [31] Human Peripheral blood and
lymphocytes

Up-regulated: Kynurenine, methionine sulfoxide,
cystine, OAA, PEP,

DHAP, 3 PG, R5P, guanine, guanosine, GDP, dGDP,
AMP, ADP,

cytosine, dCTP, PHE
Down-regulated: Cysteine, inosine

Gonzalo et al., 2012 [32] Human CSF Up-regulated: 8-Iso-prostaglandin F2α
Down-regulated: PPARγ

Vingara et al., 2013 [33] Human In vivo white matter
Up-regulated: N-acetyl-aspartate,

glutamate/glutamine, choline
Down-regulated: Lipid

Reinke et al., 2014 [34] Human CSF

Up-regulated: Threonate, choline, myo-inositol
Down-regulated: Phenylalanine,

mannose, citrate,
3-hydroxybutyrate,

2-hydroxyisovalerate

Pieragostino et al., 2015 [35] Human CSF
Up-regulated: Phosphatidylcholine,

phosphatidylinositol
Down-regulated: Phosphatydic acid

Herman et al., 2018 [36] Human CSF

Up-regulated: Trigonelline, citrulline,
O-succinyl-homoserine,
N6-(delta2-isopentenyl)-

adenine, pipecolate,
1-methyladenosine,

4-acetamidobutanoate,
5-hydroxytryptophan,

kynurenate
N-acetylserotonin

Down-regulated: 3-Methoxytyramine,
caffeine

Cicalini et al., 2019 [37] Human Tears
Up-regulated: Amino acids, acylcarnitines

Down-regulated: Phosphotydilcholine,
lyso-phosphotydilcholine sphingomyelins

Podlecka-Piętowska et al.,
2019 [38] Human CSF

Down-regulated: Acetone, choline, urea,
1,3-dimethylurate, creatinine,

isoleucine, myo-inositol, leucine, 3-OH butyrate,
acetyl-CoA

Carlsson et al., 2020 [39] Human CSF
Up-regulated:

Glycine, asymmetric dimethylarginine,
glycerophospholipid PC-O (34:0), hexoses

Zahoor et al., 2022 [40] Human Peripheral blood
monocytes and serum Down-regulated: Glucose, lactate
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4. Discussion

The metabolomics approach is a continuously evolving approach in the field of “omics”
technology that offers a molecular view of disease pathophysiology and identifies disease
biomarkers. Metabolomics also provides early diagnosis of diseases, better intervention,
and monitoring of the progression of disease and the potency of treatment. The term au-
toimmune disease refers to a group of chronic disorders that are associated with a variety of
metabolic changes that vary with the disease type. Given the absence of definitive cures for
autoimmune diseases, patients are confronted with enduring illness and ongoing treatment
throughout their lives. Hence, early diagnosis and recognition of various autoimmune
diseases are essential to lessen disease progression and prevent painful conditions as well
as co-morbidity and mortality caused by autoimmune diseases. The studies included in
this systematic review analyzed the metabolic changes in various autoimmune diseases
(rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, Crohn’s disease,
primary sclerosing cholangitis, primary biliary cholangitis, inflammatory bowel disease,
ulcerative colitis, and type 1 diabetes) in serum, plasma, feces, urine, and other biological
fluids including synovial fluids, CSF, tears, in vivo white matter, and peripheral blood
monocytes and lymphocytes. All studies were carried out on patients. Mass spectroscopy
and nuclear magnetic resonance were used in these studies. In most of the studies, mass
spectroscopy was utilized in combination with various separation techniques. Metabolites
that are identified through metabolomics analysis of various biological fluids are either
reported as increased or decreased in contrast to controls. Various metabolites were found
to increase or decrease, belonging to various metabolic pathways including TCA, glycolytic,
amino acid metabolism, ATP metabolism, nucleotide metabolism, oxidative stress, lipid
metabolism, and carbohydrate metabolism. A relatively consistent change in the propor-
tion of metabolites was observed. However, there were instances of variation between
individual cases. For instance, one of the studies reported an increase in the level of phos-
phatidylcholine in CSF specimens [35], while some studies observed a decrease in the level
of phosphatidylcholine in tears and plasma [37,90]. We observed similar findings for other
metabolites. It is possible that this may be due to interspecies differences in the metabolic
process of patients, suggesting that further studies are required about pathophysiology
and metabolomics. Further, for metabolomics findings to be applicable across species, it
is imperative to identify both similarities and differences between animals and humans.
Additionally, human clinical populations must be evaluated in order to confirm the utility
of identified biomarker candidates in animal models. Different studies have reported
metabolic changes associated with various autoimmune diseases. The metabolism of acyl-
carnitine and carnitine, changes in fatty acid metabolism, as well as TCA cycle metabolites
have been linked to mitochondrial dysfunction [26,57,61,91,109,111,113]. Reactive oxy-
gen species, antioxidant metabolites, glucogenic amino acid metabolites [58,114,115], and
the accumulation of signaling metabolites were also reported [116]. Developing metabo-
lites associated with mitochondrial dysfunction may be a focus for future research. The
metabolism of various amino acids and lipids has been found to be similar in a number of
studies. However, an alteration in phosphorylcholine has only been reported in a limited
number of studies. In many studies, altered amino acid metabolism and the ratio of aro-
matic to branched amino acids have been found to be diagnostic indicators of autoimmune
diseases, particularly SLE, MS, and CD [58,117,118]. However, the metabolic changes in
the level of amino acids across the studies were different. This suggests that further studies
are required to validate the ratio of aromatic and branched amino acids as a diagnostic
indicator of autoimmune diseases. Maintaining body homeostasis requires the synthesis
and degradation of proteins. Amino acid metabolism plays a crucial role in this biochem-
ical process, including regulation of the innate and adaptive immune systems [119,120].
The utilization of amino acid metabolism changes as diagnostic markers offers several
compelling advantages [121]. Amino acids, being stable and easily measurable in biological
fluids, present a feasible and practical option for clinical assessment. Their involvement
in a wide array of metabolic pathways makes them valuable indicators of physiological
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changes. Several studies have shown that alteration in amino acid metabolism is linked
with various disease conditions, including cardiovascular disease [122], cancer [123,124],
and autoimmune diseases [100–102,119–121]. A case report has shown that serum levels of
aspartic and glutamic acids are linked with the development of myasthenia gravis [125].
Reports conducted on dietary protein restriction have demonstrated that branched amino
acids contribute to promoting metabolic health [126,127]. In the current study, there were
changes in serum levels of aromatic amino acids in 11 studies and branched amino acids
in 10. A significant alteration in amino acid metabolism was observed in 11 plasma reports.
Seven studies reported significant alterations in amino acid metabolism in feces whereas
four studies reported them in urine. The above findings indicated that branched amino acid
metabolism may act as a diagnostic biomarker for autoimmune diseases, specifically SLE,
CD, and MS. Altered amino acids in other biological fluids may be related to different stages
or severity of autoimmune diseases. However, it is necessary to validate the method with a
larger study sample before it can be applied to diagnostic practice, due to the multifactorial,
heterogeneous, and complex nature of these diseases. Only 88 articles met the inclusion
criteria for the current study. There are, however, several articles on metabolomics and
autoimmune diseases that did not meet our inclusion criteria or did not appear in databases
due to keywords or database limitations. Thus, these studies were not chosen for this
systematic review. A study should identify and control for confounding factors (dietary
habits, patient demographics, and concurrent medical conditions) since biological fluids,
especially plasma, urine, and serum, all reflect systemic metabolism. These confounding
factors may be involved in the metabolic alterations, indicating that statistical modeling is
required for development of diagnostic biomarkers of autoimmune diseases.

5. Conclusions

The findings of the current study suggest that alterations in amino acid metabolism,
particularly aromatic and branched amino acids, may serve as potential diagnostic biomark-
ers for autoimmune diseases such as SLE, MS, and CD. We also observed altered amino
acid metabolism in various biological fluids including plasma, feces, urine, synovial fluids,
CSF, tears, peripheral blood monocytes, in vivo white matter, peripheral blood, and lym-
phocytes. The study also emphasizes the complexity and heterogeneity of autoimmune
disorders, since several other metabolic alterations have been reported. These alterations
within various metabolic pathways were linked to energy metabolism, oxidative stress,
lipid metabolism, and nucleotide metabolism, suggesting that these shifts are likely con-
sequences of autoimmune disorders. However, biomarkers are changed owing to slight
alterations in the experimental environment. Hence, metabolomics analyses must be care-
fully performed in the laboratory. While amino acid metabolism emerges as a promising
diagnostic biomarker, the study emphasizes that further studies are required to validate
the method with a larger study sample before it can be applied to diagnostic practice, due
to the multifactorial, heterogeneous, and complex nature of these diseases. Researchers
need to explore the correlation between the severity or stages of autoimmune disease and
amino acid metabolism in different biological fluids. Furthermore, studies are required to
evaluate the relationship between alterations in amino acid metabolism in various biolog-
ical fluids and different autoimmune diseases. They are also required to investigate the
potential therapeutic targets and conduct longitudinal studies to evaluate the efficacy of
the identified biomarkers over time.

Author Contributions: A.M.: Conceptualized and designed the study. K.S.A. and A.A.O.: Conducted
the literature search and initial screening of titles and abstracts to identify relevant studies. A.M.
and K.S.A.: Performed the full-text screening of selected studies to determine their eligibility for
inclusion. A.A.O. and W.F.F.: Critically assessed the quality and validity of the included studies. All
authors: Verified extracted data. A.M. and A.A.O.: Analyzed and interpreted the synthesized data.
A.M. and W.F.F.: Wrote the original draft. All authors have read and agreed to the published version
of the manuscript.



Metabolites 2023, 13, 987 16 of 21

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, L.; Wang, F.-S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med. 2015, 278, 369–395.

[CrossRef]
2. Tsoukalas, D.; Fragoulakis, V.; Papakonstantinou, E.; Antonaki, M.; Vozikis, A.; Tsatsakis, A.; Buga, A.M.; Mitroi, M.; Calina, D.

Prediction of autoimmune diseases by targeted metabolomic assay of urinary organic acids. Metabolites 2020, 10, 502. [CrossRef]
3. Hewagama, A.; Richardson, B. The genetics and epigenetics of autoimmune diseases. J. Autoimmun. 2009, 33, 3–11. [CrossRef]
4. Gregersen, P.K.; Behrens, T.W. Genetics of autoimmune diseases—Disorders of immune homeostasis. Nat. Rev. Genet. 2006, 7,

917–928. [CrossRef] [PubMed]
5. Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Docea, A.O.; Tsilimidos, G.; Calina, D.; Tsatsakis, A. Metabolic fingerprint of chronic

obstructive lung diseases: A new diagnostic perspective. Metabolites 2019, 9, 290. [CrossRef] [PubMed]
6. Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world.

New Horiz. Transl. Med. 2017, 3, 294–305. [CrossRef] [PubMed]
7. Lelli, V.; Belardo, A.; Timperio, A.M.; Lelli, V.; Belardo, A.; Timperio, A.M. From targeted quantification to untargeted

metabolomics. In Metabolomics—Methodology and Applications in Medical Sciences and Life Sciences; IntechOpen: London, UK, 2021;
ISBN 978-1-83969-084-6.

8. Kang, J.; Zhu, L.; Lu, J.; Zhang, X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology.
J. Neuroimmunol. 2015, 279, 25–32. [CrossRef]

9. Naz, S.; Vallejo, M.; García, A.; Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A
2014, 1353, 99–105. [CrossRef]

10. Gowda, G.A.N.; Raftery, D. NMR Based Metabolomics. Adv. Exp. Med. Biol. 2021, 1280, 19–37. [CrossRef]
11. Letertre, M.P.M.; Dervilly, G.; Giraudeau, P. Combined nuclear magnetic resonance spectroscopy and mass spectrometry

approaches for metabolomics. Anal. Chem. 2021, 93, 500–518. [CrossRef]
12. Rist, M.J.; Muhle-Goll, C.; Görling, B.; Bub, A.; Heissler, S.; Watzl, B.; Luy, B. Influence of Freezing and Storage Procedure on

Human Urine Samples in NMR-Based Metabolomics. Metabolites 2013, 3, 243–258. [CrossRef] [PubMed]
13. Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al.

A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin
resistance. Cell Metab. 2009, 9, 311–326. [CrossRef] [PubMed]

14. Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al.
Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [CrossRef]

15. Li, C.; Zheng, S.; You, H.; Liu, X.; Lin, M.; Yang, L.; Li, L. Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human
liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 2011, 54, 1205–1213. [CrossRef]

16. Castelino, F.V. Lipids and eicosanoids in fibrosis: Emerging targets for therapy. Curr. Opin. Rheumatol. 2012, 24, 649–655.
[CrossRef]

17. Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sánchez-Martín, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A.; Castillo, M.;
Haydu, J.E.; et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.
Nat. Med. 2015, 21, 1182–1189. [CrossRef]

18. Pera, B.; Krumsiek, J.; Assouline, S.E.; Marullo, R.; Patel, J.; Phillip, J.M.; Román, L.; Mann, K.K.; Cerchietti, L. Metabolomic
profiling reveals cellular reprogramming of b-cell lymphoma by a lysine deacetylase inhibitor through the choline pathway.
EBioMedicine 2018, 28, 80–89. [CrossRef]

19. Hashim, N.A.A.; Ab-Rahim, S.; Suddin, L.S.; Saman, M.S.A.; Mazlan, M. Global serum metabolomics profiling of colorectal
cancer. Mol. Clin. Oncol. 2019, 11, 3–14. [CrossRef]

20. Donnelly, D.; Aung, P.P.; Jour, G. The “-OMICS” facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic
biomarkers. Semin. Cancer Biol. 2019, 59, 165–174. [CrossRef]

21. Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2
diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical
analysis. Anal. Chem. 2005, 77, 4108–4116. [CrossRef]

22. Zhai, Q.; Wang, X.; Chen, C.; Tang, Y.; Wang, Y.; Tian, J.; Zhao, Y.; Liu, X. Prognostic value of plasma trimethylamine n-oxide
levels in patients with acute ischemic stroke. Cell Mol. Neurobiol. 2019, 39, 1201–1206. [CrossRef]

23. Rexidamu, M.; Li, H.; Jin, H.; Huang, J. Serum levels of Trimethylamine-N-oxide in patients with ischemic stroke. Biosci. Rep.
2019, 39, BSR20190515. [CrossRef] [PubMed]

24. Stenemo, M.; Ganna, A.; Salihovic, S.; Nowak, C.; Sundström, J.; Giedraitis, V.; Broeckling, C.D.; Prenni, J.E.; Svensson, P.;
Magnusson, P.K.E.; et al. The metabolites urobilin and sphingomyelin (30:1) are associated with incident heart failure in the
general population. ESC Heart Fail. 2019, 6, 764–773. [CrossRef]

25. Wang, D.; Dubois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [CrossRef]

https://doi.org/10.1111/joim.12395
https://doi.org/10.3390/metabo10120502
https://doi.org/10.1016/j.jaut.2009.03.007
https://doi.org/10.1038/nrg1944
https://www.ncbi.nlm.nih.gov/pubmed/17139323
https://doi.org/10.3390/metabo9120290
https://www.ncbi.nlm.nih.gov/pubmed/31779131
https://doi.org/10.1016/j.nhtm.2017.06.001
https://www.ncbi.nlm.nih.gov/pubmed/29094062
https://doi.org/10.1016/j.jneuroim.2015.01.001
https://doi.org/10.1016/j.chroma.2014.04.071
https://doi.org/10.1007/978-3-030-51652-9_2
https://doi.org/10.1021/acs.analchem.0c04371
https://doi.org/10.3390/metabo3020243
https://www.ncbi.nlm.nih.gov/pubmed/24957990
https://doi.org/10.1016/j.cmet.2009.02.002
https://www.ncbi.nlm.nih.gov/pubmed/19356713
https://doi.org/10.1038/nm.2307
https://doi.org/10.1016/j.jhep.2010.08.028
https://doi.org/10.1097/BOR.0b013e328356d9f6
https://doi.org/10.1038/nm.3955
https://doi.org/10.1016/j.ebiom.2018.01.014
https://doi.org/10.3892/mco.2019.1853
https://doi.org/10.1016/j.semcancer.2019.06.014
https://doi.org/10.1021/ac0481001
https://doi.org/10.1007/s10571-019-00714-3
https://doi.org/10.1042/BSR20190515
https://www.ncbi.nlm.nih.gov/pubmed/31142624
https://doi.org/10.1002/ehf2.12453
https://doi.org/10.1038/nrc2809


Metabolites 2023, 13, 987 17 of 21

26. Van Pevenage, P.M.; Birchmier, J.T.; June, R.K. Utilizing metabolomics to identify potential biomarkers and perturbed metabolic
pathways in osteoarthritis: A systematic review. Semin. Arthritis Rheum. 2023, 59, 152163. [CrossRef]

27. Huang, T.; Pu, Y.; Wang, X.; Li, Y.; Yang, H.; Luo, Y.; Liu, Y. Metabolomic analysis in spondyloarthritis: A systematic review. Front.
Microbiol. 2022, 13, 965709. [CrossRef] [PubMed]

28. Marrie, R.A.; Reider, N.; Cohen, J.; Stuve, O.; Sorensen, P.S.; Cutter, G.; Reingold, S.C.; Trojano, M. A systematic review of the
incidence and prevalence of autoimmune disease in multiple sclerosis. Mult. Scler. 2015, 21, 282–293. [CrossRef] [PubMed]

29. Yang, X.Y.; Zheng, K.D.; Lin, K.; Zheng, G.; Zou, H.; Wang, J.M.; Lin, Y.Y.; Chuka, C.M.; Ge, R.S.; Zhai, W.; et al. Energy
metabolism disorder as a contributing factor of rheumatoid arthritis: A comparative proteomic and metabolomic study. PLoS
ONE 2015, 10, e0132695. [CrossRef]

30. Young, S.P.; Kapoor, S.R.; Viant, M.R.; Byrne, J.J.; Filer, A.; Buckley, C.D.; Kitas, G.D.; Raza, K. The impact of inflammation on
metabolomic profiles in patients with arthritis. Arthritis Rheum. 2013, 65, 2015–2023. [CrossRef]

31. Perl, A.; Hanczko, R.; Lai, Z.-W.; Oaks, Z.; Kelly, R.; Borsuk, R.; Asara, J.M.; Phillips, P.E. Comprehensive metabolome analyses
reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: Implications for activation of
the mechanistic target of rapamycin. Metabolomics 2015, 11, 1157–1174. [CrossRef]

32. Gonzalo, H.; Brieva, L.; Tatzber, F.; Jové, M.; Cacabelos, D.; Cassanye, A.; Lanau-Angulo, L.; Boada, J.; Serrano, J.C.;
González, C.; et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic
mechanism. J. Neurochem. 2012, 123, 622–634. [CrossRef] [PubMed]

33. Vingara, L.K.; Yu, H.J.; Wagshul, M.E.; Serafin, D.; Christodoulou, C.; Pelczer, I.; Krupp, L.B.; Maletić-Savatić, M. Metabolomic
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