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Abstract: Immune dysfunction resulting from allogeneic haematopoietic stem cell transplantation
(aHSCT) predisposes one to an elevated risk of cytomegalovirus (CMV) infection. Changes in
metabolism have been associated with adverse outcomes, and in this study, we explored the asso-
ciations between metabolic profiles and post-transplantation CMV infection using plasma samples
collected 7–33 days after aHSCT. We included 68 aHSCT recipients from Rigshospitalet, Denmark,
50% of whom experienced CMV infection between days 34–100 post-transplantation. First, we inves-
tigated whether 12 metabolites selected based on the literature were associated with an increased risk
of post-transplantation CMV infection. Second, we conducted an exploratory network-based analysis
of the complete metabolic and lipidomic profiles in relation to clinical phenotypes and biological
pathways. Lower levels of trimethylamine N-oxide were associated with subsequent CMV infection
(multivariable logistic regression: OR = 0.63; 95% CI = [0.41; 0.87]; p = 0.01). Explorative analysis
revealed 12 clusters of metabolites or lipids, among which one was predictive of CMV infection, and
the others were associated with conditioning regimens, age upon aHSCT, CMV serostatus, and/or
sex. Our results provide evidence for an association between the metabolome and CMV infection
post-aHSCT that is independent of known risk factors.

Keywords: aHSCT; WGCNA; metabolomics; lipidomics; cytomegalovirus; CMV; correlation network
analysis; TMAO

1. Introduction

Allogeneic haematopoietic stem cell transplantation (aHSCT) is a potentially curative
treatment performed to restore normal haematopoiesis and/or treat haematological ma-
lignancies [1]. aHSCT is associated with severe immune disruption due to the preceding
conditioning regimen and immune suppressive therapy, and the subsequent reconstitution
of the donor immune system [2]. This disruption predisposes the transplant recipients to a
high risk of developing severe infections, including cytomegalovirus (CMV) infection. The
current prophylaxis strategies have decreased the number of post-transplantation CMV
infections [3]; however, CMV disease continues to cause morbidity and mortality [4–7].
CMV infection can cause fever, cytopenia, allograft rejection, and, in severe cases, tissue-
invasive disease [7,8]. Therefore, the identification of high-risk patients is crucial to improve
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patient outcomes. A variety of factors have been identified relating to the risk of CMV
infection, e.g., donor/recipient serotype mismatch, a myeloablative conditioning regimen,
HLA-mismatched/unrelated donors, graft-versus-host disease (GvHD), and underlying
disease [1,5,8,9]. However, these factors cannot fully explain or predict all cases of CMV
infection. Newer technologies, such as the Quantiferon®-CMV assay, have improved
risk stratification but are still unable to explain all cases [10]. This indicates that there
remains a gap in our understanding of the underlying biological mechanisms that explain
why some patients acquire a CMV infection while others do not. Metabolites have previ-
ously been described as proximal reporters of disease [11,12] and, therefore, may reveal
crucial information about the host/pathogen interactions relating to CMV infections in
aHSCT recipients.

Several studies have identified metabolites that are potentially relevant for CMV
infection. These studies include findings pointing to a glutamine requirement for viral
replication [13] and associations between multiple metabolites and lipids with CMV in-
fection in kidney transplant recipients [14] and aHSCT recipients [15]. However, these
prior studies were either performed in cell lines or in relatively small clinical cohorts, and
their results have not been validated in other cohorts. Another major limitation of these
studies is that they focused on single-metabolite associations. Metabolites and lipids are
known to perform their biological functions as part of molecular pathways, and the study
of individual metabolites may not fully elucidate underlying metabolic disruptions [12].

In this study, we first investigated whether a set of selected metabolites that had
previously been associated with CMV infection were associated with a risk of subsequent
CMV infection early post-aHSCT in a well-described clinical cohort [16–18]. Additionally,
we sought to establish a framework for a pathway-resolved, network-based discovery
analysis to explore the complete metabolic disruptions early post-aHSCT using untargeted
metabolomics and lipidomics data. This process included the unsupervised clustering of
metabolites and lipids that may share biological functions and the investigation of their
relation to subsequent CMV infection or clinical traits associated with CMV infection.

2. Materials and Methods
2.1. Patient and Sample Selection

The patients included in this study underwent aHSCT at the Stem Cell Transplantation
Unit, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Den-
mark, from January 2016 to October 2017. Only patients with at least one plasma sample
taken within 7–33 days post-transplantation were considered. Cases were patients who
were infected with CMV within 34–100 days post-aHSCT. CMV infection was defined as
either two positive CMV-PCR tests (viral load ≥ 273 IU/mL) with a maximum of 14 days
between tests or a single positive CMV-PCR test (viral load ≥ 2730 IU/mL) [3]. Controls
were aHSCT patients who did not acquire a viral infection within 100 days post-aHSCT.
Cases and controls were matched according to sex, conditioning regimen, and CMV risk
score (combined CMV IgG serostatus of donor (D) and recipient (R) at the time of trans-
plantation). Cases that could not be matched according to CMV risk score were matched
according to sex and conditioning regimen only.

2.2. Sample Selection

Plasma samples were sourced from the Personalised Medicine for Infectious Com-
plications in Immune Deficiency (PERSIMUNE) biobank and the Department of Clinical
Microbiology, Rigshospitalet biobank (both of which have been approved by the Danish
Data Protection Agency, respectively; RH201504, I-Suite 03605 and RH2016194, I-Suite
04769). If patients had more than one plasma sample collected within 33 days post-aHSCT,
the latest collected sample was selected.
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2.3. Clinical Data

Clinical traits and patient outcomes were retrieved from the PERSIMUNE Data Ware-
house and from a clinical database at the Department of Hematology, Rigshospitalet.
These data included conditioning regimen (myeloablative or non-myeloablative), donor
source, and CMV risk scores (high risk = D−/R+, intermediate risk = D+/R+, and low
risk = D+/R− and D−/R−). Patients with an unknown CMV risk score were assigned
to the low-risk group as they presented a similar incidence risk for CMV infection upon
conducting a univariable analysis (Table S1).

2.4. Conditioning Regimens

All patients in the cohort underwent either myeloablative (MAC; myeloablative condi-
tioning) or non-myeloablative (Mini) conditioning prior to aHSCT. The main MAC regimen
included total body irradiation (TBI) with 1200 cGy combined with cyclophosphamide
or a combination of fludarabine/treosulfan. The main Mini regimen included TBI with
≤400 cGy and fludarabine.

2.5. CMV Monitoring and Treatment

All transplant recipients were monitored weekly using CMV-PCR tests concerning
plasma from days 21–150 post-aHSCT. Following a positive CMV-PCR result, pre-emptive
treatment with valganciclovir was initiated, which entailed the administration of 900 mg
of valganciclovir twice a day for at least two weeks and until a negative CMV-PCR result
was obtained. Following the onset of CMV disease (i.e., CMV infection with symptoms),
treatment with ganciclovir was initiated, which entailed the administration of 5 mg/kg of
ganciclovir twice a day for 10–14 days followed by 5 mg/kg once a day for at least 5–7 days
and until the patient no longer exhibited symptoms.

2.6. Metabolomics and Lipidomics Analysis

Plasma samples were analysed by Metabolon Inc. (Morrisville, NC, USA) [19] using un-
targeted ultra high-performance liquid chromatography/tandem accuracy mass spectrometry
(UHPLC-MS/MS) methods. Metabolites were detected as relative concentrations and were
annotated using the Metabolon reference library. Metabolite peaks that were not matched
with the database were included in the dataset with unique random IDs. Lipids were detected
as absolute concentrations using single-point quantification and the Metabolon Complex
Lipid Panel™. All known metabolites and lipids were assigned a superpathway (top-level
classification of biochemical reactions related to the metabolism of similar compounds) and a
subpathway (lower-level pathway category nested within superpathways).

2.7. Pre-Processing of Metabolomics and Lipidomics Data

Metabolite and lipid abundances were median-scaled relative to the individual molecule
across all samples (this process was performed by Metabolon). Molecules with low vari-
ance were removed from each dataset by using the nearZeroVar function from the caret
R package [20] (frequency cut = 95/5; unique cut = 10%). Before conducting the ex-
ploratory analysis of metabolomic and lipidomic profiles, the datasets were additionally
log2-transformed to ensure a normal distribution (Figure S1).

2.8. Statistical Analysis

Statistical differences between demographic and clinical traits of the cases and controls
were assessed using Chi-square test for categorical variables, Wilcoxon Independent Rank-
Sum test for continuous variables, and Fisher’s exact test for categorical variables with
≤5 patients in at least one category.

As this was a case–control study with a binary outcome variable (CMV infection or
no CMV infection), we used multivariable logistic regression models to test associations
between selected metabolites previously associated with CMV infection (Table S2) and
subsequent CMV infection in this cohort. Models were adjusted for sex, age upon aHSCT,
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conditioning regimen, and CMV risk score. The following metabolites were included:
alanine, choline, glutamine, kynurenine, lactate, lysine, phenylalanine, quinolinate, taurine,
total free fatty acids (FFA), trimethylamine N-oxide (TMAO), and tryptophan. Results
were reported using odds ratios, confidence intervals, and unadjusted p-values using a
significance threshold of p < 0.05.

2.9. Pathway-Resolved Correlation Network Analysis

Pathway-resolved correlation-network-based investigation of metabolic and lipidomic
profiles early post-aHSCT was performed for each dataset individually using the Weighted
Gene Co-expression Network Analysis (WGCNA) R package [21]. Signed co-abundance
networks were constructed using the bi-weight mid-correlation measure as suggested by
Pedersen et al. 2018 [22]. Weighted network adjacencies (ai,j) were calculated as defined by
Langfelder and Horvath 2008 [21] using the following equation:

ai,j =

∣∣∣∣∣1 + cor
(

xi, xj
)

2

∣∣∣∣∣
β

, where β > 1 (1)

Here, cor
(

xi, xj
)

is the correlation between metabolites xi and xj, and β is the soft-
threshold power selected for each dataset by fitting the data to a scale-free topology model.
Using this method, we can model the structure of biological data for which the network
node degree usually follows an exponential curve rather than being a constant. Further, the
method allows the emphasis of strong correlations in the network. For the metabolomics
data, a power of β = 16 was selected, and for the lipidomics data, a power of β = 30 was
selected (power plots are shown in Figure S2). From the adjacency matrix, a topological
overlap matrix was created using the following equation, as described by Langfelder and
Horvath 2008 [21]:

TOM
(

xi,j
)
=

ai,j + ∑k 6=i,j ai,kak,j

min
(
ki, k j

)
+ 1− ai,j

(2)

Here, the parameters ki and k j represent the connectivity for each of the molecules i
and j. Detection of modules (clusters of highly interconnected metabolites/lipids measured
according to the topological overlap) was performed using hierarchical clustering with
average linkage and the Dynamic Tree Cut method. The minimum number of metabo-
lites/lipids required to form a separate module was determined by performing module
detection for minimum module sizes of 5–20 (visual workflow is shown in Figure S3).
The minimum module size value resulting in a reasonably low number of modules while
maintaining high correlation within modules (module membership) was selected. A mini-
mum module size of 10 was selected for the metabolomics dataset, while 12 was selected
for the lipidomics dataset (iteration outputs are shown in Table S3). Final modules were
tested with respect to correlations with clinical traits relating to CMV infection (sex, age,
conditioning regimen, and CMV risk score) using Spearman’s Rank correlation evaluated
using Benjamini–Hochberg adjusted p-values (q-values) and a significance level of q < 0.05.
The metabolic pathway content was assessed at super- and subpathway levels using anno-
tations provided by Metabolon. Unannotated metabolites were included as unknowns.

2.10. Software

All statistical and bioinformatics analyses were performed in R version 3.6.3 [23], and
all code is available in GitHub (https://github.com/PERSIMUNE/PAC2022Rasmussen_
CMV_metabolomic_profiling (accessed on 22 December 2022)).

3. Results
3.1. aHSCT Patient Cohort

The cohort consisted of 68 aHSCT patients, 34 of which (50%) acquired a CMV infection
between days 34–100 post-transplantation (cases), while the other 34 (50%) did not have a

https://github.com/PERSIMUNE/PAC2022Rasmussen_CMV_metabolomic_profiling
https://github.com/PERSIMUNE/PAC2022Rasmussen_CMV_metabolomic_profiling
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positive CMV-PCR result within 100 days post-transplantation (controls). Nineteen cases
were matched by criteria that includeda CMV risk score, while fifteen were matched only
by sex and conditioning regimen. The cohort’s characteristics are shown in Table 1, and the
sample collection times are presented in Figure S4. There were no differences between the
groups with regard to sex, age at the time of transplantation, sample collection time, graft
origin, or conditioning regimen. The distributions of CMV risk scores differed between
cases and controls, with higher proportions of high-risk constellations amongst the cases
(p < 0.001) (Table 1).

Table 1. Cohort characteristics of cases (CMV-positive aHSCT recipients) and controls (CMV-negative
aHSCT recipients). Values are presented as n (%) or median (min, max).

All
(n = 68)

Cases
(n = 34)

Controls
(n = 34) p-Value

Male * 46 (72) 25 (74) 25 (71) 1 †

Age upon aHSCT 56.5 (17, 73) 55.5 (22, 70) 59.5 (17, 73) 0.84 ‡

Sample collection in days post-aHSCT 28 (8, 33) 26.8 (14, 33) 28 (8, 33) 0.34 ‡

CMV infection onset in days post-aHSCT 48.5 (34, 90) 48.5 (34, 90) -
Graft origin 0.19 §

Bone marrow 11 (16) 8 (24) 3 (9)
Peripheral blood 57 (84) 26 (76) 31 (91)

Conditioning regimen * 1 †

Myeloablative conditioning (MAC) 28 (41) 14 (41) 14 (41)
Non-myeloablative conditioning (Mini) 40 (59) 20 (59) 20 (59)

CMV risk score ** 0.00067 §

Low 19 (28) 3 (9) 16 (47)
Intermediate 21 (31) 11 (32) 10 (29)
High 28 (41.2) 20 (58.8) 8 (24)

* Used for matching cases and controls. ** Partially used for matching cases and controls. † Chi-square test;
‡ Wilcoxon independent rank-sum test, § Fisher’s exact test. aHSCT: allogeneic haematopoietic stem cell transplan-
tation; CMV: cytomegalovirus; MAC: myeloablative conditioning. CMV risk score: Low = donor (D)−/recipient
(R)− and D+/R−; Intermediate = D+/R+, High = D−/R+.

3.2. Metabolomics and Lipidomics Data

UHPLC-MS/MS analysis detected 976 metabolites from 9 superpathways and 34 sub-
pathways and 975 lipids from 14 superpathways and 102 subpathways. During pre-
processing, 54 metabolites and 42 lipids were removed from the datasets due to their low
variance. Final datasets included 922 metabolites and 933 lipids (the complete list is in-
cluded in the Supplementary HTML file). Distributions before and after log2-transformation
are shown in Figure S1.

3.3. Single-Marker Associations with CMV Infection

The multivariable logistic regression models showed an association between trimethy-
lamine N-oxide (TMAO) and subsequent CMV infection (OR = 0.63, 95% CI = [0.41; 0.87],
p = 0.01) regardless of sex, age at the time of aHSCT, conditioning regimen, and CMV
risk score (all results are shown in Table S4). None of the other selected metabolites were
associated with CMV infection.

3.4. WGCNA Module Associations with Clinical Traits

The correlation network analysis resulted in 16 metabolite and 9 lipid modules ranging
in size from 10 to 292 molecules (Figure 1A,B and Table S5). The module membership dis-
tributions for all the modules are shown in Figure S5. Hierarchical clustering dendrograms
and correlation heatmaps for the metabolite and lipid module eigengenes are shown in
Figure S6. One metabolite module was associated with subsequent CMV infection, eight
metabolite modules were associated with conditioning regimens, and nine were associated
with age upon aHSCT (Figure 1C). One lipid module was associated with sex (Figure 1D).
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All correlations between modules and clinical traits can be inspected in the interactive
heatmaps in the Supplementary HTML file. The superpathway content for all the metabolite
modules is shown in Figure 2A. The green metabolite module (containing 44 metabolites)
that was inversely associated with CMV infection (Spearman’s Rank correlation = −0.36,
q = 0.017) was found to contain seven amino acids, three cofactors and vitamins, four lipids,
one peptide, eighteen xenobiotics, and eleven unknown metabolites (Figure 2B). These
included multiple diet-derived molecules like TMAO (phospholipid metabolism), retinol
and 4-oxo-retinoic acid (vitamin A metabolism), and ascorbic acid 3-sulfate (vitamin C
biosynthesis) along with several metabolites related to benzoate metabolism or tryptophan
metabolism. An interactive version of Figure 2B, along with corresponding figures for all
the other modules, can be found in the Supplementary HTML file.
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Figure 1. Assessment of modules constructed using the weighted correlation analysis of the
metabolomics or lipidomics data. (A,B) Dendrogram showing hierarchical clustering of the metabo-
lites (A) or lipids (B), where distance measured in topological overlap is shown on the y-axis. The
colour bar below indicates which module (cluster) each metabolite/lipid was placed within. The grey
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module serves as a bin for molecules that do not fit in any other module. (C,D) Spearman’s rank cor-
relation heatmap of module eigengenes (MEs) for each module (y-axis) and clinical traits (x-axis). Sig-
nificance indicated by Benjamini–Hochberg-adjusted p-values: * q > 0.05, ** q > 0.01, and *** q > 0.001.
CMV infection: 0 = no CMV and 1 = CMV; CMV risk score: 1 = low risk (D+/R− and D−/R−),
2 = intermediate risk (D+/R+), and 3 = high risk (D−/R+); conditioning regimen: 1 = myeloablative
(MAC) and 2 = non-myeloablative (Mini); sex: 1 = male and 2 = female; age upon aHSCT: integer
(17–73). An interactive version of the heatmaps can be found in the Supplementary HTML file.
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Figure 2. Pathway content of metabolite modules. (A) Pathway annotations of metabolites per
module at the superpathway level. Superpathways are represented on the x-axis by color-coded bars.
The percentage of molecules annotated to each superpathway placed in each module is indicated
on the y-axis; for example, 15% of all acetylated peptides are situated within the cyan module.
(B) Pathway content of the green metabolite module (n = 44), which was found to be inversely
correlated with CMV infection. Annotations were derived from the files supplied by Metabolon.
The inner circle represents the superpathway level (same colour-coded categories as in (A)) and the
outer one denotes the subpathway level. An interactive version of this figure, and the corresponding
figures of all other modules, can be found in the Supplementary HTML file.
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4. Discussion

In this study, we found that higher levels of trimethylamine N-oxide (TMAO) were
associated with a lower risk of developing a subsequent CMV infection via a multivari-
able analysis. Using WGCNA, we were able to move from single-marker associations to
a pathway-resolved, network-based analysis of metabolomics and lipidomics data. The
analyses revealed that one module was associated with CMV infection and the type of
conditioning regimen administered, while the other modules were associated with the
administered conditioning regimen, age upon aHSCT, or sex. However, given the num-
ber of associations tested and the exploratory nature of the analyses, the biological and
clinical relevance of these results should be interpreted cautiously, and the results require
external validation.

The first aim of this study was to investigate metabolites previously associated with
CMV infection and their associations with subsequent CMV infection in this cohort. We
tested the associations of 12 metabolite measures, and only TMAO, which correlated
inversely with CMV infection, was found to be associated. This result contradicts the
previous findings acquired in the study by Monleón et al. 2015 [15], where higher levels of
TMAO were associated with CMV infection in aHSCT patients after transplantation. These
differences in results could be due to variations in the studies’ setups (Monleón et al. [15]
measured TMAO post-CMV infection onset), the small cohort sizes (59 patients were
included in the previous study, and 68 patients were included in our study), or unex-
plored confounding factors (e.g., haematological malignancy, diet, or other lifestyle-related
variables). TMAO is formed from trimethylamine (TMA), which is produced by the gut
microbiota following dietary intake of choline, phosphatidylcholine, and L-carnitine [24,25].
High levels of TMAO are associated with inflammation, involving, for instance, foam cell
generation and vascular endothelium activation [24]. Therefore, one could expect high
levels of TMAO in our cohort to be associated with CMV infection. This was, however,
not the case. Given these contrasting results between our study and the literature, we can
conclude that the complex relationship between CMV infections, conditioning regimens,
diet, and metabolic profiles warrant further investigation. Further, we recommend that
these further investigations are conducted using targeted metabolomics and lipidomics
rather than the untargeted methods here.

The second aim of this study included an exploratory analysis of the patients’ metabolic
and lipidomic profiles early post-aHSCT. We constructed modules consisting of 10 to
292 metabolites/lipids. The largest modules for both datasets were the grey modules,
which are used to bin analytes that do not fit in any other module. The remaining modules
are expected to contain molecules with shared biological properties or functions given
their similar abundance profiles [21]. We tested the associations between the modules
and subsequent CMV infection or other clinical traits known to be risk factors for CMV
infection. We used WGCNA to link biological functions (in this case, metabolic pathways)
to clinical phenotypes and outcomes. This method was originally designed for microarray
and RNA-seq data but is fully applicable to other omics data with similar patterns of high
correlation between analytes [26]. Using WGCNA, modules can be formed in a data-driven
and unsupervised manner utilising the distance between molecules measured according
to topological overlap. This allows for the assessment of both molecule–molecule correla-
tions along with their shared correlations with other molecules in a dataset, constituting
a method that represents the pathway structures of these types of data well. However,
metabolites and lipids can have pleiotropic properties and can, therefore, potentially be
placed equally well in multiple modules. This is not considered in WGCNA, as clustering
is executed via non-overlapping partitioning. Further, this mode of partitioning is highly
dependent on the selection of parameters, such as the correlation measure, the power, and
the minimum module size. This is evident in our data, where we see a strong correlation
between several module eigengenes in Figure S6, indicating that our specific partitioning
may not be the most optimal form. Selecting parameters resulting in the best biological
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representation of data is a general and continuous issue. Therefore, resulting modules
should always be assessed with caution, and further validation is essential.

The metabolic network analysis resulted in 16 modules, and the lipidomic analysis
yielded 6 modules. When selecting the soft-threshold power for the lipidomics dataset, it
was not possible to reach a scale-free topology model fit above 90% for powers ≤ 30 (i.e.,
the standard methodology for WGCNA [21]). This indicates that a subset of the samples in
the lipidomics data exhibits a strong driving signal making it globally different from the
remaining data, which would invalidate the assumption of a scale-free topology. Several of
the modules correlated with either subsequent CMV infection, the conditioning regimen
administered, sex, or age upon transplantation. Most associations were found with regard
to conditioning regimen and age, reflecting that these factors have a large impact on the
metabolism of aHSCT recipients. Further, the majority of the modules associated with con-
ditioning regimens were also similarly associated with age, which is to be expected in this
cohort, as the age of the transplant recipient is one of the determining factors whereby a con-
ditioning regimen is selected (older patients are more likely to receive non-myeloablative
conditioning, as they cannot withstand the myeloablative conditioning). One metabo-
lite module, the green module, was inversely associated with subsequent CMV infection
(higher levels of these molecules were associated with no CMV infection). Within this mod-
ule, we found TMAO, which is in line with the results from our single-marker associations.
The green module was also associated with the type of conditioning regimen employed
and thus warrants further exploration in larger cohorts to better understand the impact of
these metabolites on CMV infection and immune disruption caused by conditioning.

When performing system-level analyses using metabolomics and lipidomics data, it is
important to acknowledge their limitations. First, despite advances in technologies, we are
not able to detect all metabolites and lipids in biological samples [27]. Molecules have a
wide variety of physicochemical properties and various baseline levels and are naturally
fluctuating, all of which makes it difficult to detect them individually with high confidence.
Thus, we might overlook relevant biological processes taking place within a patient cohort.
Second, some molecules can be detected with spectrometry but are either unknown (209
(21%) of the metabolites in our dataset) or are not included in common libraries such as
HMDB [28] (465 (48%) of the metabolites and 623 (63%) of the lipids in our datasets). This
means that they cannot be included in standard annotation-based pathway enrichment
analyses, which is why we chose a non-enrichment-based approach. Unknown molecules
were kept in the analysis for their potential use in future studies, as metabolic libraries are
continuously updated. Third, many of the biological functions carried out by molecules
are not fully understood; therefore, we might overlook or misinterpret relevant biological
signals. The detection methods used in this study are untargeted relative quantification
metabolomics and untargeted fully quantitative lipidomics. Therefore, our metabolomics
data cannot be directly compared to other datasets. Furthermore, the pathway annotations
performed for the spectrometric data include only one super- and subpathway per molecule
and thus do not provide a complete representation of biology, where the same molecule can
take part in multiple functions and processes (pleiotropism). Finally, while this study has a
larger sample size than previous studies [14,15], power was a limiting factor, particularly
with respect to the correlation network analysis, where a large number of correlations were
tested. Despite these limitations, we present these results as an explorative investigation of
the post-aHSCT metabolic profiles in relation to clinical phenotypes that can be used to
generate hypotheses for future studies. Further, the coding framework used to perform
the analyses is readily available in easily approachable step-by-step scripts for use in other
clinical studies.

5. Conclusions

In conclusion, we found an association between the dietary-derived metabolite TMAO
and CMV infection occurring post-aHSCT. We were not able to confirm previous associa-
tions; this was likely due to potential confounding or false positive signals, the differences
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in the study designs, or the size of our cohort, which, although larger than previously
explored cohorts, was still rather small. Using a pathway-resolved and network-based
method, we were able to cluster metabolites and lipids based on their biological functions
and further assess their relation to clinical traits related to CMV infection. Although ex-
ploratory, these analyses have identified clusters of metabolites that may be related to
clinically relevant traits in this population, and these observations warrant further study
with larger sample sizes. We further propose that correlation network analysis is a useful
and hypothesis-free method for exploring the relationship between metabolite and lipid
profiles in clinical populations and have provided fully documented, publicly available
code to facilitate such research.
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proposed to be associated with CMV infection in the literature. Figure S2: Power plots constructed
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ters for the WGCNA. Table S3: Results from multivariable logistic regression of known associated
metabolites. Figure S4: Collection times for the 68 samples included in the analysis. Table S4: Interme-
diate results of parameter selection for WGCNA. Table S5: Module names and sizes. Figure S5: Module
membership (MM) distributions in modules resulting from the WGCNA. Figure S6: Correlations
between modules resulting from the WGCNA. HTML: Results from WGCNA.
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