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Abstract: Most studies on single ventricle (SV) circulation take a physiological or anatomical approach.
Although there is a tight coupling between cardiac contractility and metabolism, the metabolic
perspective on this patient population is very recent. Early findings point to major metabolic
disturbances, with both impaired glucose and fatty acid oxidation in the cardiomyocytes. Additionally,
Fontan patients have systemic metabolic derangements such as abnormal glucose metabolism and
hypocholesterolemia. Our literature review compares the metabolism of patients with a SV circulation
after Fontan palliation with that of patients with a healthy biventricular (BV) heart, or different
subtypes of a failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan
failure, heart failure (HF), ketosis, metabolism published in English from 1939 to 2023. Early evidence
demonstrates that SV circulation is not only a hemodynamic burden requiring staged palliation,
but also a metabolic issue with alterations similar to what is known for HF in a BV circulation.
Alterations of fatty acid and glucose oxidation were found, resulting in metabolic instability and
impaired energy production. As reported for patients with BV HF, stimulating ketone oxidation
may be an effective treatment strategy for HF in these patients. Few but promising clinical trials
have been conducted thus far to evaluate therapeutic ketosis with HF using a variety of instruments,
including ketogenic diet, ketone esters, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. An
initial trial on a small cohort demonstrated favorable outcomes for Fontan patients treated with
SGLT2 inhibitors. Therapeutic ketosis is worth considering in the treatment of Fontan patients, as
ketones positively affect not only the myocardial energy metabolism, but also the global Fontan
physiopathology. Induced ketosis seems promising as a concerted therapeutic strategy.

Keywords: biventricular; heart failure; nutrition; Fontan; ketones; ketogenic therapy; metabolism;
single ventricle

1. Introduction

Children with complex congenital heart disease (CHD) and single ventricle (SV) phys-
iology typically undergo several-step surgical palliation with the aim of a total cavopul-
monary connection. In this so-called Fontan circulation, the subpulmonary pump is missing.
Instead, the vena cavae are anastomosed directly to the pulmonary arteries, causing ele-
vated systemic venous pressure and chronically decreased cardiac output [1–4].

Even if the outcome of SV patients is steadily improving, particularly their
largest subgroup—i.e., SV patients with aortic atresia and a hypoplastic left heart (HLHS,
40% of cases [5]) and a morphologically right ventricle (RV) serving as the subsystemic
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ventricle—performs worse than patients with a morphologically left ventricle (LV) [5–14],
particularly with respect to atrioventricular valve failure, impaired ventricular function
and/or failure of the Fontan circulation with upstream issues such as liver cirrhosis or
protein-losing enteropathy [15–17]. Ventricular dysfunction is currently considered to
be inevitable for SV patients [18]. In addition to these complications, Fontan patients
reveal alterations in their pulmonary, hematologic, immunologic, endocrinologic and
metabolic systems [1,19].

Pharmacological interventions for both patients with a failing biventricular (BV)
and patients with a failing SV heart currently target either hemodynamics or the neuro-
hormonal axis, with conflicting evidence regarding the clinical benefit [20–24]. A more
recent axis actively targeted in BV HF therapy is the metabolic axis [25–36]. Maintaining
ketone metabolism is reported to have a protective effect in hypertrophic and failing BV
hearts [37–41]. Keeping in mind the metabolic alterations in the Fontan patient [42,43],
metabolism may be a promising therapeutic target also in Fontan patients with a failing SV
or Fontan circulatory failure.

Reviewing the literature, we compare the energy metabolism in patients with healthy,
or with a failing BV heart with that reported in SV patients after Fontan palliation. Focusing
on lipid and ketone metabolism, and focusing on the role of therapeutic ketosis in BV HF, a
potential role of metabolism-targeted therapy in Fontan patients will be discussed.

2. Cardiac Energy Metabolism

The heart is a biomechanical pump with complex hemodynamics. Ninety percent of
the cellular adenosine triphosphate (ATP) is used to sustain the contraction-relaxation of the
cardiac muscle [44]. Mitochondria make up one-third of the cardiac myocyte volume [45].
In the whole human body, cardiomyocytes exhibit the highest content in mitochondria,
consistent with the fact that the heart is the organ with the highest energy consumption [46].
Thus, it is not surprising that an altered energy state could contribute to HF. The energy
starvation model has been proposed as the basis of progressive HF [47–50], taking into
account alterations of the three different stages of ATP production: perturbed substrate
consumption; altered oxidative phosphorylation; and reduced energy transfer to ATP-
consuming reactions. ATP production is controlled and regulated by a very complex set
of transcriptions of metabolically relevant proteins (receptors, regulators, transporters,
enzymes) that can be quantified through analysis of metabolites.

2.1. Energy Metabolism in the Healthy Heart

The “omnivore heart” and its diverse substrate consumption. Cardiomyocytes have the
capacity to oxidize fatty acids, carbohydrates, amino acids, ketones, and lactate [51]. The
substrate preferences are changing with development. The fetus lives in a hypoxic envi-
ronment, what was called ‘Everest in utero’ [52], and depends on his mother‘s metabolism.
Glucose is the dominant substrate used for ATP production, with a very low level of fatty
acids and high level of lactate [53,54]. Change of available substrates, increasing oxy-
gen level and improved cardiac workload drive metabolic maturation. Originally, it was
thought that within the first week postnatally, glucose use in the heart drops significantly
with fatty acid oxidation rising [55], reaching an adult metabolic pattern. Recent studies
hypothesize that transition to fatty acid oxidation may start earlier, from the late gestational
period [56]. Due to the surge of oxidative capacity—one third of cardiac myocytes’ volume
being mitochondria—60–90% of the energy used for mechanical performance originates
from mitochondrial fatty acid oxidation, with the remainder originating from glucose,
lactate, and ketone bodies [57,58] (Table 1).
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Table 1. State of the heart and metabolic state.

Metabolic State

Substrate Consumption ETC CK Therapeutic
Ketosis

Fatty acids Glucose Ketone bodies

Healthy
heart 60–70% [57,58] Remaining

[57,58]
Remaining
[57,58] balanced

HfrEF

Early HF: no
change [48,59,60]
Late HF: ↓
[48,59,60]

Early HF: ↑
[48,59,60]
Late HF: ↓
[60–66]

Progressing HF:
↑ [35,65,67–75]

Loss of electrons [76]
Accumulation of
ROS [76]

early HF: ↓
[48,77–79]

CO +40% [80]
EF +8% [80]

BV-HF ↓ [81] ↑ [82–85] Progressing HF:
↑ [69,86–88]

Loss of electrons
[89,90]
Accumulation of
ROS [91,92]

↓ [89,93] CO +27% [87]
PVR—18% [87]

SV-HF ↓ [94] ↓ [95] ?
Loss of electrons [96]
Accumulation of
ROS [76,97,98]

? ?

BV, biventricular; CK, creatine kinase energy shuttle; CO, cardiac output; EF, ejection fraction; ETC, electron
transport chain; HF, heart failure; PVR, pulmonary vascular resistance; ROS, reactive oxygen species; SV, single
ventricle; ↑, increase; ↓, decrease. Note the similar findings for BV HF and SV HF with regards to substrate
consumption (fatty acids, glucose, ketone bodies). Thus, therapeutic ketosis is worth considering in the treatment
of Fontan patients.

Biosynthesis of ketone bodies is connected to various metabolic pathways such as beta-
oxidation, Krebs cycle, sterol biosynthesis, glucose metabolism, and mitochondrial electron
transport chain [36,99,100]. Among all organs, the heart tissue exhibits the highest levels
of ketolytic enzyme activity, reflecting its ability to use ketone bodies [101]. Nonetheless,
under physiological conditions, ketone bodies are not contributing significantly to cardiac
metabolism [102], glucose and fatty acids being the predominant substrates [61,62].

Substrate utilization is meticulously regulated, which is mandatory due to the rela-
tively small amount of stored ATP relative to the rates of myocytal ATP consumption [49].
One of the control mechanisms is the glucose-fatty-acid-cycle. Numerous parallel mech-
anisms regulating the substrate utilization in cardiomyocytes were discovered, such
as glucose transporter (Glut) 1, Glut 4, or peroxisome proliferator activated receptors
(PPAR) [59,103].

From fuel to ATP: oxidative phosphorylation. Oxidative phosphorylation begins with the
oxidation of substrates, such as fatty acids and glucose, which are converted into acetyl-
coenzyme A (CoA) through pyruvate or beta-oxidation. Acetyl-CoA is fed into the Krebs
cycle. Under normal conditions, mitochondrial oxidative phosphorylation matches 90–95%
of the myocardial ATP demand with glycolysis filling the gap [61].

From ATP to contractile work: creatine phosphate reserve of ATP. The creatine kinase
(CK) energy shuttle plays a crucial role in maintaining energy balance in cells with high
and fluctuating energy demands, such as cardiomyocytes: It comprises the conversion
of creatine to phosphocreatine (and back), which serves as a rapid and reversible energy
storage system. This pathway enables the efficient transfer of energy from the mitochondria,
where ATP is produced by oxidative phosphorylation, to the cytosol, where it is consumed
during contraction.

Regulation of metabolism through gene expression. Control and regulation of cardiac
metabolism are complex and include overexpression or deletion of metabolically relevant
proteins, such as receptors, regulators, transporters, or enzymes.

Peroxisome proliferator activated receptors. PPAR are a family of nuclear receptor pro-
teins that play a crucial role in regulating the expression of genes involved in lipid and
glucose metabolism, inflammation, and cellular differentiation. PPAR is an abundantly
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expressed key regulator of cardiac substrate switching [104–107], including fatty acid
oxidation, ketogenesis, and triglyceride synthesis, by upregulation of genes involved in
fatty acid metabolism. Activation of PPAR upregulates genes of fatty acid oxidation (fatty
acid transport protein/cluster of differentiation 36, malonyl-CoA decarboxylase, carnitine
acyltransferase (CPT)-1, medium and long chain acyl-CoA dehydrogenases) [102]. PPAR
was downregulated by hypoxia in rats’ hearts [108].

Adenosine monophosphate-activated protein kinase pathway, GLUT and CPT. The adenosine
monophosphate-activated protein kinase (AMPK) pathway is a critical cellular signaling
pathway that plays a crucial role in regulating energy homeostasis in cells. The activation
of the AMPK pathway leads to the phosphorylation of numerous downstream targets
involved in metabolism, transcription, and protein synthesis. Through this pathway,
CPT1, medium-chain acyl-CoA dehydrogenase, cluster of differentiation 36, and fatty acid
transport protein 1 are decreased in HF [61]. Inhibition of CPT1 directly inhibits fatty acid
oxidation by malonyl-CoA—a phenomenon called reverse Randle effect [105].

Histone acetylation/deacetylation. Acetylation is a protein post-translational modification
controlling expression and transcription of genes, regulating embryonic development, post-
natal fatty acid oxidation maturation, and heart hypertrophy. It enables the cell to quickly
and effectively react to cellular stress [109]. Histone acetylation regulates the electrostatic
connections between DNA and histones as well as between adjacent nucleosomes within
a nucleosomal fiber, which controls transcription [110]. Histone acetylationtransferases
(HAT), also known as lysine acetyltransferases, which relax chromatin structure, and his-
tone deacetylases (HDAC) which reverse the HAT process, reduce transcriptional activity
and are the main regulators of HAT [111]. HDAC can be divided into two types based on
their architectures and patterns of expression [112]. All tissues express class I HDAC. Class
II histone deacetylases interact with the MEF2 transcription factor to control fetal cardiac
and stress-responsive genes [113,114]. Activity of GLUT1, GLUT4, PDK2, muscle-glycogen
synthase, mCPT-1, MCAD, and ACC is higher in the non-failing adult human heart than in
the fetal heart. In the failing human heart, those metabolic genes‘ activities decrease to the
same levels as in the fetal heart [60].

2.2. Energy Metabolism in Biventricular Patients with Congestive Heart Failure

Disturbed substrate consumption. Once the heart has reached its metabolic adulthood,
the main substrates used for ATP production are fatty acids (60–70%), followed by pyruvate
(glucose/lactate), ketone bodies, and amino acids. In early stages of HF, myocardial fatty
acid utilization may be unchanged or augmented. In advanced stages, the myocytes
switch from fatty acid to glucose oxidation, returning to a fetal pattern of energy substrate
metabolism [48,59,60] (Table 1). Furthermore, myocytes may become insulin-resistant,
leading to a decline in glucose/pyruvate utilization (metabolic inflexibility) [60–66]. Even
though glucose uptake is increased, it does not always translate into increased glucose
oxidation. Through overexpression of Glut1, the uptake increases glycolysis. Per glucose
molecule, glycolysis produces two molecules of ATP compared to 31 molecules of ATP by
oxidation. Thus, the energy deficit is not compensated for by substrate switch [115,116].

As described by Ritterhof et al. there is an upregulation of glucose uptake and
glycolysis with either no change or even a decrease in glucose oxidation, resulting in
uncoupling of substrate uptake and oxidation [59]. Ultimately, this uncoupling reduces
cardiac energy availability, the affected heart exhibiting up to 30% less ATP than the
healthy one [46,117].

Myocardial ketone body oxidation is increased in HF. Recent studies show this
metabolic shift as a key metabolic adaptation in the failing human heart, indicating the
potential of ketone bodies as an alternative fuel for HF with reduced and preserved ejection
fraction (EF) [35,65,67–75]. An increased ketone body oxidation is also seen in RV failure
like in pulmonary arterial hypertension (PAH) [118].

Reduced energy production. In the failing BV heart, electron transport chain activity is
altered (Table 1). Alterations in mitochondrial number, structure and function, in part due to
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accumulation of reactive oxidative species (ROS) harming mitochondrial deoxyribonucleic
acid, may be causes of altered electron transport chain activity [97,119].

Increase in reactive oxidative species. Oxidative stress is involved in the development and
progression of cardiac remodeling in HF [76]. ROS impair the electrophysiology of the con-
tractile function by denaturing proteins involved in contractility (including L-type calcium
channels, sodium channels, potassium channels, and sodium-calcium exchangers [120])
and trigger hypertrophy through modifications in the extracellular matrix [121].

Insufficient energy transfer to ATP-consuming reactions. CK energy transfer shuttle works
by transferring high-energy phosphate groups from creatine phosphate to ADP to produce
ATP. It was the initial mechanism of energy starvation discovered in HF, with creatine
deficiency [47]: In HF, the CK system is compromised due to a variety of factors, including
decreased levels of CK enzymes and alterations in the composition of the mitochondrial
membrane (Table 1). As a result, ATP levels in the heart decrease. Phosphocreatine and total
creatine levels decrease by up to 30–70% in an early stage of HF [48,77–79]. Consequence is
the inability to deliver ATP on increased workload [122]. Reduced CK flux is a significant
predictor of HF outcome [117]. Acting on reduced CK flux and on its enzymes is considered
a potential HF treatment target [117,123].

Epigenetic and transcriptional changes: reactivation of fetal gene expression in the failing BV
heart. The activation of fetal cardiac genes which encode proteins involved in contraction,
calcium management, and metabolism, is associated with pathological heart hypertrophy.
A deterioration in heart function is associated with such reprogramming. Conversely, im-
provement in cardiac function is associated with normalization of cardiac gene expression
in the failing heart [124]. The maturation of fatty acid oxidation was delayed according
to a clinical investigation based on RV myocardial biopsies from patients with CHD. Key
metabolic enzyme hyperacetylation was prevented by secondary hypertrophy [125]. Ly-
sine acetylation is involved in regulating cardiometabolic diseases. Nicotinamide adenine
dinucleotide-dependent deacetylase sirtuin-3 (SIRT3) expression was downregulated in
failing hearts from patients with obesity and metabolic syndrome, which led to cyclophilin
D hyperacetylation, hyperacetylation, mitochondrial permeability transition pore open-
ing, and cardiac dysfunction [126]. In pressure overload-induced cardiac hypertrophy,
histone acetylation is related to inflammation, collagen deposition, and cardiac contractile
function [127]. Histone deacetylase inhibition was found to reduce cardiac hypertrophy
and fibrosis in spontaneously hypertensive rats by increasing 3-acetylation on the pro-
moters of MR target genes and suppressing gene expression [128]. The HDAC inhibitor
valproic acid was shown to improve the development of atrial remodeling and postpone
the onset of atrial fibrillation in mice by 4 to 8 weeks [129]. Another HDAC inhibitor,
suberoylanilide hydroxamic acid, was discovered to prevent cardiac arrhythmias in dys-
trophic mice, including QT interval prolongation [130]. Both class I and class II HDAC are
inhibited by the HDAC inhibitors that prevent LV hypertrophy.

Metabolomics as a bridge between gene and metabolism. Metabolomics is more and more
used to analyze metabolites and intermediates in cardiology [131], as well as pediatric
cardiology [132,133]. Interpretation can be complex.

Ketolytic metabolism was described as being increased in HF [134]. In atrial fibrillation,
elevated blood levels of acylcarnitine were found and discussed as reflective of defective
mitochondrial beta-oxidation [135,136].

2.3. Right Ventricular Failure: The Case of Pulmonary Arterial Hypertension

In fetal circulation, the right ventricle (RV) is responsible for up to 60% of the cardiac
output [137]. Thickness and contractility are likely to be similar between LV and RV at
this stage [138]. However, there are deep metabolic and electrophysiological differences
between LV and RV, such as differences in systolic Ca2+ [139]. The molecular structure
of the RV is quite different from that of the LV [140,141]. Metabolic pathways and gene
transcription mechanisms in the state of pressure-overload are different in LV and RV [142].
Dysfunction of the RV is accompanied by a release of ROS, combined with chronic nitric
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oxide deficiency [143]. Additionally, in RV hypertrophy specific mitochondrial remodeling
was described [144].

RV failure shares with LV failure the perturbation in substrate consumption. Glucose
homeostasis as well as fatty acid metabolism are impaired [82–84,145–148]. Acylcarnitine
levels are disrupted in RV failure and have been associated with insulin resistance and
adverse outcome [149–152].

Untypical substrate consumption. PAH is a disease resulting in RV failure. Initially
regarded an isolated disease of the pulmonary circulation, evidence is accumulating that
PAH is to be considered from the metabolic perspective [153,154].

Abnormal glucose oxidation. Abnormal glucose metabolism is observed in patients with
PAH, even without manifest diabetes mellitus [82–84] (Table 1). In Pugh et al. [82], 56% of
patients with PAH had an Hb1ac level of over 6.0%, and 15% of patients of over 6.5%—this
being undiagnosed DM, reminding of findings in Fontan patients of Ohuchi et al. [155].
Insulin resistance worsened pulmonary phenotype in the West study, implying a possible
causal role in PAH [83,85].

Altered fatty acid oxidation. Parallel to abnormal glucose metabolism and insulin resis-
tance, alterations of fatty acid oxidation were found in PAH [81]. In plasma, circulating
free fatty acids and acylcarnitines are significantly elevated in a similar pattern as found in
Fontan patients [43]. In an animal model, altered carnitine function was tied to decreased
mitochondrial function and altered nitric oxide signaling [156].

Increased ketogenesis. An increased conversion of fatty acids into ketones (ketogenesis)
was found to correlate with better clinical health in PAH [118]. This is consistent with
the adaptively increased uptake of ketones in HF [69]. Aarhus university is conducting a
clinical trial on ketones for PAH patients [86]. There are some rationales behind such an
approach. In a previous study, they found a 40% increase in cardiac output under treatment
with beta-hydroxybutyrate (BHB) infusion, with an increase in RV function as well as a
decrease in pulmonary vascular resistance by 20%. Their published results focus on the
hemodynamic effects with an average increase in cardiac output by 27%, and a decrease
in pulmonary vascular resistance by 18%, irrespective of the cause of right-sided HF
(10 patients with PAH, 10 patients with chronic thromboembolic pulmonary hypertension),
and at average a blood ketones level of 3.3 mmol/L [87].

While our article was submitted, a non-reviewed article from the Lillehei heart institute
(Minnesota university) describes that compensatory ketosis is absent in RV failure, in
contrast to LV failure. The therapeutic stimulation of ketolytic activity is improving RV
function, suppresses NLRP3 inflammasome activation and blunts myocardial fibrosis [88].
Those authors hypothesized an RV-liver-axis behind this specific RV dysregulation.

Oxidative stress. The electron transport chain in PAH shows pronounced alterations [89,90].
Proteomics studies in PAH identified an increased ROS production that might be related to
a loss of antioxidant response [91,92].

Decreased creatine kinase shuttle. Alterations in CK were found in diastolic dysfunction
in an animal model with RV HF [93,157].

Alterations in signaling pathways. Histone deacetylase inhibitors are acting differently
in LV, or RV hypertrophy [158,159]. Due to the complex pathogenesis of PAH, more than a
single epigenetic modulation to reverse PAH might be required [160].

Metabolomics findings. In right-sided HF, metabolomics analysis found specifically ele-
vated blood levels of L-carnitine, acetyl-L-carnitine and long-chain acylcarnitine. Alteration
of beta-oxidation of fatty acids increases the concentration of acyl-CoA, thus increasing
acylcarnitine levels. The conclusion is that an increased level of acylcarnitine may reflect
significant inhibition of the mitochondrial fatty acid beta-oxidation in PAH [161].

2.4. Energy Metabolism and the Single Ventricle after Fontan Palliation

Altered substrate consumption—glucose oxidation. Pyruvate metabolism might be altered
in SV patients, especially in those with HF. One metabolomics study found elevated levels
of circulating pyruvate in this group of patients, which might indicate an alteration of
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pyruvate metabolism and glucose oxidation [95] (Table 1). Noteworthy is that the authors
consider pyruvate therapy.

Altered substrate consumption—fatty acid oxidation. From biopsies collected during
cardiac surgery, it was discovered that cardiac metabolic maturation happened in HLHS
(dominant RV) through an increase in AMPK and PPAR-gamma coactivator 1 alpha, and
that control of fatty acid oxidation is not impaired in the hearts of HLHS children [162].
This suggests beta-oxidation to work properly. Thus, SV HF might follow a metabolic
pattern similar to that of BV HF, exhibiting the reverse Randle effect [105].

Surprisingly, in a very recent metabolomics study functional analysis of the mito-
chondrial CPT system demonstrated significantly decreased activity of the mitochondrial
CPT transporters, suggesting that the diminished myocardial acylcarnitine is related to
an overall decreased capacity of the failing SV to oxidize long-chain fatty acids, resulting
in a diminished rate of cardiac ATP production [94]. Those findings suggest that due to
the decreased enzymatic activity of CPT1/CPT2, beta-oxidation is altered in univentricu-
lar hearts which would explain the higher acylcarnitine levels found in Fontan patients
compared to healthy controls [43].

Another recent metabolomics study suggests differences in 2-oxoglutarate, isocitric
acid, malic acid, and cis-aconitic acid that could reflect alterations of the Krebs cycle [163].
The authors suggest Krebs cycle activation might be necessary to increase cardiac output
to counteract hypoxia in Fontan patients. Nevertheless, this interesting finding would
require further research, as the study compares metabolomics of various single ventricle
architecture to different malformations with inhomogeneous presence or grade of pressure
or volume burden such as tetralogy of Fallot or ventricular septum defects. Moreover, the
number of patients included is low (n = 14), and the study includes patients with severe
atrioventricular valve regurgitation or a history of protein-losing enteropathy.

Induced ketolysis in single ventricle physiology—early reports on the use of Sodium-glucose
co-transporter-2 inhibitors. The decreased activity of CPT2 in SV patients without HF,
and CPT1/CPT2 in SV patients with HF [94], as well as elevated circulating level of
carnitine [95] might indicate metabolic perturbations. Pires da Silva et al. consider pyru-
vate therapy [95,164]. This is part of an approach to compensate for the decreased ac-
tivity of CPT1/CPT2 by therapeutic use of cardiac anaplerosis [165]. An alternative ap-
proach is to make use of therapeutic ketosis or induced cardiac ketolysis. One means
to stimulate ketone metabolism is the use of sodium-glucose co-transporter-2 (SGLT2)
inhibitors as studied in BV HF [166–171], an approach supported by a case report (Fontan
circulation, 5 patients), where rehospitalization rate was reduced without acute adverse
effects [172]. Although based on a very limited patient number, objective data such as
increases in systemic oxygen saturation, serum albumin level, and estimated glomeru-
lar filtration rate, as well as a decrease in plasma NT-proBNP-level are promising, as
NT-proBNP > 100 pg/mL has a 91% sensitivity for significant ventricular dilation, and one
of 82% for ejection fraction <50% [173], and is predictive of adverse outcome [174].

While SGLT2 inhibitors’ mechanism still is not completely understood, one of the
main hypotheses is that SGLT2 inhibitors are increasing circulating ketone levels [168]. The
improvement of parameters seen in the first use of SGLT2 inhibitors on Fontan patients
match the effects of ketone bodies on hypoxia [175] and glomerular filtration rate [176], as
reported in non-Fontan studies.

Inflammation and oxidative stress. In HLHS patients, disorders of cellular respiration
are suspected to be present [96]. In an animal model, untypically elevated mitochondrial
respiratory capacity was discovered, different from the reduced respiratory capacity typi-
cally seen in BV LV HF [96,177]. The cause of this elevation is controversial. Based on the
Ohia mouse model, Xu et al., hypothesized a genetic mutation [96]. Other investigators
suggested an alteration in the cardiac metabolic maturation [178]. We hypothesize that the
unphysiological ventricle switch with its mechanical load changes may trigger metabolic
alterations. Irrespective of the cause, such a mechanism is able to trigger an elevation of
ROS, known to be one mechanism leading to cardiac hypertrophy [76,97,98]. A recent
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Proteomics study on young children with an SV lesion (prior to Fontan palliation) showed
decreased inflammatory cytokines and increased vascular tone modulators compared to
healthy controls before stage 2 palliation, and an increase in these analytes shortly after
stage 2 palliation [179]. Interestingly, tissue inhibitor of metalloproteinases-1 or and matrix
metalloproteinase 7 levels were associated with greater morbidity, suggesting an important
role for regulation of extracellular matrix production.

Systemic metabolic changes. Abnormalities in Fontan patients’ glucose and lipid
metabolism as well as in the neurohumoral axis have been reported, and this even in
‘stable’ Fontan patients with good exercise capacity and without signs of imminent Fontan
failure [19,180–185], in part revealing similarities to findings in the BV patient with LV or
RV failure. Interestingly, metabolomics studies found that even Fontan patients with good
ventricular function and without signs of a Fontan failure exhibited similar lipid metabolic
pattern as the BV patient with HF, particularly with respect to alterations in serum choles-
terol, lipoprotein, phospholipid, and acylcarnitine concentrations [43]. Moreover, there
are first reports on alterations in amino acid pathways, with some key analytes showing
altered serum levels (asparagine, histidine, taurine, threonine; amino acid-derived analytes
such as dimethylarginine, methionine-sulfoxide or glutamic acid), hinting at inflammation,
oxidative stress and endothelial dysfunction, altered cell energy metabolism, and elevated
myocardial turnover [42], similar to those found in BV patients with congestive HF.

3. Induced Ketosis in Patients with a Failing Biventricular Heart

Initially being an intuition in biochemistry [51], evidence accumulates on the thera-
peutic role of targeting mitochondrial oxidative metabolism [186], and especially ketone
metabolism for the BV LV HF [32]. In the development of HF, cardiac alterations of
metabolic processes contribute to a reduction of ATP availability, causing a decline in
myocyte contractile function. In advanced HF, ketone metabolism is increased; its nature is
discussed to be adaptive [29,102,187]. Nevertheless, therapeutic elevation of ketone bodies
may have positive results, not only for cardiometabolic health in general but also systemic
health in patients with HF in particular [188]. To date, research in this field is conducted on
both LV and RV HF.

Ketones as a substrate for the failing heart. Early experimental studies showed that BHB
is not only a fuel, but a super fuel for the heart [189–194]. Twenty-five percent increased
contractility and decreased oxygen consumption were found at 5 mM blood level of ketone
bodies [191]. It was discovered that in the healthy heart, ketones do not increase cardiac
efficiency. However, ketone fuels are capable of increasing ATP production when the
main cardiac fuels—fatty acids and glucose—are deficient [195]. Clinical applications are
currently in development, for congestive and acute HF [188,196,197].

Ketones and oxidative stress. Oxidative stress is involved in the progression of conges-
tive HF, showing a positive correlation between elevated oxidative stress and myocardial
dysfunction [76,121,198,199]. BHB is an endogenous specific inhibitor of class I HDAC. In
an experimental study, elevated levels of BHB inhibited HDAC, correlating with changes in
transcription including those of the genes encoding oxidative stress resistance factors, con-
ferring substantial protection against oxidative stress with decreased ROS production [200].
Oxidation of ketone bodies contributes to free radical homeostasis [40]. Reduced oxidative
stress was also observed in mice using a ketogenic diet [201].

Ketones and inflammation. Inflammation is associated with cardiac remodeling and
HF [202–204]. NLRP3 inflammasome is a new therapeutic target in the treatment of
HF [205]. BHB is inhibiting NLRP3 inflammasome [206]. In ketogenic-diet-fed mice, BHB
serum levels increased to 0.75–1 mM, and inhibited activation of NLRP3 inflammasome.
Overexpression of D-beta-hydroxybutyrate dehydrogenase I enhanced antioxidant enzyme
expression and attenuated peroxide-induced apoptosis [39]. In neurons, ketone bodies were
shown to decrease mitochondrial production of ROS without affecting the endogenous
antioxidant glutathione [207]. Consistently, a low-carbohydrate diet reduced inflamma-
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tion [208]. High-fat diet elevating BHB was able to reduce inflammation and mitigate HF
with preserved EF.

Ketones and mitochondrial respiratory complex activity. In an experimental model, keto-
genic diet normalized complex I and improved complex II-III activities in rats [209]. This
was discussed as originating from providing an alternative substrate as well as through the
ketone-mediated downregulated oxidative stress.

Ketones, myocardial contractility, and ventricular ejection fraction. Infusion of 3-hydroxybutyrate
to patients with HF with reduced EF increased the EF by 8% [80]. At the same time, cardiac
output increased by 40%, with a concomitant increase in RV function and decrease of
pulmonary vascular resistance by 20% each.

Ketones, myocardial remodeling, and prevention of cardiac hypertrophy. Inefficient my-
ocardial fuel consumption can cause pathological hypertrophy [210–213]. Class I HDAC
have been found responsible in the development of pathological cardiac hypertrophy
and HF [124,214]. HDAC inhibition was found to be a therapeutic target for cardiac
remodeling [215]. Overexpression of BBH dehydrogenase 1 has a protective role regard-
ing resilience to pressure overload-induced cardiac remodeling [39]. In an experimental
model, BHB infusion increased histone acetylation in the heart, inhibiting HDAC [200].
In preclinical model HF, elevation of BHB through ketone esters reduced pathologic re-
modeling [216]. Chronic elevation of BHB in dogs decreased adverse remodeling [38]. In a
similar way, strict dietary carbohydrate restriction, causing elevation of ketone levels and
decreasing mammalian target of rapamycin expression, suppressed hypertrophy in experi-
mental studies [217,218]. This phenomenon was discussed to have clinical implications. In
patients with HF with reduced EF, acute infusions of BHB improved contractility [80].

Ketones, endothelial function, and vascular resistance. Keeping pulmonary vascular resis-
tance low is necessary in Fontan circulation [219,220]. In BV patients with HF, endothelial
dysfunction, induced by oxidative stress, and elevated vascular resistance contribute to
the development of HF and are associated with an increased mortality [221,222]. Mecha-
nisms involved are complex, including oxidative stress, inflammation, and alteration of
nitric oxide metabolism. The ketone body BHB presented as a potent vasodilator both in
experimental models and human trials [223]. Under BHB infusion, myocardial blood flow
increased and induced vasodilation [80,224]. BHB infusion increased blood flow in the
renal system [170]. Ketone ester reduced risk of aortic dissection [225].

Antiarrhythmic potential of ketones. Ketone oxidation, membrane excitability, and
arrhythmogenesis are interrelated. BHB contributed to a 24% improvement in cardiac
efficiency, mitochondrial function and the stabilization of cellular membrane potential,
enhancing the antiarrhythmic potential of the myocardial cell [36].

Ketones and oxygen consumption. Ketone oxidation spares oxygen consumption and is
neuroprotective through two mechanisms, oxygenation improvement and decreased blood
carbon dioxide [226,227]. Compared to fatty acid oxidation, ketones produce more ATP per
molecule of oxygen [228,229].

Ketones in RV failure. Nutritional ketosis improved PAH through reversal of the
metabolic syndrome [230]. In a similar way, use of the SGLT2 inhibitor empagliflozin
prevented the progression of PAH [231]. A clinical trial is currently conducted on the use
of an OHB infusion in patients with idiopathic PAH [86] (Table 1).

4. Impact of Ketones Apart from That on the Cardiovascular System Relevant to
Fontan Circulation

The Fontan circulation with its elevated central venous pressure and limited cardiac
output has consequences on all organ systems [19,232]. Ketone bodies are organ-protective.
In the following, we aim to estimate to which extent Fontan circulation pathophysiology
benefits from this protection (Figure 1).
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certain anatomical variants of a SV, optimizing oxygen consumption might be critical con-
sidering altered coronary perfusion. A ketogenic diet improved the cerebral oxygen level 
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giogenesis after corneal injury and myocardial infarction in the BV patient [248]. The 
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Hepatoprotection. Deficiencies in hepatic ketogenesis are associated with non-alcoholic
fatty liver disease and fibrosis [233]. Therapeutic ketosis was explored in the treatment of non-
alcoholic fatty liver disease, with effective improvement and reduction of fibrosis [234–237].

Renoprotection. Numerous studies show detrimental effects of the Fontan circulation on
the kidneys [238–242]. Renal ketogenesis requires further exploration. Nevertheless, renal
ketogenesis is reported to be a mechanism protecting against renal ischemia-reperfusion
injury [243,244].

Neuroprotection. Mild hypoxia is a common feature of the Fontan circulation [245],
and ketones could be a therapeutic strategy to counteract the effects of this hypoxia. For
certain anatomical variants of a SV, optimizing oxygen consumption might be critical
considering altered coronary perfusion. A ketogenic diet improved the cerebral oxygen
level in hypoxia after an epileptic event [175]—the assumed mechanism being altered
substrate consumption, reduced glycolysis, and accumulation of lactate [246]. Exogenous
ketones increased blood and muscle oxygenation in hypoxia [247].

Lymphangiogenesis. Evidence is appearing on the role of ketogenesis on the lymphan-
giogenesis after corneal injury and myocardial infarction in the BV patient [248]. The
mechanism is also on trial for alleviating lymphedema [249,250]. Whether ketone bodies
might play a therapeutic role in abnormal lymphatic flow in Fontan circulation requires
further research.

Abnormal glucose patterns. Abnormal glucose metabolism is one of the underdiagnosed
complications of Fontan circulation [155,180]. Alteration of insulin sensitivity is hypothe-
sized to be a factor of Fontan-associated liver disease, which affects a high percentage of
Fontan patients [251,252]. Having in mind that ketogenic diet and carbohydrate restriction
are established therapies to treat insulin resistance and to improve glycemic control [253],
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facing the abnormal glucose metabolism inherent to Fontan, the therapeutic potential of
ketogenic diet and carbohydrate restriction might be worth considering.

5. Rationale of a Targeted Metabolic Therapy in Fontan Patients

Current approaches to HF in Fontan patients are widely based on treatment regimens
for BV HF. Their application varies among centers, and polymedication is common, often
with the potential of complex drug interaction [22,23]. Apart from the therapeutic potential
of ketone bodies in BV HF that should apply to SV patients, there are features unique to
Fontan circulation that—based on the effects on similar complications—might benefit from
therapeutic ketosis.

Therapeutic modulation of the ketone pathway. SGLT2 inhibitors are considered to posi-
tively address HF through an increase in cardiac ketone oxidation [168]. The first trial of
SGLT2 inhibitors on Fontan patients is promising [172]. Though the trial size was limited,
the benefits seen in the study support therapeutic ketosis in HF. SGLT2 inhibitor use is cur-
rently supported by FDA only for patients over 18 years old [254]. Other means to achieve
therapeutic ketosis including ketogenic diet, medium chain triglycerides supplementation,
or application of ketone esters (Figure 2).
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A strong case for therapeutic ketosis in Fontan patients. Therapeutic ketosis has been in
use already for 100 years in pediatric neurology [255]. Numerous reviews judge it a safe
dietary therapy with minor adverse effects to be monitored [256,257]. It is a sustainable
therapy [258], and it is used from toddler age to adult age [259]. The therapy has spread
from pediatric neurology to other fields, such as certain inherited metabolic disorders [260],
adults’ BV congestive LV HF [216–218], intensive care management [261], or oncology [262].
Due to the unique nature of SV patients and the potential of interactions with their poly-
medication commonly present, induction of ketosis should only be undertaken under close
medical control.

Additional candidate mechanisms for metabolism-targeted therapy for Fontan patients. Car-
diac anaplerosis might be able to replete tricarboxylic acid intermediates and alleviate
the substrate consumption alterations [165]. Among other regimens, there is pyruvate
therapy [164], application of glutamine [263] (PAH patients showed an increased anaplero-
sis under glutamine [264]), or branched-chain amino acids [265] and odd-chain fatty
acids [266,267]. Octanoate is modulating metabolic acetyl-CoA histone acetylation, promot-
ing cardiac repair after myocardial infarction [268]. It is currently applied to Fontan patients
with lymphatic complications such as protein-losing enteropathy (supplementation of the
low-fat diet with medium chain triglycerides) [269]. It is unclear how octanoate could
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bypass CPTI/CPTII transporter and act as a fuel in the mitochondria in the cardiomyocyte,
the results being controversial [270,271].

6. Limitations

SV malformation is a rare disease. Most studies on cardiac and systemic metabolism
of Fontan patients were conducted on a limited number of patients. The etiology of all
SV malformations might not be identical, and metabolism as well as gene transcription
might vary. Furthermore, metabolomics results should be treated with caution as interpre-
tation can be complex. Large-scale (multicenter) studies are necessary to further explore
the metabolic impairment of the SV heart and the ketones‘ therapeutic potential in the
respective patients.

7. Methods

Our literature review compares the metabolism of patients with an SV circulation after
Fontan palliation with that of patients with a healthy BV heart, or different subtypes of a
failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan failure,
heart failure, ketosis, metabolism, published in English from 1939 to 2023.

8. Conclusions

Evidence is growing that SV circulation after Fontan palliation not only is a hemody-
namically challenging state, but also raises a metabolic issue with its alterations of fatty
acid oxidation as well as glucose oxidation, similar to those reported in the failing BV heart,
generating metabolic instability and disturbed energy production that per se may become a
cause of circulatory failure. Evidence accumulates that stimulating ketone oxidation as a
targeted metabolic therapy might be a therapeutic strategy to address HF in BV patients.
Therapeutic ketosis may be worth considering also in the treatment of Fontan patients, as
ketones positively affect not only the myocardial energy metabolism, but also the global
Fontan pathophysiology. Induced ketosis seems promising as a therapeutic strategy for
chronic ventricular failure and low-grade inflammation, as well as diseased liver, kidney,
and intestines. Ketone esters, 1,3 butadeniol, or octanoate might provide a third fuel to the
SV heart, and a well-formulated ketogenic diet taking into account the micronutritional
status inherent to Fontan patients may have an integrative, concerted effect on the several
complications of Fontan circulation.
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