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Abstract: The employment of advanced analytical techniques and instrumentation enables the trac-
ing of volatile organic compounds (VOCs) in vestigial concentrations (ppbv-pptv range) for several
emerging applications, such as the research of disease biomarkers in exhaled air, the detection of
metabolites in several biological processes, and the detection of pollutants for air quality control. In
this scope, the storage of gaseous samples is crucial for preserving the integrity and stability of the
collected set of analytes. This study aims to assess the suitability of three commercially available
syringes as air containers (AC) that are commonly used for the collection, storage, isolation, and trans-
portation of samples: glass syringes with glass plungers (AC1), and two plastic syringes, one with
plastic plungers (AC2), and one with rubbered plungers (AC3). For this purpose, 99 air samples with
different times of storage (from 10 min to 24 h) were analyzed using a Gas Chromatography—Ion
Mobility Spectrometry device and the degradation of the samples was properly assessed by com-
paring the changes in the VOCs’ emission profiles. The quality of the method was assured by via
the measurement of the blank’s spectra before each experimental run, as well as by the consecutive
measurement of the three replicates for each sample. A statistical analysis of the changes in the VOCs’
emission patterns was performed using principal component analysis (PCA). The results, with a total
explained variance of 93.61%, indicate that AC3 is the most suitable option for the long-term storage
of air samples. Thus, AC3 containers demonstrated a higher capacity to preserve the stability and
integrity of the analytes compared to AC1 and AC2. The findings of the short-term effects analysis,
up to 1 h, confirm the suitability of all analyzed syringe-based containers for sample-transferring
purposes in onsite analysis.

Keywords: air storage containers; syringe; volatile organic compounds; gas chromatography; ion
mobility spectrometry; breath sampling

1. Introduction

The storage and analysis of volatile samples has emerged as an expanding field of
high interest, providing valuable insights into metabolite composition, characteristics, and
sources. Understanding the nature and origin of the compounds present in these samples,
which generally include over 300 different volatile organic compounds (VOCs) in a large
range of concentrations (from ppmv-pptv), is crucial for identifying their sources and
potential impact in numerous applications, including environmental monitoring (or air
quality monitoring) and disease detection using exhaled air. VOCs are characterized by
their low boiling points, which allow them to easily evaporate into the gaseous phase, and
originate from both endogenous and exogenous sources. Endogenous VOCs are produced
in living organisms and can be indicative of metabolic processes or diseases, whereas
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exogenous VOCs are derived from external sources [1] such as industrial emissions, vehicle
exhausts, or natural processes, e.g., food [2] and plant emissions.

Since the analysis of volatile samples highly depends on robust storage and analysis
methods, there is a need to employ advanced analytical techniques that enable the applica-
tion of gas analysis for healthcare (i.e., screening multiple health conditions/diseases using
exhaled air [3–6] and air quality control applications [7–11]). Environmental monitoring in-
volves the assessment of air quality in various settings, such as industrial sites, urban areas,
and indoor environments, to ensure compliance with regulations and to evaluate potential
health risks [12]. Additionally, the detection of diseases using exhaled air, known as breath
analysis, has gained significant attention in recent years. Studies have shown that certain
diseases, including lung cancer and respiratory infections, can be detected by analyzing
specific VOC profiles in breath samples [6,13,14]. In this scope, gas chromatography–ion
mobility spectrometry (GC–IMS) has emerged as a powerful analytical technique that
offers advantages due to its ability to perform fast and cheap analysis, its high sensitivity,
and its ability to detect a wide range of compounds, making it a valuable tool for such
applications [15].

While volatile sample analysis provides valuable information, it is essential to consider
the limitations associated with the transfer and storage of these samples. One major limita-
tion is the potential loss or reduction in VOCs’ concentration during the transfer process.
This can occur due to the adsorption of compounds into the internal walls of transfer lines
or their diffusion through the walls of the collection vessel. Hence, a suitable approach to
air sample storage would enable the preservation of the integrity and stability of collected
analytes, leading to an accurate analysis of pollutants and disease biomarkers [16,17].

A specific limitation occurs when gas samples pass through transfer lines, where
certain compounds can be adsorbed onto the internal walls, resulting in a loss of concen-
tration [18]. This phenomenon is particularly significant for VOCs, as they tend to have
higher affinities for solid surfaces. The extent of adsorption can vary depending on factors
such as the length and composition of the transfer line material and the physicochemical
properties of the compounds involved. Besides the concentration loss of several VOCs due
to adsorption, the contamination of gas samples also occurs due to reactivity between the
compounds and the materials (storage vessels and/or transfer lines). Some VOCs may react
with contact surfaces, leading to chemical reactions that may generate new compounds that
alter the composition of the gas samples and introduce artefacts into the analysis [19,20].

To overcome the limitations associated with gas sample transfer and storage, various
types of storage containers have been used [21,22]. These include Tedlar bags, sorbent
tubes, needle trap devices, and syringes. Each container type offers distinct advantages
and disadvantages related to cost, sample preservation and compatibility with analytical
techniques. Syringe-based containers are the least costly sample container capable of
storing air samples agnostically (i.e., non-specific to predetermined VOCs), and have
internal walls with a reduced surface area compared to other containers and typical PTFE-
based bags. The smaller surface area minimizes the adsorption of sample VOCs onto
the walls, thus preserving the sample’s composition more effectively, as well as avoiding
sample contamination due to degassing from the wall surface [23,24]. This feature is very
important for short-term sample storage and transferring a sample into the analyzer.

There are multiple syringe-based containers commercially available with distinct
characteristics that may impact VOCs’ emission profile and, thus, sample composition.
Moreover, a temporal characterization of the sample stability of syringe-based containers is
still missing. Therefore, and considering the importance of gas sample analysis and the
limitations associated with sample transfer and storage, this study aims to achieve two
objectives: (1) to verify the maintenance of the VOC profile (i.e., sample composition) when
air samples are trapped for a short period (solely for the purpose of transferring a sample to
the analyzer) in three different types of syringes, and (2) to evaluate the temporal capacity
(up to a maximum of 24 h) with which the VOC profiles for air samples stored in different
syringes are maintained. Summarily, this study involves assessing how the composition
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of air samples changes over time when stored in various syringe-based containers. By
evaluating the temporal stability of samples, this study aims to provide insights into the
optimal storage duration and syringe type for preserving sample integrity. The authors
expect that the findings presented in this study will contribute to improving the quality
and reliability of gas sample analysis and facilitate advancements in various applications
relying on gas composition data.

2. Materials and Methods
2.1. Air Storage Containers

Three types of syringe-based containers with different compositions (glass and plastic
with and without rubbered plungers) were selected and evaluated for their suitability to
store air samples. Sterile 10 mL volume containers were used in every case. The glass
syringes (AC1) were manufactured by Poulten & Graf®, the plastic syringes with plastic
plungers were produced by BD® (AC2), and the plastic syringes with rubbered plungers
(AC3) were manufactured by PIC Solution®. The sterile condition of each container was
ensured by the manufacturers. All the containers were acquired via officially recognized
distributors. Figure 1 displays the 3 types of air containers used throughout the study.
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Figure 1. Syringe-based Air Containers (AC) used in the study: full glass (AC1, left), plastic with
plastic plunger (AC2, middle) and plastic with rubbered plunger (AC3, right).

2.2. Sample Collection and Storage

Environmental air samples from a controlled closed space (i.e., a laboratory facility)
were considered for this study. One single operator collected and analyzed the samples to
minimize experimental variability among the rounds of sampling. Air samples of 5 mL
were collected into sterile containers by applying negative pressure as a result of the forced
movement of the plunger and were then constrained using three-way valves. Subsequently,
syringes were stored in a freezer at 8 ◦C and left exposed to the same conditions of
temperature, pressure, humidity, and radiation until the moment of analysis.

Three air sample replicates per container type were collected and analyzed over 24 h
in several instances, i.e., 0 min, 10 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 16 h, 20 h, and 24 h
after their collection and isolation. Therefore, a total of 99 air samples were included in
this evaluation (specifically, 11 measurements were performed for each container, totaling
33 spectra for 3 container types).

2.3. Sample Analysis
2.3.1. IMS-Based Technologies

Ion Mobility Spectrometry (IMS) is an analytical technique that has been gaining
relevance in several scientific fields, namely environmental, health, and food research
applications [25–27]. Its main characteristics, namely its outstanding sensitivity, high
selectivity, instrumental simplicity, analytical flexibility, portability, and almost-real-time
monitoring capacity, have placed IMS among the most promising separation techniques
for the assessment of VOCs. If coupled with a chromatographic column, the resulting
device couples these features with good precision, a wide dynamic concentration range,
and high Gas Chromatography (GC) selectivity, with improved capacities to differentiate
VOCs considering their size, weight, and molecular shape [12,15,28].

In summary, a GC–IMS measurement starts with the injection of the volatile sample
into the spectrometer. Here, the sample undergoes a pre-separation process in the interior
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of the chromatographic column, where the analytes are separated based on their capacity to
absorb into the inner coating of the column. The time required to completely elute from the
GC is a compound-specific value and is commonly defined as the retention time, rt. This
value corresponds to one of the three variables represented in the final three-dimensional
spectrum produced after each measurement [29,30]. Then, the analytes enter the IMS
section of the device. Here, they are ionized by an ionization source. This source can
either be a radioactive source, like Tritium or Nickel sources, or an X-ray source [31]. Once
ionized, the formed ions are exposed to a weak and homogeneous electric field that is
responsible for inducing velocity. The velocity of each ion is ordinarily called the drift
velocity, vd. Once accelerated, the ions drift throughout the entire drift tube of the IMS, and,
at the end of the tube, they are detected at specific temporal instants. The time required to
cross the entire tube is, as for the GC, a compound-specific value commonly known as the
drift time, dt [28,30]. Figure 2 schematizes the entire GC–IMS analysis, from the injection of
the sample previously stored in the syringe-based containers, to the final detection using
the Faraday plate detector.
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air containers via GC–IMS.

As mentioned, both the retention and drift times are values characteristic of each
analyte; in this way, they can be used for identification purposes. Nonetheless, it is common
practice to calculate another compound-specific constant. This constant, defined as the ion
mobility constant, K, translates the relationship between the drift time, Dt, the magnitude of
the electric field, E, and the length of the drift tube, L [28,32]. K can be calculated as follows:

K =
vd
E

=
L

E·Dt
, (1)
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Since the ion mobility constant depends on the pressure and temperature conditions
existent during the analysis, it is common practice to normalize it to standard environmental
values of pressure and temperature [28,32]. The normalized ion mobility constant, K0, can
be calculated as follows:

K0 = K
P
P0

T0

T
, (2)

Once the GC–IMS measurement is concluded, a three-dimensional spectrum is pro-
duced. Two of the three coordinates represent both the retention and drift times in seconds
and milliseconds, respectively. The third coordinate corresponds to the intensity (V) of
each compound detected during the analysis. The intensity can be directly related to the
concentration that each analyte used to have in the original sample, and can be used for
quantification purposes [15,33]. A generic spectrum produced after the analysis of environ-
mental air is illustrated in Figure 3. Here, the drift and retention times are, respectively,
represented in the x and y axes, and the intensity is represented using a color scale. An
enlarged section is equally included for visualization purposes.
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2.3.2. Analysis Settings and Parameters

Air samples were analyzed using a BreathSpec® apparatus manufactured by G.A.S.,
GmbH (Dortmund, Germany), which is an analytical system that combines Gas Chro-
matography (GC) and Ion Mobility Spectrometry (IMS). The IMS contains an ionization
source of tritium (3H—β radiation, of 300 MBq) and a drift tube 98 mm in length. The
chromatographic column, an MXT-200, of the GC–IMS device has the following dimensions:
30 × 0.53 × 1 (length (m) × internal diameter (mm) × thickness (µm)) and a mid-polar sta-
tionary phase of trifluoropropylmethyl polysiloxane. More detailed technical specifications
of the used equipment are presented in Table 1.
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Table 1. GC–IMS equipment (BreathSpec®) specifications.

Parameters Values Units

Sample Loop Volume 1 mL
GC Column Model MXT-200 –
GC Column Length 30 m

GC Column Diameter 0.53 mm
Ionization Source Tritium—β Radiation –

Ionization Intensity 300 MBq
Drift Region Length 9.80 cm

Drift Potential Difference 5 kV
IMS Pressure Range 757–760 Torr

Electric Field Intensity 500 V/cm
Resolving Power Range 65–70 –

For the analysis using the GC–IMS, a 500 V/cm electric field was applied inside the
drift tube, positively polarized. The equipment was also connected to a Circular Gas Flow
Unite (CGFU) from the same manufacturer, which supplies purified air as the carrier and
drift gases. The gas flows were 150 mL/min for drift, and 10–150 mL/min for the carrier
flow, respectively, for 300 s of each experimental run. More detailed conditions of the
analysis are presented in Table 2.

Table 2. Analysis conditions applied for this assessment.

Parameters Values Units

Carrier Gas Purified Air –
GC Temperature 343.15 K

Ionization Polarity Positive –
IMS Temperature Range 297.15–301.15 K

Carrier Gas Flow 10–150 mL/min
Drift Gas Flow 150 mL/min

Analysis Duration 300 s

2.4. Data Analysis and Data Validation

All GC–IMS three-dimensional spectra were processed using the LAV software (ver-
sion 2.2.1.—G. A. S. Dortmund, Germany). In total, 82 analytes were detected for all
observed peaks, thus extracting the values of the drift and retention times, and the nor-
malized intensity variation. As a data pretreatment step, the exported intensity variation
was normalized before the PCA by performing a background subtraction (i.e., removing
intensity values from the room air measurements directly measured using the GC–IMS
device without collection or storage in air containers). Afterwards, normalized intensity
variations were statistically processed using partial least squares (PLS) regression and
principal component analysis (PCA) to quantify the differences between the samples stored
in each type of container at different storage times. IBM SPSS Statistics for Windows,
version 23 (IBM Corp., Armonk, NY, USA) was used for such data analysis.

The application of data validation approaches to chromatographic and spectrometric
data plays a critical role in thoroughly assessing cause–effect systems [34–36] and thus
allows both to assess the effects of syringe-based containers on VOC samples. This ulti-
mately enhances the confidence and reliability of cause—effect analyses in various scientific
fields. In this scope, the repeatability of the measurements performed for each type of con-
tainer and storage time was evaluated via the comparison of 3 replicates, where precision
and standard deviations (for both Dt and Rt) were evaluated (see results in Section 3.1).
VOC identification was not performed for all GC–IMS intensity maxima, as the aim of
the study was to compare the suitability of three distinct containers for the long-term
storage and preservation of gas samples. Instead, only 4 VOCs were identified for sample
reproducibility evaluation.
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Figure 3 schematizes the set of procedures (from air sampling to data analysis) applied
during this study and mentioned before.

3. Results and Discussion
3.1. Sample Repeatability

A total of 99 spectra were collected from measurements conducted using eleven
different storage times (according to Figure 3). The repeatability of the measurements
performed for each type of container and storage time was assessed via a comparison of
three replicates. The precision and analytical performance of the method were evaluated
by statistically analyzing the repeatability of the GC–IMS data, including the normalized
intensity for all analytes, and the retention time and relative drift time for four randomly
selected VOCs (i.e., ethanol, isopropanol, acetone and propanal).

The VOC patterns detected from the analysis of the samples with the same storage
for each container type were similar between the three replicates. The mean value and
the standard deviation of the total intensity of the analytes detected in the samples imme-
diately analyzed were 4.5 ± 0.1, 4.1 ± 0.3 and 4.1 ± 0.3 (V) for the plastic syringe with
AC1, AC2 and AC3, respectively. This indicates a mean relative error of 5.61% for the
normalized intensities of all analytes. Table 3 presents the mean retention and drift times
(and corresponding standard deviation values, SD) for the four randomly selected analytes.

Table 3. Mean retention and drift times (and corresponding standard deviation values) for the four
randomly selected analytes.

Compound Rt (s) SD Rt (s) Dt (RIP Rel.) SD Dt (RIP Rel.)

Ethanol 24.2 0.1 1.0617 0.0005
Isopropanol 25.6 0.1 1.1083 0.0006

Acetone 27.5 0.0 1.1650 0.0008
Propanal 33.2 0.2 1.0626 0.0006

The overall relative error was found to be up to 0.46% for the retention time, 0.06%
for the relative drift time, and 5.61% for the normalized intensity, which indicates the high
precision of the data collected using the BreathSpec. These overall values were calculated
using the mean relative error values for the four VOCs selected. Of note, the SD of the
retention time for acetone was found to be 0.0 s due to no variations occurring in the acetone
retention time for all nine replicates (i.e., three replicates of three syringe-based ACs). This
careful adherence to the specified conditions confirms that the collection procedure is
effective in preserving air samples. Without such adherence, the standard deviation for the
average values of normalized intensity would be significantly higher, rendering the data
statistically invalid and non-repeatable.

Regarding the third value registered in the three-dimensional spectrum produced
during the GC–IMS measurement, Figure 4 illustrates the total intensity registered for
ethanol, acetone, isopropanol and propanal after each one of the considered storage times.
Here, the intensity levels are represented in red, blue and green, respectively, for the
full glass syringe (AC1), full plastic syringe (AC2), and plastic syringe with a rubbered
plunger (AC3).

Further considerations regarding the intensity variation are discussed below; nonethe-
less, the proposed method demonstrates excellent performance for VOC analysis using
GC–IMS. In fact, the low standard deviation observed between consecutive measurements
further confirms the precision (and therefore repeatability) of the method and highlights the
suitability of this technology for analyzing air samples. Therefore, the variability between
replicates indicates that both sampling and analysis procedures applied in this study are
reliable and consistent, denoting the stability of measurements per condition evaluated.
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Figure 4. Variations in the total intensity levels registered for four randomly selected analytes (ethanol,
acetone, isopropanol and propanal) throughout the 24 h study for the three types of storage containers
(AC1: fully glass syringe, AC2: fully plastic syringe, AC3: plastic syringe with rubbered plunger).

3.2. Sample Degradation and Compositional Variation

Although a comparison of the visual spectra provides a qualitative assessment of
the most concentrated compounds, proper statistical data analysis allows us to perceive
hidden (or not so visible) evidence and differentiate patterns in the air samples stored
for different times using the three container types. The application of unsupervised PCA
(Figure 5) highlights the differences between the profile of air stored in glass syringes (AC1,
circles), fully plastic syringes (AC2, squares) and plastic syringes with a rubbered plunger
(AC3, triangles).

Principal Components (PC) exhibited 76.94% [PC1], 11.63% [PC2] and 5.041% [PC3]
of the total explained variance in the data set for all measurements of each air sample,
resulting in a total explained variance of 93.61%. Besides the high repeatability between
replicas (i.e., samples with the same storing conditions: container type and storage time),
Figure 5 also evidences a cluster containing measurements of the three container types
for short storage times (t < 4 h), i.e., a stability group. Such results indicate that all three
container types are suitable to use within this timeframe without significant changes in the
VOC profile of environmental air samples, establishing a stability group in the PCA plot.

Additionally, the VOC emissions for the AC1 air samples follow a horizontal evolution
along the PC1. Such behavior suggests a progressive change in the VOCs emitted from
the air samples stored in these glass containers with an increasing storage time. This
directly contrasts with the results obtained for AC2 (fully plastic syringes), where an abrupt
change in VOC emissions occurs for storage times >8 h. Contrarily, measurements for air
samples stored in plastic syringes with rubbered plungers were all constrained within the
stability group.

The overall separation of VOC emissions, within the stability group, is caused mainly
by usual compositional fluctuations in the air samples and by equipment uncertainty.
Meanwhile, air measurements located outside the stability group may be caused by sample
degradation after a certain storage time. Specifically, AC1 appears to have a higher and
progressive degree of degradation over time, AC2 has an abrupt change in VOC emissions
after 8 h of storage and AC3 indicates that the samples are preserved independently of the
storage time (within the 24 h included in the study).
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Moreover, the behavior of the samples stored in each type of container seems to have a
common location of origin in the graph (within the stability region). To further understand
the behavior of the air samples stored in the three container types over the storage time
considered, new score plots were constructed for each type of container.

3.2.1. Air Storage in Glass Syringe with Glass Plunger (AC1)

Significant changes in the VOC emission profile are observed when comparing spectra
from three storage times: 0 h (short-term), 8 h (intermediate), and 24 h (long-term). The
samples analyzed without storage (0 h) exhibit the lowest number of VOCs compared
to the other timeframes. In particular, at 8 h of storage, there are significant changes in
the VOC emission profiles, characterized by the presence of new intensity peaks in the
spectra, indicating the detection of new analytes. From 8 h to 24 h of storage, the VOC
emission spectra show an increase in intensity for the newly detected peaks after 8 h,
as well as the identification of a novel set of peaks/VOCs. This observation is further
supported by PCA, which accounts for 97.59% of the total explained variance for the
three most relevant principal components. The PCA analysis demonstrates a progressive
linear distribution over time, as depicted in Figure 5 and confirmed in Figure 6. Figure 6
includes three exemplar spectra for air samples analyzed without storage (0 h), after 8 h,
and after 24 h of storage, as well as a PCA score plot representing all measurements across
all storage containers.

Since glass is an inert material, it would be expected to have an increased capacity
to maintain stable VOC profile emissions throughout the 24 h in the air container. While
the results initially support this expectation, especially for no storage (0 h), where the
spectra are most similar to blank measurements, the same conclusion cannot be drawn for
longer storage times (>1 h). This discrepancy may be attributed to two possible factors:
(a) potential coating treatments applied to glass surfaces that reduce friction during the
actuation of the plunger, and/or the (b) higher reactivity of VOCs in glass due to their
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weaker ability to prevent light effects. Both hypotheses suggest the generation of new
peaks/VOCs via chemical interactions between the container material and the analytes in
the air sample.
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Figure 6. Temporal comparison of air measurements stored using AC1 (top), AC2 (middle) and AC3
(bottom) for a total storage time of 24 h; (left) three representative GC–IMS spectra for air samples
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PCA plot score demonstrating two distinct VOC profiles for air samples stored over 8 h, for the three
replicates (1st blue, 2nd red and 3rd green).

3.2.2. Air Storage in Plastic Syringe with Plastic Plunger (AC2)

When comparing the spectra for the three different storage times (0 h, 8 h, and 24 h),
significant changes are observed in the emission profile of VOCs. The spectra of samples
analyzed without storage (0 h) exhibit the lowest number of VOCs compared to the other
timeframes. At 8 h of storage, there are noticeable alterations in the VOC emission profile
with the emergence of new intensity peaks in the spectra, indicating the detection of new
analytes. However, no significant changes in the VOC emissions (i.e., same peaks detected)
occur between 8 h and 24 h of storage time, only an increase in the intensity or concentration
of the VOCs. The application of PCA solely for the air samples stored in AC2, with 98.73%
of the total explained variance for the three most relevant principal components, clearly
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demonstrates the abrupt difference in the VOC emission profiles after 8 h, as depicted in
Figure 5 and confirmed in Figure 6.

The appearance of new VOCs in the spectra of samples stored for more than 8 h might
be explained by, over time, the initial compounds stored in AC2 being degraded, forming
secondary VOCs. Contamination by external VOCs, exogenous or emitted from the plastic,
can also explain the increase in VOCs detected, thus indicating the inability to store air
samples for more than 8 h. This might also be linked to the poor isolation of the plastic
plunger after this period.

3.2.3. Air Storage in Plastic Syringe with Rubber Plunger (AC3)

In contrast to AC1 and AC2, the pattern of the analytes detected in the air samples
stored in AC3 remains relatively consistent over the 24 h study period. The analytes
detected in the samples without storage (blanks and 0 h) exhibit similar intensity levels to
those detected in the air samples stored for different timeframes up to 24 h, with only minor
intensity increases observed over consecutive 8 h periods. This phenomenon is mainly
attributed to the inevitable slow degradation of these compounds.

Furthermore, this observation is supported by the PCA results, with 98.19% of the
total explained variance accounted for by the three most relevant principal components (as
shown in the bottom images of Figure 6), displaying a distinct cluster within the stability
group (as depicted in Figure 5). This indicates that regardless of the storage time in the
studied container, the samples maintain their main features without significant degradation
or contamination by external analytes. In the case of the PCA for the AC3-stored air
samples, the points are closely clustered together, except for five measurements (out of
33) that fall outside this group. However, these five measurements have irregular storage
times of 30 min, 2 h, 12 h (twice), and 20 h. The randomness in the storage times for
these samples suggests irregularities specific to these samples, unrelated to the storage
capabilities of AC3.

Therefore, AC3 has proven to be significantly better at preserving the characteristics
of the original sample and avoiding influences from external factors (both environmental
and those related to AC3 materials) over extended storage periods, even when considering
potential contaminations from the VOC emission profile of the rubbered plunger.

4. Conclusions

The storage of gaseous samples plays a crucial role in preserving the integrity and
stability of volatile organic compounds (VOCs) for various applications, such as disease
biomarker research, metabolite detection, and air quality control. This study evaluated the
suitability of three commercially available syringes (AC1, AC2, and AC3) commonly used
as air containers for sample collection, storage, isolation, and transportation.

The application of GC–IMS as the analytical technique has proven to be highly suitable
for evaluating air samples stored over both short and long periods, thus assessing the
preservation capabilities of air containers (ACs). GC–IMS stands out for its exceptional
selectivity, sensitivity, and analytical flexibility, combined with its portability and ability to
perform longitudinal studies of volatile samples.

This study demonstrated the good repeatability of the measurements made and
identified differences in the VOC profiles based on the storage time and container type.
The analysis of the data using unsupervised PCA provided deeper insights into the overall
VOC emission profile of air samples stored for different times using the three container
types. Samples stored in glass syringes (AC1), fully plastic syringes (AC2), and plastic
syringes with rubbered plungers (AC3) exhibited different behaviors over time.

Although all air containers can be used in short-term analysis (up to 1 h), glass syringes
have the clearest measurements. Therefore, glass syringes proved to be suitable for direct
analyses, but inappropriate for medium- and long-term storage scenarios. For long-term
storage, AC3 proved to be the most appropriate for sample preservation.
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Despite lacking the confirmation of these findings for more complex volatile samples
(e.g., breath samples or even room air samples from environments with high humidity
levels), this study provides crucial insights into the selection of appropriate syringe-based
containers and their impact on VOC stability. These are imperative considerations for
the selection of suitable containers for the transport and storage of VOC samples and,
consequently, a reliable and insightful analysis of air-based samples.
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