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Abstract: Little is known about the metabolic differences between endurance and strength ath-
letes in comparison with sedentary subjects under controlled conditions and about variation of
the metabolome throughout one year. We hypothesized that (1) the resting metabolic profile dif-
fers between sedentary subjects and athletes and between perennially endurance- and strength-
trained athletes and (2) varies throughout one year of training. We performed quantitative, targeted
metabolomics (Biocrates MxP® Quant 500, Biocrates Life Sciences AG, Innsbruck, Austria) in plasma
samples at rest in three groups of male adults, 12 strength-trained (weightlifters, 20 ± 3 years),
10 endurance-trained athletes (runners, 24 ± 3 years), and 12 sedentary subjects (25 ± 4 years) at
the end of three training phases (regeneration, preparation, and competition) within one training
year. Performance and anthropometric data showed significant (p < 0.05) differences between the
groups. Metabolomic analysis revealed different resting metabolic profiles between the groups with
acetylcarnitines, di- and triacylglycerols, and glycerophospho- and sphingolipids, as well as several
amino acids as the most robust metabolites. Furthermore, we observed changes in free carnitine
and 3-methylhistidine in strength-trained athletes throughout the training year. Regular endurance
or strength training induces changes in the concentration of several metabolites associated with
adaptations of the mitochondrial energy and glycolytic metabolism with concomitant changes in
amino acid metabolism and cell signaling.

Keywords: athletes; phenotype; athlete metabolome; basal state; chronic adaptation; plasma

1. Introduction

Regular training performed for many years leads to the development of characteristic
athletic phenotypes depending on the training content and the combination of intensity and
volume, provided that the genetic profile is appropriate [1–3]. On one side of the exercise
continuum, endurance training induces an increase in oxygen uptake, oxygen-transport
capacity, and in oxidative metabolism with enhanced mitochondrial density in rather small
muscles containing predominantly oxidative type I myofibers. These adaptations result
in a greater resistance to fatigue and an enhanced endurance performance [4–7]. On the
other side of the spectrum, resistance training leads to an increase in muscle mass with
predominantly fast type II myofibers, favoring anaerobic and anabolic metabolism, and to
an optimization of neuromuscular function [8,9], adaptations which enable maximal and
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fast strength development. The results of a few recent studies suggest that the adaptation
to extreme forms of endurance or strength training leads to characteristic metabolic profiles
which can be elucidated by applying metabolomics, allowing for the simultaneous analysis
of low-molecular metabolic compounds [10–13].

Little information is available regarding long-term adaptation of the basal metabolome
in chronically trained individuals, especially in basal state [11,14]. To the best of our knowl-
edge, there is only one landmark study which investigated metabolic differences between
athletes from different sport disciplines [12]. At the time when 191 athletes reported to
anti-doping controls, blood samples were obtained for the measurement of 743 metabolites.
The samples were collected as part of anti-doping controls in or out of competition with a
lack of information about the athletes’ age, ethnicity, body mass, or their current training
status, all factors with probably considerable effects on the individual metabolome. During
the past years, research focused on changes of the basal metabolome of endurance-trained
athletes and athletes of different sports in response to a single sport-specific session or
multiple training weeks [15–20]. However, none of these studies investigated the effects of
perennial training on the resting metabolome.

The aim of the present study was to investigate the differences in the resting plasma
metabolome between endurance-trained athletes, strength-trained athletes, and sedentary
subjects. A secondary objective was the assessment of changes in the metabolome over a
one-year period involving different training and rest periods. We hypothesized that the
resting plasma metabolome would exhibit distinct and significant characteristics between
endurance-trained athletes, strength-trained athletes, and sedentary subjects. Furthermore,
we expected significant changes in the metabolome to occur throughout the one-year
study period, reflecting the influence of different training periods and regeneration phases.
Therefore, the study includes several novel elements: (i) a comparison of the plasma
metabolome of the physiological extremes under controlled conditions in (ii) a longitudinal
study design throughout different training and rest periods in high-performance sports
applying (iii) targeted, quantitative ultra-performance liquid chromatography tandem
mass spectrometry (UPLC-MS/MS) using the MxP Quant 500 kit (Biocrates Life Sciences
AG, Innsbruck, Austria).

2. Materials and Methods
2.1. Participants

Three groups of male adults, strength-trained athletes (ST; n = 12, age: 20.2 ± 2.6 years,
mass: 80.3 ± 13.0 kg, height: 175.0 ± 8.7 cm, BMI: 26.0 ± 2.5 kg/m2, body fat: 10.6 ± 4.3%,
VO2max: 42.5 ± 4.7 mL·min−1·kg−1), endurance-trained athletes (ET; n = 10, age:
24.0 ± 2.9 years, mass: 66.5 ± 9.2 kg, height: 176.8 ± 6.8 cm, BMI: 21.2 ± 2.1 kg·m−2,
body fat: 8.3 ± 1.4%, VO2max: 65.1 ± 4.8 mL·min−1·kg−1), and a group of sedentary sub-
jects (CG; n = 12, aged 24.8 ± 4.2 years, mass: 81.9 ± 18.4 kg, height: 180.8 ± 8.8 cm, BMI:
25.2 ± 6.1 kg·m−2, body fat: 14.9 ± 6.5%, VO2max: 41.2 ± 6.5 mL·min−1·kg−1) were inves-
tigated. The strength-trained group included weightlifters of the German Junior National
Team (n = 8) and regional weightlifters (n = 4), practicing competitive sports for 8 ± 3 years
at national and international levels. The endurance-trained group consisted of track and
field runners with a specialization in middle- and long-distance running (800–10,000 m)
as well as in marathon running, practicing competitive sports for 9 ± 4 years at regional
and national levels. The control group included non-active, healthy participants who
never underwent periodized training and who were unexperienced in endurance and
resistance training.

2.2. Experimental Design

Participants attended the laboratory on four separate occasions, the preliminary testing
and three laboratory visits. Figure 1 provides a schematic representation of the experi-
mental design. All participants received a medical examination before the preliminary
testing. Participants were excluded if they presented evidence of musculoskeletal disor-



Metabolites 2023, 13, 833 3 of 16

ders (e.g., arthrosis, spondylarthrosis, spinal deformities), cardiovascular diseases (e.g.,
coronary heart disease, hypertension, cardiac arrythmias), acute or chronic diseases (e.g.,
infectious diseases, muscle diseases), or diseases related to obesity (e.g., type 2 diabetes
mellitus, metabolic syndrome), as well as coagulation activity disorders and if they took
regular medication.
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Figure 1. Schematic overview of the study design. (a) Chronically strength-trained (weightlifters,
ST, 12 males) and endurance-trained athletes (runners, ET, 10 males) as well as healthy sedentary
subjects (control group, CG, 12 males) were recruited. (b) Dietary control 24 h pre-laboratory visits.
Subjects had to refrain from drugs, alcohol, nicotine, caffeine, and supplements 48 h before each
visit. They had to avoid intense physical activity or training 24 h before each visit. All participants
consumed a standardized dinner the day before each visit and a standardized breakfast on each visit.
All participants performed three laboratory visits within one training year each during the periods
of regeneration, preparation, and competition. Venous blood samples were taken from the forearm
vein 60 min postprandial. (c) Sample treatment and analysis were performed by UPLC-MS/MS
and MetIDQ Software according to Biocrates MxP Quant 500 kit workflow. Data treatment and
statistical analysis were performed in the software R (version 4.0.3, R Core Team, Vienna, Austria) and
MetaboAnalyst 4.0 (https://www.metaboanalyst.ca). The figure was created with BioRender.com.

2.3. Preliminary Testing

Body height and mass were measured using a standard stadiometer and a calibrated
scale (Seca, Hamburg, Germany), respectively. The percentage of body fat was calculated
from skinfold thickness measurements (Holtain, Crymych, UK) at 3 sites [21]. All partici-
pants performed an incremental exercise test to exhaustion either on a treadmill (ET and CG,
ELG70, Woodway USA Inc., Waukesha, WI, USA) or on a cycle ergometer (ST, Excalibur
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Sport, Lode BV Medical Technology, Groningen, The Netherlands) to assess cardiorespira-
tory performance. Treadmill spiroergometry started with a 1-min warm-up at 4 km·h−1.
Then, running velocity (start at 6 km·h−1, incline 1.5%) was increased by 2 km·h−1 every
3 min until volitional exhaustion, followed by 5 min of recovery at 4 km·h−1 and 5 min
of passive rest. Cycling spiroergometry started at 50 W. The load was increased by 50 W
every 3 min until volitional exhaustion, followed by 5 min of recovery with 50 W and 5 min
of passive rest. Exhaustion was considered if at least two of the following criteria were
met: high levels of blood lactate concentration (BLa; 8–10 mmol·L−1); a plateau in oxygen
uptake (VO2) despite increasing work rate; a respiratory exchange ratio (RER) above 1.1.

During each test, oxygen uptake (VO2), carbon dioxide release (VCO2), and ventilation
(VE) were recorded with a breath-by-breath spirometry system (Geratherm Respiratory
GmbH, Bad Kissingen, Germany) and the corresponding software Blue Cherry (version
1.3.0.5, Geratherm Respiratory GmbH, Bad Kissingen, Germany) using an individual
adjusted face mask. Before each test, both sensors were calibrated with known gas concen-
trations and the flowmeter with a 3L-syringe according to the manufacturer’s instructions.
Heart rate (HR) was recorded continuously with a 12-lead ECG using the Amedtec ECGpro
Software (version 4.21.0, AMEDTEC Medizintechnik Aue GmbH, Aue, Germany) and self-
adhesive electrodes in all three groups. Maximum oxygen uptake (VO2max) and RERmax
were detected as the highest 30 s average values at the time of volitional exhaustion. If
participants did not finish the entire increment, their maximal running velocity or cycling
performance was linearly interpolated.

2.4. Standardization

Participants were asked to refrain from any drugs (e.g., nicotine, alcohol, medication,
caffeine) and soft drinks or special teas (green or black tea) 48 h before each laboratory visit.
Nutritional supplementation (e.g., creatine, beetroot) was not allowed 48 h before each
visit. All participants were asked to avoid intense physical activity and training 24 h before
each visit. Participants were asked to not change their style of living (including mode of
transportation) during the study.

The basal metabolome was measured at the end of three characteristic training phases
(for details see Tables S1 and S2): preparation (high volume and low intensity training),
competition (regular competitions as well as low-volume, high-intensity training), and
regeneration (no training at all or low-volume, low-intensity, unspecific training). All
basal measurements were used for further analysis and declared together as the resting
metabolic profile, independent of training phases. The results of the resting metabolic
profile were part of a larger study where standardized endurance and strength tests were
performed to investigate exercise-induced metabolic profile differences. The subjects of CG
performed both the endurance and strength tests on different occasions. Therefore, their
basal metabolome was determined twice.

Due to the testing procedure and duration of the exercise tests and because of test-
ing athletes in their competitive phase, it was not possible to test them in a fasted state.
Therefore, all participants received nutrition counselling at the beginning of the study
and a nutrition plan for a standardized dinner in the evening before each visit. They
were served a standardized breakfast in the morning of each visit. All participants had to
choose between three different meals in the evenings and in the mornings and stay with
the same self-selected meal and size as well as the same mealtime during the study. Each
meal consisted of an equal nutrient distribution (55–60% carbohydrates, 25–30% proteins,
13–17% fat). Water was consumed ad libitum. Compliance with the diet was confirmed
with food diaries the day before the trials and a food photography method for lunch be-
tween 6 and 8 p.m. the evening before the trials [22]. Breakfast time was between 7 and
10 a.m. according to the participants’ schedule and consumed in a maximum of 20 min. To
prevent possible bias related to circadian rhythms, all laboratory visits were performed at
the same time of the day and sequence throughout the study [23].
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2.5. Sample Handling

Venous blood samples (single 4.9 mL tube, EDTA, S-monovette, Sarstedt, Nümbrecht,
Germany) were taken from the forearm vein of all participants in a seated position 60 min
postprandial. After collection, the tube was immediately stored in crushed ice (4 ◦C) for no
longer than two hours. Tubes were then centrifuged at 4000× g at 4 ◦C for 10 min. After
separation, supernatant plasma was instantly aliquoted, snap frozen in liquid nitrogen,
and stored at −80 ◦C until analysis.

2.6. Targeted Metabolomics Analysis

The Biocrates MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria) can
be used for analysis of up to 630 metabolites from 26 compound classes of widely different
structures and polarities. Compound classes include lipids like acylcarnitines (Cx:y), hy-
droxylacylcarnitines [C(OH)x:y] and dicarboxylacylcarnitines (Cx:y-DC), lysophopatidyl-
cholines, phosphatidylcholines, sphingomyelins (SMx:y) and sphingomyelin derivatives
[SM(OH)x:y], ceramides and derivatives (cer-, hexcer-, hex2cer- and hex3cer-), cholesteryl
esters, and diglycerides and triglycerides (the first fatty acid is counted individually, in
the case of three fatty acids, the last two fatty acids are summed), which are all measured
by FIA-MS/MS, as well as amino acids, amino acid-related compounds, bile acids, bio-
genic acids, biogenic amines, the sum of hexoses (H1), p-cresol sulfate, carboxylic acids,
fatty acids, hormones and related metabolites (abscisic acid, cortisol, cortisone, dehy-
droepiandrosterone sulfate; DHEAS), indoles and derivatives (indole, 3-indoleacetic acid,
3-indolepropionic acid, indoxyl sulfate), xanthine and hypoxanthine, choline, trigonelline,
and trimethylamine N-oxide (TMAO), which are determined by UPLC-MS/MS.

In brief, 10 µL of human plasma were pipetted on a 96 well-plate containing internal
standards and dried under a nitrogen stream using a positive pressure manifold (Waters).
A total of 50 µL of a 5% phenyl isothiocyanate (PITC) solution was added to each well to
derivatize amino acids and biogenic amines. After 1 h incubation at room temperature,
the plate was dried again. To extract the metabolites, 300 µL 5 mM ammonium acetate in
methanol was pipetted to each filter and incubated for 30 min. The extract was eluted into
a new 96-well plate using positive pressure. For further LC-MS/MS analyses, 150 µL of the
extract was diluted with an equal volume of water. For FIA-MS/MS analyses, 10 µL extract
was diluted with 490 µL of FIA solvent (provided by Biocrates). After dilution, LC-MS/MS
and FIA-MS/MS measurements were performed. For chromatographical separation, an
UPLC I-class PLUS (Waters) system was used coupled to a SCIEX QTRAP 6500+ mass
spectrometry system in electrospray ionization (ESI) mode. Data was generated using
the Analyst (Sciex) software suite and transferred to the MetIDQ software (Biocrates Life
Sciences AG), which was used for further data processing and analysis. All metabolites were
identified using isotopically labeled internal standards and multiple reaction monitoring
(MRM) using optimized MS conditions as provided by Biocrates. For quantification,
either a seven-point calibration curve or one-point calibration was used depending on the
metabolite class. Sample orders were randomized to ensure that the results obtained are
not influenced by the order of analysis.

2.7. Statistical Analysis

All data preprocessing and analysis steps were performed using R (version 4.0.3, R
Core Team, Vienna, Austria) [24]. Where appropriate, the web-based tool MetaboAnalyst
4.0 (https://www.metaboanalyst.ca) [25] was used. We used a multiple step procedure
to ensure data quality. First, metabolites with more than 20% missing values (i.e., values
lower than level of detection, <LOD) were removed from the data set [26]. Second, missing
values were imputed using the k-nearest (k = 3) neighbor method [27,28]. In a third step,
potential outliers were visually detected via principal component analysis (PCA). Samples
far outside the 95% confidence interval were regarded as strong outliers. The final data
matrix (367 metabolites and 34 samples) was used for further analysis in regard to group
(ST, ET, CG) and training phase (PP, CP, RP). The control group was matched to both
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groups of athletes (matched to ET, CG-E; matched to ST, CG-S) separately and visited the
laboratory twice at each training phase. When necessary, both control conditions were
merged into a single control group (CG).

Before analysis, all data were tested for normality of distribution using the Shapiro-
Wilk procedure. Comparison of subject characteristics was performed using repeated
measures analysis of variance (ANOVA). Features were log-transformed and analyzed by
ANOVA with group (ST, ET, CG) and training phase (PP, CP, RP) in repeated measures
design on training phase. We controlled for the effects of breakfast. Significant main effects
were followed by pairwise comparisons with Bonferroni correction. For all statistical tests,
the level of significance was set at 0.05. Data are presented as mean ± standard deviation
(SD). Volcano plots with log2 fold-changes cut-off values (log2FC ≤ −1 & log2FC ≥ 1) were
used to provide an overview of decreased and increased metabolite concentrations. To
maximize the variance in the metabolic profiles between groups, training phase multivariate
analysis was performed using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) [25].
Furthermore, multivariate analysis was used as single metabolites could be active in
multiple pathways. Multivariate analysis was performed on log-transformed and auto-
scaled data to correct for heteroscedasticity, to reduce skewness of the data, and to reduce
mask effects [29]. Metabolites responsible for differences were identified using partial
least squares discriminant analysis (PLS-DA) and variable importance in the projection
(VIP) [30,31]. We used this to identify potential different metabolites between the groups
and time points and to rank the metabolites according to their importance. VIP > 1.5
was considered sufficient for discrimination [32]. The quality of the PLS-DA model was
estimated with a 10-fold cross validation method by goodness of fit (R2) and ability of
prediction (Q2cum). The significance of class discrimination was assessed by permutation
tests with 100 random permutation cycles due to the small sample size [33].

Uni- and multivariate statistical analysis were used to strengthen the results. Venn
diagrams were used for simultaneous comparison of uni- and multivariate results where
appropriate. Features were regarded as robust if univariate analysis revealed them as
significant (p ≤ 0.05) with concomitant VIP ≥ 1.5 in multivariate analysis.

3. Results
3.1. Resting Metabolic Profile

PLS-DA revealed overlapping clusters of both tests in CG and a moderate visual
discrimination between all groups (Figure 2a), especially when both control group con-
ditions (endurance matched in CG, CG-E; strength matched in CG, CG-S) were merged
into one single control group (Figure 2b,d). The corresponding model supports a robust
discrimination with low predictive ability but statistical significance of model performance
(R2 = 0.73, Q2 = 0.21, p < 0.001). PLS-DA showed a robust discrimination with moderate
predictive ability between CG and ET (R2 = 0.91, Q2 = 0.28, p > 0.05) and CG and ST
(R2 = 0.95, Q2 = 0.43, p > 0.05), as well as between ST and ET (R2 = 0.94, Q2 = 0.52, p > 0.05),
but failed for statistical significance of model performance (Figure 3a–c). Univariate anal-
ysis with concomitant fold-change analysis of the baseline samples revealed significant
differences in the resting metabolome of the three groups in several metabolites of five
different compound classes: amino acids and amino acid-related metabolites, alkaloids, in-
dole derivatives, and triglycerides (Figure 2c,d). In the univariate comparison of the resting
metabolic profile in CG vs. ET, six metabolites were less abundant in ET: glutamate (Glu,
FC = −1.0, p < 0.001) as well as the five triglycerides TG(22:6_34:1) [FC = −1.3, p < 0.001],
TG(22:6_34:2) [FC = −1.4, p < 0.001], TG(18:1_38:6) [FC = −1.0, p < 0.001], TG(22:6_32:1)
[FC = −1.2, p < 0.001], and TG(18:1_36:6) [FC = −1.0, p < 0.001], whereas the concentration
of trigonelline (FC = 1.2, p < 0.001) was increased in ET. In the direct comparison of the
resting metabolic profile in CG vs. ST, only the concentration of one metabolite was lower
in ST: tryptophan betaine (TrpBetaine, FC = −1.0, p < 0.01). In the direct comparison of
the resting metabolic profile in ST vs. ET, the concentration of three metabolites were
increased in ET: 3-indolepropionic acid (3-IPA, FC = 1.2, p < 0.001), tryptophan betaine
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(FC = 1.3, p < 0.001), and trigonelline (FC = 1.0, p < 0.001). Eight metabolites were less
abundant in ET: glutamate (Glu, FC = −1.0, p < 0.0001) as well as the seven triglycerides,
TG(22:6_34:1) [FC = −1.4, p < 0.001], TG(22:6_34:2) [FC = −1.4, p < 0.001], TG(16:0_34:1)
[FC = −1.1, p < 0.001], TG(16:0_38:6) [FC = −1.1, p < 0.001], TG(22:6_32:1) [FC = −1.2,
p < 0.001], TG(20:4_32:0) [FC = −1.0, p < 0.001], and TG(20:5_36:3) [FC = −1.1, p < 0.001].
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Figure 2. Univariate and multivariate analysis of resting metabolic profile of strength-trained (ST)
and endurance-trained (ET) athletes and the control group (CG). (a) Score plot of partial least square
discriminant analysis (PLS-DA) with two separated CG matched to both groups of athletes (control
group matched to strength-trained athletes, CGS; control group matched to endurance-trained
athletes, CGE). (b) and (d) PLS-DA with corresponding variable importance in projection (VIP)
scores plot of the top 25 metabolites, where two control conditions were (CGS, CGE) merged to one
CG. (c) Volcano plot depicting metabolomic diversity between the groups. Each point represents a
metabolite. Dark blue and dark red indicate significantly (above dotted horizontal line) decreased
or increased (fold change, FC ≥ 1.0, right and left side of dotted vertical lines) metabolites, grey
indicates nondifferential metabolites. (e) Venn diagram for simultaneous comparison of uni- and
multivariate analysis, showing 20 robust metabolites (see also Figure 2). Detailed data and metabolite
abbreviations are summarized in Table S3.
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(C2, VIP = 1.6, p < 0.001), the amino acids and amino acid-related metabolites glutamine 
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endurance-trained (ET), and the corresponding control group (CG). (a) Score plot of partial least
square discriminant analysis (PLS-DA) between CG and ET. (b) Score plot of PLS-DA between CG
and ST. (c) Score plot of PLS-DA between ET and ST. (d) Boxplots (5–95% CI, median as black line) of
the 20 robust metabolites representing the resting metabolite concentrations in each group (see also
Figure 2e). Detailed data and metabolite abbreviations are summarized in Table S3.

Detailed data is summarized in Table S3. The Venn diagram revealed 20 metabolites
of eight different compound classes as robust (VIP > 1.5, p < 0.05) for group separation
(Figure 2e): the two acylcarnitines carnitine (C0, VIP = 1.7, p < 0.001) and acetylcarnitine (C2,
VIP = 1.6, p < 0.001), the amino acids and amino acid-related metabolites glutamine (Gln,
VIP = 1.9, p < 0.05), arginine (Arg, VIP = 2.1, p < 0.001), cysteine (Cys, VIP = 1.8, p < 0.01), cys-
tine (VIP = 2.7, p < 0.001), the biogenic amine γ-aminobutyrate (GABA, VIP = 1.7, p < 0.001),
and lipid-related metabolites such as glycerophospholipids and sphingolipids, as well as
di- and triglycerides: TG(16:0_40:7) [VIP = 1.9, p < 0.01], TG(20:1_34:1) [VIP = 1.8, p < 0.01],
DG(18:1_18:1) [VIP = 2.1, p < 0.05], TG(18:2_35:3) [VIP = 2.3, p < 0.05], TG(18:2_30:0) [VIP = 2.8,
p < 0.05], TG(18:2_38:4) [VIP = 1.5, p < 0.05], TG(18:2_38:5) [VIP = 1.8, p < 0.05], TG(18:3_36:2)
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[VIP = 1.6, p < 0.05], TG(18:2_34:1) [VIP = 1.5, p < 0.05], TG(18:2_32:0) [VIP = 2.0, p < 0.05],
TG(22:4_34:2) [VIP = 2.1, p < 0.05], SM C16:1 [VIP = 1.9, p < 0.05], PC aa C32:0 [VIP = 1.7,
p < 0.05].

3.2. Changes in the Metabolic Profile over One Year of Training

PLS-DA revealed no valid models for the basal metabolic profile over one year of
training. All models were highly overfitted (Q2 < 0) and failed for statistical significance;
therefore, no score plots were reported (Figure 4).
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Figure 4. Analysis of the resting metabolic profile of endurance-trained (ET) and strength-trained
(ST) athletes, as well as the control group matched to the endurance or strength group (CGE, CGS)
over one year of training (CP, competition phase; PP, preparatory phase; RP, regeneration phase;
0, first visit; 1, second visit; 2, third visit). Volcano plot depicting metabolomic diversity in each group
and training phase. Each point represents a metabolite. Dark blue and dark red indicate significantly
(above dotted horizontal line) increased or decreased (fold change, FC ≥ 1.0, right and left side
of dotted vertical lines) metabolites between training phases, and grey indicates nondifferential
metabolites. Detailed data and metabolite abbreviations are summarized in Table S4.

Univariate analysis revealed significant effects in basal concentration of four metabo-
lites of three different compound classes over one year of training: acylcarnitines, amino
acid-related metabolites, as well as triglycerides (Figure 4). In ST, basal concentration
of carnitine (C0) was significantly increased in the competition phase compared to the
regeneration [FC = 1.0, p < 0.001] and preparation phases [FC = 0.7, p < 0.001]. Furthermore
3-methylhistidine (3-Met-His) was significantly higher in preparation compared to the
competition phase (FC = 1.0, p < 0.001). In CG-S, TG(18:2_36:4) [FC = 1.6, p < 0.001] as well
as TG(18:0_36:4) [FC = 1.6, p < 0.001] were significantly higher in the second visit compared
to the first visit (Figure 4). Detailed data is summarized in Table S4.
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4. Discussion

The present study was designed to investigate characteristic metabolic adaptations
to extreme forms of perennial endurance or strength training in whole body metabolism
measured via blood metabolites [10–13]. To our best knowledge, for the first time, resting
plasma metabolome was studied in strength-trained or endurance-trained athletes during
one year in periods of preparing for competition, competing, or regenerating and compared
with the findings in sedentary subjects. In summary, we observed a robust discrimina-
tion between the basal metabolome of the endurance- und strength-trained athletes as
well as between these athletes and sedentary subjects, with mainly 20 metabolites from
divergent compound classes. The most robust metabolites were free carnitine (C0) and
acetylcarnitine (C2), different tri- (TGs) and diacylglycerols (DGs), phosphatidylcholines
(PCs) and sphingolipids (SMs), the amino acids glutamate (Glu), arginine (Arg), cysteine
(Cys), and cystine, as well as the biogenic amine γ-aminobutyrate (GABA). Our findings
differed from the results reported by Schranner et al. [10], to our best knowledge the only
other study on the effects of long-lasting endurance and strength training on the basal
metabolome. However, the strength training performed by the body builders and sprinters
investigated by Schranner et al. [10] certainly is a lot different from the strength training of
the weight-lifters of the present study.

With regard to the individual training phases, our analysis revealed two potential
metabolites, free carnitine (C0) as well as 3-methylhistidine (3-Met-His), as training phase
biomarkers for strength-trained athletes, while there was no endurance-specific set for
endurance-trained athletes in resting condition.

All the observed differences between the differently trained athletes as well as between
these athletes and the subjects of the control groups of the present study reflect systematic
changes in the mitochondrial energy metabolism, e.g., glucose and fat metabolism, con-
comitant changes in amino acid metabolism, and cell signaling induced by specific, high
volume and high intensity over several years.

4.1. Resting Metabolic Profile

We observed lower resting concentrations in free carnitine (C0) and acetylated carnitine
or acetylcarnitine (C2) in both groups of athletes compared to the sedentary subjects
(Figures 2e and 3d) with no different acylcarnitine to carnitine ratio between the groups.
Compared to previous studies, the resting plasma concentrations of these metabolites were
in the same range for all groups [10,34,35]. Acylcarnitines (Cx:y) are substrates produced
for energy utilization (fat oxidation), as they are an activated form of fatty acid substrate
which can be converted into acyl coenzyme A (CoA) without investing ATP [17,35,36].
Elevated resting levels of free carnitine (C0) and acetylcarnitine (C2) might indicate an
increased availability of fatty acids in venous blood of the control subjects. It can be
assumed that the lower plasma levels of free carnitine (C0) and acetylcarnitine (C2) in
athletes are associated with an increased concentration of these carnitines in skeletal muscle
where they are needed for the transport of long chain fatty acids from the cytosol into
the mitochondria through the inner mitochondrial membrane [37]. Consecutively, this
finding might suggest that also in strength-trained athletes, oxidative fat metabolism
is of importance, probably during recovery from intense training sessions. In another
study, changes in the mitochondrial transmembrane enzyme CPT1, which optimizes fatty
acid transport from cytosol into the mitochondria, were reported [10]. If this is also the
case for strength-trained athletes remains to be elucidated. In the study of Al-Khelaifi
et al. [12], high endurance capacity was associated with reduced levels of two long-chain
acylcarnitines (C18, C20:2) and, in accordance to the findings of the present investigation,
increased short-chain acetylcarnitine (C2) levels. However, they did not investigate the
basal metabolome in controlled conditions [12]. Schranner et al. [10] also observed higher
concentrations of free carnitine (C0) and acetylcarnitine (C2) in controls compared to the
group of athletes. In contrast to our findings, they additionally reported differences in
medium- and long-chain acylcarnitines in rest. Due to strict quality requirements for the
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measured metabolites, medium- and long-chain fatty acids were declared as not valid for
further analysis. In addition to the role of free carnitine (C0) in lipid metabolism described
above, free carnitine (C0) is also capable of reducing post-exercise lactate (Lac) and prevent
cellular damage [12,38]. It can thus be hypothesized that not only fatty acid oxidation and
overall energy generation in rest, but also resting glucose metabolism of highly trained
individuals, might be altered.

In the present study, lactate (Lac) was strongly associated with group separation in
multivariate analysis, with 1.3-fold higher values in the control subject compared to the
group of athletes (Figure 2d, Table S3). However, lactate (Lac) was not observed as a robust
metabolite after combining uni- and multivariate analysis (Figure 2e). Furthermore, the
resting lactate (Lac) concentrations were all in the physiological ranges of 0.3–3.0 mM
in blood for healthy individuals [39,40]. There is a steady lactate (Lac) homeostasis in
a healthy environment with a transport between muscles, brain, heart, and gut. The
reduction of pyruvate leads to the formation of lactate (Lac) under anaerobic and aerobic
conditions [41]. There seems to be a variability in resting blood lactate (Lac) concentration
which is related to overall metabolic capacity and risk for subsequent metabolic diseases
due to a suppression of oxidative energy production capacity and a glycolysis-dependent
ATP production [42,43]. The differences between control subjects and both groups of
athletes can be explained by the regular activation of the lactate metabolism during training
and competition in endurance- as well as in strength-trained athletes. Additionally, lactate
was not found to be a discriminating metabolite between the groups of athletes and between
the athletes and controls in the studies of Al-Khelaifi et al. and Schranner et al. [10,12].

In the present study, triacylglycerols (TGs) and diacylglycerols (DGs) were involved
in the discrimination between the groups, with the lowest total triacylglycerols (TGs) and
diacylglycerols (DGs) concentration in endurance-trained athletes (Figures 2c,d, 3 and 4,
Table S3). The triacylglycerols (TGs) and diacylglycerols (DGs), which were less abundant in
ET compared with CG and ST, mainly contained polyunsaturated fatty acids as linoleic acid
(C18:2), arachidonic acid (C20:4), adrenic acid (C22:4), and docosahexaenoic acid (C22:6)
(Figures 2c,d and 3), but also the saturated palmitic acid (C16:0). The largest energy source in
human metabolism is triacylglycerol stored within the skeletal muscle as an intramuscular
substrate pool, readily built up or mobilized upon cellular energy needs [44]. In the
study of Al-Khelaifi et al. [12], downregulation of diacylglycerols (DGs) containing linoleic
acid (C18:2) and palmitic acid was associated with high endurance, whereas Schranner
et al. [10] did not report differences in triacylglycerols (TGs) and diacylglycerols (DGs)
concentrations. However, the findings in our group of endurance athletes suggest that
long-lasting endurance training leads to changes in the resting energy metabolism by
enhanced hydrolysis of triacylglycerols (TGs) and diacylglycerols (DGs) with an increased
ability to oxidize fatty acids and activate lipolysis.

There is an ongoing discussion that particularly triacylglycerols (TGs) and diacyl-
glycerols (DGs) as well as sphingolipids (SM) are involved in signal transduction and
promote insulin resistance in skeletal muscle [45,46]. Therefore, lower concentrations of
several triacylglycerols (TGs) and diacylglycerols (DGs) as well as of the sphingomyelin
(SM C16:1) in highly endurance-trained athletes is in accordance with increased insulin
sensitivity in this group. Besides the either higher consumption or lower accumulation of
sphingomyelin (SM C16:1) in both groups of athletes compared with the CG, the upregula-
tion of phosphatidylcholines (PC aa C32:0) in both groups of athletes indicates differences
in metabolic, neurological, and intracellular signaling processes in the endurance- and
strength-trained athletes compared with sedentary subjects [47]. Sphingolipids (SM) and
phosphatidylcholines (PCs) play an essential role in cell membranes and modulating cell
functions, e.g., apoptosis, proliferation and differentiation, and inflammation, as well as
lipid and glucose homeostasis [48,49]. Thus, the results of our study point to an increased
membrane turnover and changes in glucose signaling in the group of athletes compared to
the controls. The sum of all significant phosphatidylcholines (PCs) in a resting condition
was 2.7-fold higher in athletes compared to non-athletes (Table S3). Different regulation
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of some phosphatidylcholines (PC ae C38:0, PC ae C36:5, PC ae C36:4, PC ae C38:6, PC ae
C38:5, PC aa C36:6) in diverse groups of athletes and control subjects was also observed
by Schranner et al. [10]. Higher serum concentrations of phosphatidylcholines (PCs) are
associated with higher VO2max values, making PCs a potential biomarker for aerobic
fitness effects and cardiovascular disease risk [50,51].

The amino acids cysteine (Cys), cystine, arginine (Arg), and glutamate (Glu) were
under the top important metabolites for group discrimination (Figure 2d,e). We observed
lower resting concentrations in the glucogenic amino acids glutamate (Glu) and arginine
(Arg), as well as in the amino acids cysteine (Cys) and cystine, in ET compared with CG and
ST (Figure 3d, Table S3). At rest, amino acids are used for gluconeogenesis and restoration
of proteins and protein balance, as well as acid-based regulation [52]. Strength-trained
athletes may have higher resting concentrations of amino acids due to changes in protein
synthesis or turnover [10]. Decreased resting amino acid concentrations are associated with
increased fitness levels, measured via VO2max, and increased fat oxidation rate during
exercise [53]. Glutamate (Glu) is primarily found intracellularly and has limited ability
to leave the cell, whereas glutamine (Gln) concentration is the highest extracellularly [54].
In the present study, the basal glutamate (Glu) concentration in endurance athletes was
significantly decreased while the glutamine (Gln) concentration was similar in all the three
groups. The glutamine-glutamate ratio is associated with better training condition and was
higher in the endurance athletes than in the other two groups (data not shown) [55]. In
addition, the group differences in glutamate (Glu) concentration may indicate a positive
adaptive response in the glutamate-glutamine cycle of endurance-trained athletes probably
due to greater utilization of glutamate (Glu) in muscle than to decreased production of
glutamate (Glu). Glutamate (Glu) is an important source of α-ketoglutarate, an intermediate
of the citrate cycle and thus essential for mitochondrial energy metabolism and high ATP
synthesis, but is also associated as an important metabolite for alanine metabolism [56].
Additionally, removal of glutamate (Glu) is increased by the conversion of the inhibitory
neurotransmitter γ-aminobutyrate (GABA) via glutamate decarboxylase [57]. GABA was
highly important for resting group separation with the lowest concentration in controls
compared to both groups of athletes (Figure 2e, Table S3). Elevated concentrations of γ-
aminobutyrate (GABA) derivatives were reported by Al-Khelaifi et al. [12] and interpreted
as a metabolic adaptation that might promote muscle growth. It might be speculated that
γ-aminobutyrate (GABA) could be a marker for muscle growth in the resting condition
during the preparatory training phase.

Univariate analysis detected tryptophan betaine (TrpBetaine) as well as 3-indoleproprionic
acid (3-IPA) as significant metabolites (Figure 2c), whereas the combination with multivari-
ate analysis considered them rather minor. For this reason, these two metabolites were not
further discussed.

4.2. Changes of the Metabolic Profile over One Year of Training

We did not detect any differences in the basal metabolome of the endurance-trained
athletes between the three training phases (Figure 4, Table S4).

In strength-trained athletes, free carnitine (C0) concentrations were increased dur-
ing the phases of preparation and competition compared with the phase of regeneration.
As already discussed above, these changes in free carnitine (C0) might point to changes
in cellular damage (probably an increase in cellular damage) and in lactate metabolism
during the phases characterized by strenuous exercise. The concentration of amino acid
3-methylhistidine (3-Met-His) was increased during the preparatory phase compared with
the phase of competition (Figure 4, Table S4). 3-methylhistidine (3-Met-His) is an essential
component of the myofibrillar proteins acting in slow and fast-twitch muscle fibers and of
heavy as well as light myosin chains of fast-twitch fibers. It is mainly present in skeletal
muscle (91%) and to a lower degree in gastrointestinal tissues and skin, including connec-
tive tissues. Degradation of myofibrils ultimately leads to the release of 3-methylhistidine
(3-Met-His), which could be quantitively measured in the urine and plasma [58,59]. There-
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fore, 3-methylhistidine (3-Met-His) is regarded as a biomarker for nucleotide breakdown
and tissue homeostasis [60,61]. Apparently, the high-volume and low-intensity specific
resistance training sessions during the preparatory period of strength-trained athletes
might lead to high myofibrillar damage and z-disk disruption [62]. Changes in the level of
3-methylhistidine (3-Met-His) may suggest exercise-and training phase-specific changes in
the rate of protein catabolism. In addition, one previous study revealed 3-methylhistidine
(3-Met-His) as a fatigue marker [63].

4.3. Limitations

Standardization of training and testing sessions is a challenge in real-life studies, and it
certainly is a reason for the few studies in the field of high-performance sports and for low
subject numbers. However, low subject numbers could be the reason for missing significant
differences between the three groups of our study. Therefore, validation studies with a
larger number of participants would be valuable. Another source of weakness was the non-
fasted state of the subjects. In an attempt to compensate for the non-fasted state, the subjects
could choose one of three pre-meals with the same relative energy and macronutrients
distribution as mentioned above. Chronic dietary and supplementation routines certainly
had some influence on the basal metabolome. We found a high concentration of trigonelline
only in some endurance athletes. Trigonelline is considered a dietary metabolite for coffee
consumption without any biotransformation [64]. Day-to-day variability in metabolomics
studies is minimal, but there are meal and collection time effects to be considered [23,65].
Future studies should be designed to avoid habitual caffeine consumption and dietary sup-
plements for an even longer period of time before the measurements to reduce metabolome
variability. Whether our results are transferable to female athletes remains to be elucidated.

5. Conclusions

In conclusion, we detected significant differences in the resting plasma metabolome
between the endurance- and strength-trained athletes, as well as between the controls and
both groups of athletes. Regular endurance or strength training seem to induce extreme
changes in the concentration of several metabolites of athletes at rest. All differences
between the basal metabolome of endurance- and strength-trained athletes and between
these athletes and sedentary subjects were associated with the development of character-
istic athletic phenotypes with concomitant systematic changes in mitochondrial energy
metabolism, amino acid metabolism, and fatty acid oxidation, as well as cellular signaling.
Furthermore, we found some strongly affected strength-specific metabolites between the
training phases that were worth mentioning. 3-methylhistidine (3-Met-His) and free car-
nitine (C0) appeared as potential markers for protein catabolism and cellular damage in
strength-trained athletes in certain training phases.
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