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Abstract: Metabolic syndrome (MetS) includes several conditions that can increase an individual’s
predisposition to high-risk cardiovascular events, morbidity, and mortality. Non-alcoholic fatty
liver disease (NAFLD) is a predominant cause of cirrhosis, which is a global indicator of liver
transplantation and is considered the hepatic manifestation of MetS. FibroScan® provides an accurate
and non-invasive method for assessing liver steatosis and fibrosis in patients with NAFLD, via a
controlled attenuation parameter (CAP) and liver stiffness measurement (LSM or E) scores and
has been widely used in current clinical practice. Several machine learning (ML) models with a
recursive feature elimination (RFE) algorithm were applied to evaluate the importance of the CAP
score. Analysis by ANOVA revealed that five symptoms at different CAP and E score levels were
significant. All eight ML models had accuracy scores > 0.9, while treebags and random forest had the
best kappa values (0.6439 and 0.6533, respectively). The CAP score was the most important variable
in the seven ML models. Machine learning models with RFE demonstrated that using the CAP
score to identify patients with MetS may be feasible. Thus, a combination of CAP scores and other
significant biomarkers could be used for early detection in predicting MetS.

Keywords: machine learning; liver steatosis; non-alcoholic fatty liver disease; controlled attenuation
parameter; liver stiffness measurement; metabolic syndrome

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is now a predominant cause of cirrhosis and
an indicator for liver transplantation worldwide. It is considered the hepatic manifestation
of metabolic syndrome (MetS) due to the coexistence of visceral obesity, insulin resistance,
and dyslipidemia [1–3]. It is estimated that NAFLD, similar to obesity and diabetes, causes
more than 30% of all liver diseases [4,5]. Liver biopsies are an accurate standard method
for identifying patients with NAFLD and can distinguish patients with steatohepatitis
from those with steatosis. However, liver biopsies are costly and have a high sampling
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error rate. Moreover, there is the potential for procedure-related complications, such as
pain, bleeding, hemothorax, and bile peritonitis, which can increase the risk of morbidity
and mortality [6,7]. Therefore, more feasible and practical detection methods are required
to identify patients at a high risk of NAFLD. Non-invasive methods such as FibroScan
can detect NAFLD more efficiently and provide an easier way to diagnose MetS [8,9].
Biomarkers are used to examine liver inflammation and fibrosis in daily clinical practice.
However, certain proteins or biomarkers, such as γ-GT, and ALK-P, cannot be directly used
to detect liver steatosis or fibrosis since they do not target a specific organ and may be
associated with diseases in multiple organs [10].

MetS encompasses several conditions that could exacerbate an individual’s risk of
cardiovascular events, such as heart failure and myocardial infarction or coronary artery
disease, which further increases morbidity and mortality [11]. According to the National
Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) criteria, the
diagnosis of MetS requires at least three of the five following conditions: (1) abdominal
obesity (also highly correlated with insulin resistance), (2) elevated triglycerides (TG),
(3) reduced high-density lipoprotein (HDL) cholesterol, (4) elevated blood pressure, and
(5) elevated fasting glucose (impaired fasting glucose or type 2 diabetes mellitus) [12].
Various attempts have been made to quantitatively assess MetS. One of the simpler and
better-established scores for that purpose is the siMS score [13,14].

The high prevalence of MetS necessitates a large-scale screening. However, some
patients may not like the discomfort and inconvenience of the fasting blood tests that are
required for diagnosing MetS in clinical settings. Hence, it is reported that MetS patients
remain undiagnosed [15]. FibroScan, an ultrasound-based device that utilizes patented
naval technology, vibration-controlled transient elastography (VCTETM), can provide an
accurate and non-invasive method for assessing liver steatosis and fibrosis in patients with
NAFLD, while it is currently widely used in clinical practices [16]. It uses the velocity
of shear waves (also known as slow waves) to assess liver stiffness. Shear waves move
transversely, perpendicular to the motion of the affected tissue. When a shear wave is
applied, it quickly becomes attenuated by the liver tissue. The speed of the wave traveling
through the tissue is inversely proportional to the elasticity of the tissue. This method
was invented by the Langevin Institute and was initially implemented to evaluate cheese
maturation. However, it has been used in medical practice since 2001 under the name
FibroScan® [17,18]. The acquired data are processed based on the physical characteristics
of the shear waves and are shown as liver stiffness measurement (LSM) and controlled
attenuation parameter (CAP) scores [19,20].

Artificial intelligence in ML techniques has succeeded in predicting and diagnosing
numerous diseases, such as cancer and chronic kidney and liver diseases [21–26]. A decision
tree algorithm has also been applied in MetS prediction model building, successfully iden-
tifying potential patients with MetS in a self-paid health examination population [27,28].
Moreover, studies have demonstrated that ML and data visualization can identify the rela-
tionships between metabolic conditions and potential risk factors for MetS and distinguish
non-obese patients with MetS using CAP scores [29]. Supervised ML techniques generally
improve prediction ability, whereas unsupervised learning techniques extract patterns and
characteristics. Our study aimed to combine the non-invasive FibroScan technology and
several ML algorithms with RFE to assess the accuracy of an AI-based diagnostic tool for
MetS and identify the potential thresholds of clinical biomarkers in preventive medicine.

2. Materials and Methods
2.1. Study Design and Setting

This retrospective cohort study included healthy participants who visited the Health
Management Center (HMC) at the Taipei Medical University Hospital (TMUH) for a self-
paid health examination to test the ability of FibroScan and supervised ML in identifying
and predicting the risk of MetS. The study was conducted at the TMUH, and the elec-
tronic medical record of each participant was reviewed. The TMUH is a private teaching



Metabolites 2023, 13, 822 3 of 15

hospital in Taiwan, and its HMC receives > 50 visits per day. This study was approved
by the Institutional Review Board of the TMU (No: N201903080) and was conducted in
accordance with the Declaration of Helsinki. Due to the retrospective nature of this study,
the requirement for informed consent was waived by the Institutional Review Board. The
electronic medical records were converted into an anonymous format to protect the pri-
vacy of the patients. The completeness and correctness of the participants’ self-answered
questionnaires (relating to demographics and existing medical conditions) were verified by
well-trained medical staff. Patient adherence to health examination prerequisites, such as
overnight fasting for at least eight hours before the examination, was also verified. Those
that did not meet the prerequisites were rescheduled.

2.2. Patient and Data Selection Criteria

Self-paid health examination participants who underwent an abdominal transient elas-
tography inspection using the FibroScan 502 Touch (Echosens, Paris, France) and urine tests
at the HMC of the TMUH between March 2015 and December 2019 were included in this
study. Participants ≤ 18 years old or whose records were incomplete were excluded from
the study, which resulted in the enrollment of 1944 participants. Data were collected from
the participants using invasive and non-invasive methods. Information collected by non-
invasive methods included (1) anthropometrics (weight, height, waist circumference, and
blood pressure); (2) incidence of proteinuria, hematuria, red blood cell cast, white blood cell
cast, and other urine sediment abnormalities (via urine specimens obtained in the morning
and scheduled to avoid menstrual periods. If urine test results were abnormal, tests were re-
peated within three months); (3) The CAP score and liver stiffness parameter (E score) from
the FibroScan (502 Touch; Echosens, Paris, France) test. The collection of blood samples rep-
resented the only invasive method used. Test items included albumin, globulin, cholesterol,
creatinine, low-density lipoprotein (LDL) cholesterol, non–high-density lipoprotein (non-
HDL) cholesterol, glycated hemoglobin (HbA1c), serum glutamic oxaloacetic transaminase
(GOT), serum glutamic-pyruvic transaminase (GPT), gamma-glutamyl transferase (γGT),
alkaline phosphatase (ALKp), total protein (T_protein), total bilirubin (T_bilirubin), direct
bilirubin (D_bilirubin), blood urea nitrogen (BUN), uric acid (UA), estimated glomerular
filtration rate (eGFR), thyrotropin (TSH), alpha-fetoprotein (AFP), and glucose Ante Cibum
(glucose AC).

2.3. Definitions of Measurement Cutoffs and Calculations

MetS was identified based on the presence of at least 3 out of the 5 symptoms specified
in the NCEP ATP III definition of MetS [19,23]: large WL (≥80 cm for women and ≥90 cm
for men), high TG (≥150 mg/dL), reduced HDL levels (<50 mg/dL and <40 mg/dL for
women and men, respectively), elevated blood pressure (BP; systolic BP ≥ 130 mmHg
or diastolic BP ≥ 85 mmHg), and increased fasting blood sugar (≥100 mg/dL) or use of
medication to control the latter 4 of these conditions. Cutoff points were adopted from
the NCEP ATP III definition with ethnic-specific cutoff points for waist circumference and
an equality principle on the five disorders [22]. The FibroScan CAP and E score levels are
described in Table S1.

2.4. Statistical Analysis and Machine Learning

Statistical analyses were performed using R Statistical Software (v 4.2.2, R Core Team
2021). Analysis of variance (ANOVA) tests were used to compare the means of the different
groups. The objective of the experiment was to investigate various factors that might
affect the outcomes of the participants’ health conditions, thereby controlling both the
average level and quality variability. In all analyses, p < 0.05 was considered statistically
significant [30].

In this study, we applied several ML models to evaluate their performance in diagnos-
ing MetS. We summarize the ML models used in this study in Supplementary Materials
Table S3. The information and settings of the hyperparameters can be found in reference [31],
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and the details can be found on the caret Package’s website [32]. According to the ‘caret’
package in R, cross-validation eliminates features from a model. Recursive feature elimi-
nation (RFE) is achieved by fitting the model multiple times and, at each step, removing
the weakest features determined by either the coefficients or important feature attributes in
the model. To find the optimal number of features, the number of features with the highest
cross-validated test score was selected for each machine learning model.

Many statistical or ML models are available in this package. ‘rfFuncs’ (random forests)
uses a random forests method of assessing the mean decrease in accuracy over the features
of interest. ‘ldaFuncs’ (LDA) applies a linear discriminant analysis for classification only
(also called Fisher’s linear discriminant), which is used to find a linear combination of
features that separates two or more classes of objects or participants. ‘nbFuncs’ (Naïve
Bayes) uses the Naïve Bayes algorithm to assess the features that have the greatest effect on
the overall probability of the dependent variable. ‘treebagFuncs’ (treebags) explains how
many times a variable occurs as a decision node. The number of occurrences and position
of a given decision node in the tree indicate the importance of the respective predictor, and
the closer a decision node is to the root node, the more important the variable. ‘lrFuncs’
(LR) uses logistic regression for classification, which is the typical statistical learning model
for prediction. The other three methods, support vector machines (SVM), neural network
(nnet), and classification and regression tree (CART), are available in the function ‘train.’
They can be applied to ‘caret’ with their specific tuning parameters (more details can
be obtained from ‘getModelInfo’ in R). SVM uses a linear kernel to analyze the data for
classification and regression analysis. It maps the participants in the training set to points
in space to maximize the gap width between the two categories of patients. nnet fits a
single-hidden-layer neural network to avoid the disadvantage of black-box issues and to
construct an appropriate classification neural network with one output and an entropy fit
if the number of levels is two for the outcome of MetS. CART is the typical decision tree
model from the ‘rpart’ library, which uses the Gini index as the metric and measures the
distribution among field-specific afflictions, to predict the patients with MetS [31].

The number of selected features and the performance of each ML algorithm are as-
sessed by many criteria from the confusion matrix provided by the ‘caret’ package. In
the performance evaluation, accuracy essentially indicates where, among all references,
the proportion is mapped correctly. The overall accuracy is usually expressed as a per-
centage, with 100% being a perfect classification, where all reference sites were classified
correctly. The kappa coefficient evaluates how well the classification performed compared
to randomly generated assigned values. In this test, the kappa indicates the agreement
between frequencies of the categorical data and what would be expected by chance. A
value of 0 indicates that the classification is not better than a random classification, although
a value close to 1 indicates that the classification is significantly better than the random
classification. Kappa is an excellent performance measure when the classes are highly
unbalanced. This study applied recursive feature selection to each ML model with 10-fold
cross-validation, which was repeated 5 times as the outer resampling method [33–36]. The
formulae for the criteria in the confusion matrix are described in Table S2.

3. Results

Figure 1 illustrates the data collection procedure at the TMUH HC, with the subsequent
data preprocessing for the ML analysis. Data inclusion and exclusion, missing value
permutations, training and testing set division with independence, and model construction
are presented. The systematized analysis, which includes a multi-model database, ML
modeling with RFE, and clinical outcomes from the ML pipeline, is depicted in Figure 2.

Table 1 shows the ANOVA results for the five MetS symptoms at different levels
of the CAP and E scores measured by FibroScan. The CAP and E scores were classified
into four levels based on the definition by the FibroScan manual. Each symptom of MetS
was significant for both the CAP and E score levels. At least three p-values for the five
symptoms were considered extremely significant. Apart from albumin, T_bilirubin, and
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D_bilirubin, all clinical factors were significant (only four were not extremely significant;
Table 2).
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Table 1. Descriptive statistics and ANOVA for each different stage of CAP score and E score in
Fibroscan examinations.

CAP Score

S0 (739) S1 (245) S2 (252) S3 (320) p-Value

DBP, mmHg 71.2 74.6 75.9 79.8 <0.001 *
70 (64–77) 74 (68–81) 75 (69–83) 79 (72–86)

SBP, mmHg 112.5 121.1 121.1 126 <0.001 *
110 (101–122) 118 (109–131) 118 (109–131) 125 (115–136)

HDL, mg/dL 61 54.3 51.2 46.7 <0.001 *
59 (50–71) 52 (43–63) 50 (42–58) 45 (38–53)

Glucose AC,
mg/dL 89.2 92.6 95.5 101.4 <0.001 *

88 (84–92) 89 (86–94) 92 (88–98) 95 (91–104)
TG, mg/dL 83.4 108.7 119.3 149.7 <0.001 *

74 (58–97) 95 (77–133) 108 (86–148) 128 (99–178)
WC, cm 76.2 82.3 85.2 91 <0.001*

76 (70–82) 82 (77–87.5) 85 (79–90) 90 (84.5–96)
E score

F0–F1 (1462) F2 (50) F3 (19) F4 (25) p-value
DBP, mmHg 74.1 77.8 77.2 75.8 0.0162

73 (67–81) 76 (70–85) 76 (69–84) 73 (68–86)
SBP, mmHg 117 127.9 126.7 127.9 <0.001 *

115 (105–127) 126 (117–137) 128 (118–134) 127 (110–144)
HDL, mg/dL 55.7 50 50.9 44.9 <0.001 *

53 (44–64) 48 (37–62) 46 (42–60) 44 (38–52)
Glucose AC,

mg/dL 93 99.2 98 96.9 0.0069

90 (86–95) 95 (90–101) 94 (90–99) 94 (89–101)
TG, mg/dL 105.5 128.1 125.8 161.1 <0.001 *

90 (67–128) 110 (81–154) 101 (67–134) 157 (99–206)
WC, cm 81.2 89.9 89 89.6 <0.001 *

81 (74–88) 88 (80–99) 87.5 (81–92.5) 88 (83.5–96)
The statistics in the table denote the mean and median (Q1–Q3) in the first and second columns, respectively.
The number of patients in each stage is shown in brackets. The abbreviations and full names of every factor list
are as follows: CAP score, controlled attenuation parameter score; DBP, diastolic blood pressure; SBP, systolic
blood pressure; cholesterol; HDL, high-density lipoprotein cholesterol; glucose AC, glucose Ante Cibum; TG,
triglycerides; WC, waist circumference. * depicts the p-value as extremely significant.

Table 2. Descriptive statistics and ANOVA for different groups of metabolic syndrome health conditions.

Metabolic Syndrome Health Conditions

C (5, 0); N1 = 753 C (5, 1 and 2); N2 = 938 C (5, 3, 4, and 5); N3 = 253 p-Value

Age, years 40.7; 40 (34–48) 47; 47 (38–55) 48.7; 46 (41–57) <0.001 *
BMI, kg/m2 21.4; 21.3 (19.7–23) 24.9; 24.5 (22.7–26.8) 27.6; 27.2 (25.1–29.6) <0.001 *

Cholesterol, mg/dL 184.2; 182 (163–202) 193.1; 192 (168–216) 194.3; 194 (165–221) <0.001 *
LDL, mg/dL 114.9; 112 (95–132) 129.9; 129 (107–151) 132.4; 134 (107–160) <0.001 *

non-HDL, mg/dL 119.2; 115 (99–138) 141.6; 139 (116–165) 153.9; 156 (125–179) <0.001 *
Chol/HDL 2.95; 2.83 (2.42–3.35) 3.99; 3.79 (3.15–4.64) 4.98; 4.93 (4.11–5.81) <0.001 *
HbA1c, % 5.2; 5.2 (5.1–5.4) 5.5; 5.4 (5.2–5.6) 6.1; 5.7 (5.4–6.1) <0.001 *
GOT, U/L 19.9; 19 (16–22) 23.8; 21 (17–26) 27.1; 23 (19–31) <0.001 *
GPT, U/L 17.9; 15 (12–21) 26.5; 21 (15–31) 35.3; 28 (19–44) <0.001 *
γGT, U/L 16.2; 13 (10–19) 28.3; 19 (14–31) 36.8; 27 (20–43) <0.001 *

ALKp, IU/L 58; 55 (46–66) 67.6; 64 (53–76) 69.8; 65 (55–80) <0.001*
T_Protein, g/dL 7.4; 7.3 (7–7.6) 7.4; 7.4 (7.1–7.7) 7.42; 7.4 (7.1–7.7) 0.0259
Albumin, g/dL 4.6; 4.6 (4.4–4.8) 4.6; 4.6 (4.4–4.8) 4.6; 4.6 (4.4–4.8) 0.157
Globulin, g/dL 2.73; 2.7 (2.5–3.0) 2.79; 2.8 (2.5–3.0) 2.82; 2.8 (2.5–3.1) 0.0006

Alb/Glb 1.73; 1.7 (1.5–1.9) 1.69; 1.7 (1.5–1.8) 1.68; 1.7 (1.5–1.9) 0.00265
T_Bilirubin, mg/dL 0.64; 0.6 (0.4–0.8) 0.68; 0.6 (0.4–0.8) 0.67; 0.6 (0.4–0.8) 0.319
D_Bilirubin, mg/dL 0.23; 0.2 (0.2–0.3) 0.26; 0.2 (0.2–0.3) 0.24; 0.2 (0.2–0.3) 0.561
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Table 2. Cont.

Metabolic Syndrome Health Conditions

BUN, mg/dL 12.2; 12 (10–14) 13.4; 13 (10–15) 14; 13 (11–16) <0.001 *
Creatinine, mg/dL 0.70; 0.7 (0.6–0.8) 0.78; 0.8 (0.6–0.9) 0.89; 0.9 (0.7–1.0) <0.001 *

UA, mg/dL 5.02; 4.8 (4.1–5.8) 5.78; 5.7 (4.7–6.7) 6.4; 6.3 (5.4–7.2) <0.001 *
eGFR, ml/min/1.73 m2 117.4; 115 (97–133) 107.1; 102.9 (90–120) 99.1; 97 (86–113) <0.001 *

TSH, mU/L 2.00; 1.80 (1.23–2.49) 2.25; 1.77 (1.21–2.48) 3.36; 1.75 (1.28–2.42) 0.0328
AFP, ng/mL 2.60; 2.26 (1.59–3.11) 18.98; 2.41 (1.69–3.36) 194.93;2.43 (1.74–3.19) 0.0272
E score, kPa 4.2; 4.0 (3.3–4.7) 5.0; 4.4 (3.6–5.3) 5.6; 5.0 (4.3–6.0) <0.001 *

CAP score, dB/m 220.1; 217 (194–244) 259; 255 (226–291) 298.3; 301 (264–333) <0.001 *
VAI 1.88; 1.77 (1.32–2.30) 3.41;3.05 (2.27–4.00) 6.94; 5.95 (4.73–8.19) <0.001 *

MDRD 104; 102 (86–119) 95;91 (79–106) 87; 86 (74–99) <0.001 *
SBP, mmHg 107.2; 107 (100–115) 121.6; 121 (110–132) 134; 135 (125–142) <0.001 *
DBP, mmHg 68.3; 69 (63–73) 76.3; 76 (69–83) 84.9; 86 (78–91) <0.001 *

WC, cm 74.2; 74 (69–79) 84.7; 84 (79–90) 93.2; 92 (87–98.5) <0.001 *
TG, mg/dL 73.7; 69 (56–89) 112.8; 101 (80–133) 187.4; 172 (144–209) <0.001 *

HDL, mg/dL 65.1; 63 (54–74) 51.5; 49 (43–58) 40.4; 39 (35–45) <0.001 *
Glucose AC, mg/dL 87.3; 87 (84–91) 93.9; 91 (87–97) 109.5; 101 (93–110) <0.001 *

The statistics in the table denote the mean; median (Q1–Q3) for each group. The denotation of metabolic syndrome
health condition is the combination of five symptoms. For example, C (5, 0) means patients reach none of the
five symptoms, and C (5, 1 and 2) means the patients reach one or two of the five symptoms. The abbreviations
and full names of every factor are as follows: BMI, body mass index; LDL, low-density lipoprotein cholesterol;
non-HDL, non–high-density lipoprotein cholesterol; Chol/HDL, cholesterol/high-density lipoprotein cholesterol
ratio; HbA1c, glycated hemoglobin; GOT, serum glutamic oxaloacetic transaminase; GPT, serum glutamic-pyruvic
transaminase; γGT, gamma-glutamyl transferase, ALKp, alkaline phosphatase; T_Protein, total protein; Alb/Glb,
albumin/globulin ratio; T_Bilirubin, total bilirubin; D_Bilirubin, direct bilirubin; BUN, blood urea nitrogen;
UA, uric acid; eGFR, creatinine, estimated glomerular filtration rate; TSH, thyrotropin; AFP, alpha-fetoprotein;
CAP score, controlled attenuation parameter score; VAI, visceral adiposity index; MDRD, modification of diet in
renal disease formula; SBP, systolic blood pressure; DBP, diastolic blood pressure; WC, waist circumference; TG,
triglycerides; HDL, high-density lipoprotein cholesterol; glucose AC, glucose Ante Cibum. * indicates the p-value
as extremely significant.

The box depicts the difference between the symptoms in patients with MetS for
all the clinical biomarkers in Figure 3 (a box plot, excluding the outliers, is shown in
Supplementary Materials Figure S1). Moreover, variations in the five symptoms of MetS at
each level of CAP and E scores are also depicted by the box plot in Figure 4.

MetH denotes the metabolic health condition with three levels. ‘0’ indicates none of
the five symptoms in this level, ‘1’ means patients reach one or two of the five symptoms in
this level, and ‘2’ means patients reach at least three of the five symptoms in this level.

After a series of data preprocessing steps, the training dataset was applied to ML
modeling with RFE. Table 3 and Figure 5 illustrate the overall outcomes of the RFE algo-
rithm for several ML models. The optimal number of variables, best performance, and
rankings of the top factors are listed in the table. The accuracy of all 8 models was >0.9.
Moreover, the treebags and random forest models achieved kappa values of 0.6439 and
0.6533, respectively. However, the random forest method had the best accuracy and kappa
scores, whereas SVM was the least variable for both scores. LDA, treebags, and SVM
achieved the best performance when all risk factors were involved; however, Naïve Bayes
only used two variables as predictors. The variation in accuracy with different numbers of
variables for each model is depicted in detail in Figure 5.

Figure 6 depicts the decision tree and how the variables rank in importance by random
forest. The CAP score features among the three most important factors (Figure 6A). After
excluding the top two variables, the decision tree model indicated a threshold of 290 for
the CAP score at the root node in the CART model (Figure 6B).

Finally, the overall performances of the eight ML models with all risk factors are
listed in Table 4. The random forest and SVM models were the most accurate (above
0.90). However, nnet was the most sensitive (0.6170), while SVM and CART had the best
specificity scores (> 0.96). Moreover, treebags and random forest achieved the highest
kappa scores (0.5322 and 0.5480, respectively), whereas SVM was the most precise (0.6571).
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A comparative analysis between traditional statistical methods and AI machine learning
methods can be found in Supplementary Materials Figure S2. Using traditional logistic
regression on the CAP and E score combination (FibroScan (Echosens, Paris, France)), the
receiver operating characteristic curve (ROC) was 0.7743. However, the ROC can be greatly
enhanced to ~0.91–0.93 by AI machine learning methods.
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Table 3. The number of optimal models involving clinical variables and their performances for
predicting metabolic syndrome with recursive feature elimination algorithms in several machine
learning models.

Model # of Variables Accuracy Kappa Accuracy SD Kappa SD Lists of Variables by Order *

LDA 28 0.9153 0.5772 0.01792 0.1005 VAI, BMI, Chol/HDL, CAP score, γGT,
HbA1C, GPT, E score, UA, non-HDL, etc.

TreeBags 28 0.9220 0.6439 0.01827 0.0807 VAI, BMI, CAP score, HbA1C, Chol/HDL,
cholesterol, non-HDL, LDL, Age, γGT, etc.

Random forest 9 0.9270 0.6533 0.01722 0.08523 VAI, BMI, CAP score, Chol/HDL, HbA1C,
cholesterol, γGT, non-HDL, LDL

Logistic 8 0.9167 0.5928 0.01645 0.08558 VAI, BMI, Age, HbA1C, cholesterol, CAP
score, non-HDL, GOT

Naïve Bayes 2 0.9108 0.4622 0.01693 0.09379 VAI, BMI

nnet 9 0.9006 0.5141 0.02340 0.1743 CAP score, VAI, AFP, cholesterol, Chol/HDL,
non-HDL, γGT, eGFR, TSH

SVM 28 0.9170 0.5902 0.01638 0.08548 VAI, BMI, Chol/HDL, CAP score, γGT,
HbA1C, GPT, E score, UA, non-HDL, etc.

CART 7 0.9071 0.5216 0.01864 0.1141 VAI, BMI, CAP score, Chol/HDL, HbA1C,
γGT, E score

The abbreviations and full names of every factor are as follows: BMI, body mass index; LDL, low-density
lipoprotein cholesterol; non-HDL, non–high-density lipoprotein cholesterol; Chol/HDL, cholesterol/high-density
lipoprotein cholesterol ratio; HbA1c, glycated hemoglobin; GOT, serum glutamic oxaloacetic transaminase;
GPT, serum glutamic-pyruvic transaminase; γGT, gamma-glutamyl transferase; UA, uric acid; eGFR, creatinine,
estimated glomerular filtration rate; TSH, thyrotropin; AFP, alpha-fetoprotein; CAP score, controlled attenuation
parameter score; VAI, visceral adiposity index; HDL, high-density lipoprotein cholesterol. * The order is followed
by the ranking of variable importance for prediction. The first one is the top one as a predictor.
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Table 4. The performance of different machine learning models on predicting metabolic syndrome
using whole risk factors for balanced comparisons in the confusion matrix.

Model Accuracy Kappa Sensitivity Specificity F1-Score Precision

LDA 0.8892 0.4747 0.5319 0.9384 0.5376 0.5435
TreeBags 0.8995 0.5322 0.5957 0.9414 0.5895 0.5833
Random forest 0.9046 0.5480 0.5957 0.9472 0.6022 0.6087
Logistic 0.8969 0.5068 0.5532 0.9443 0.5652 0.5778
Naïve Bayes 0.8686 0.4297 0.5532 0.9120 0.5049 0.4643
nnet 0.8918 0.5181 0.6170 0.9296 0.5800 0.5472
SVM 0.9072 0.5103 0.4894 0.9648 0.5610 0.6571
CART 0.8995 0.4640 0.4468 0.9619 0.5185 0.6177

The dataset is initially divided into 80% and 20%, which represent the training set and testing set, respectively,
while the two sets are independent. The machine learning models are established by the training set, while the
performance is assessed by the testing set. In the confusion matrix of performance, all the formula criteria are
described in the supplement data, including the F1-score, which constitutes the harmonic mean of precision and
recall. Therefore, the performance is used to reach the balance in comparison between the eight machine learning
models, while using the same independent testing set with the same number of risk factors as predicting variables.

4. Discussion

FibroScan is a non-invasive device originally designed to measure liver stiffness (E
score) and fatty liver (CAP score) [16]. Fatty liver was reported as a component of MetS in
2008, and the CAP score was also subsequently found to be associated with MetS [37,38].
In this study, we found that every symptom of MetS was significant within the different
levels of either the CAP or E scores. In addition, a combination of the CAP and E scores
can be used to detect MetS with moderate accuracy (ROC of 0.7743). Using ML models,
we can further improve the accuracy of MetS detection to 0.93. Hence, it is valuable to
establish an appropriate model with feature selection and ML for MetS, as many of the
clinical biomarkers are very similar to the five symptoms of MetS.

To identify potential biomarkers for prediction, the best combinations of clinical
biomarkers were identified after a ML analysis using RFE. Based on cross-validation with
different numbers of risk biomarkers, the treebags and random forest models reached
a plateau in accuracy when the number of variables exceeded seven, which explored
their power for prediction when finite crucial risk factors were involved. Although Naïve
Bayes achieved the best performance with the fewest variables, its performance declined
as the number of variables increased. This was related to collinearity and interference
from dependent variables. While logistic regression and nnet also demonstrated a small
reduction in accuracy as the number of variables increased, the loss in accuracy was almost
negligible, thereby resulting in minimal bias. LDA and SVM with a linear kernel exhibited
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the same linear trend in accuracy when the number of variables increased. This indicates
that the linear combination can explain more information in space when the number of
dimensions increases.

The visceral adiposity index (VAI) is a scoring system based on WC, TG, and HDL [39].
It indicates visceral adiposity dysfunction and insulin sensitivity [40] and has become
a useful tool for assessing MetS and identifying high-risk patients [41]. The BMI is the
most used parameter to monitor obesity and can be calculated using self-reported height
and weight. Obesity is associated with various diseases, including diabetes, cancer, and
hypertension [42]. Moreover, it is associated with the risk of NAFLD and MetS due to the
overlap in the occurrence of other risk factors, such as atherosclerosis, type 2 diabetes, and
hypertension [43]. Therefore, the VAI and BMI remain influential because obesity is highly
related to MetS. Detecting MetS in patients with a non-obese phenotype is challenging in
clinical practice. However, a previous study has revealed that the CAP score can potentially
address this issue [29,44]. Since the CAP score was the top variable in seven of the eight ML
models in this study, it may be capable of detecting MetS because it reflected the severity of
fatty liver disease in those patients.

The CAP score reflects fat accumulation in the liver and the degree of steatosis [45].
A fatty liver is an important component of MetS in that it is highly prevalent in patients
with MetS. Furthermore, all MetS conditions correlate with liver fat [38]. Moreover, liver
fat content influences fasting serum insulin, C-peptide, and other MetS-related factors [46].
Therefore, a fatty liver condition should be considered when discussing MetS. This also
highlights that the CAP score could be a strong predictor of MetS, as it ranked as one of the
top variables from the feature selection of several ML models.

Patients with MetS and abdominal obesity usually develop atherogenic dyslipi-
demia [47]. Therefore, dyslipidemia-related features, such as HDL, non-HDL, and choles-
terol were found to be significant in detecting MetS. Independently, HDL levels are reported
to be associated with insulin sensitivity [48] and, combined with TG measurements, can
be used to measure insulin-mediated glucose disposal [49]. The cholesterol/HDL ratio
(Chol/HDL) has also been associated with MetS [50]. Non-HDL cholesterol was also found
to be significant in assessing MetS: non-HDL was reported to be higher in patients with
MetS, and it was suggested that non-HDL was a better predictor than LDL [51]. However,
since a low level of HDL was used as one of the criteria for defining MetS, it is obvious that
HDL will be the best predictor of MetS for dyslipidemia-related features.

Chronic hyperglycemia triggers and indicates that dysmetabolism may lead to MetS [52].
Therefore, the serum glucose level is a metabolic parameter that can be used to assess
MetS [53]. The American Diabetes Association (ADA) recommends the use of HbA1c as an
indicator of increased diabetes risk because it is not limited to fasting samples and can reflect
average glycemia over a long period, which is better than glucose AC [54]. In addition, some
studies have shown that elevated HbA1c levels are associated with dysmetabolism [55,56].

γGT levels reflect the degree of liver damage and alcohol consumption and have been
found to correlate with MetS-related illnesses, such as diabetes, hypertension, and cardio-
vascular mortality, regardless of their relationship with liver damage [57,58]. Studies have
also shown that elevated γGT concentrations correlate to the prevalence of MetS [59,60].
This phenomenon may occur because γGT indirectly reflects the elevation in inflammation
and oxidative stress induced by dysmetabolism [61].

5. Limitations

This study has several limitations. Firstly, this was a retrospective study, which may
have included selection bias. Hence, this study should be further validated by a prospective
study. Secondly, this study enrolled 1944 Taiwanese patients from the same hospital. It is
necessary to further validate this study using an external dataset with a bigger sample size,
and with different racial demographics. Currently, the effectiveness and robustness of our
strategy, when applied to a different hospital or different racial demographics is unclear.
Thirdly, this study does not include alcohol consumption, as well as chronic hepatitis B/C
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variables. Alcohol consumption and chronic hepatitis B/C might well lead to liver fibrosis
and cirrhosis, both being characterized by increased liver stiffness. Thus, the omission
of the impact of the widely detected alcohol consumption and chronic hepatitis B/C in
the FibroScan-assisted assessment of MetS might severely influence the validity of the
proposed model. However, we think there is a limited number of liver fibrosis patients.
A previous study suggested that the FibroScan E score can be used to detect liver fibrosis
patients, and we found that there was only 6% of patients (124/1944) with an E score that
was indicative of fibrosis [62,63].

6. Conclusions

We demonstrated, via ML models with RFE and data visualization, that the CAP score
could be used to identify patients with MetS. We also showed that a combination of the CAP
score and some potential risk factors could represent various health conditions associated
with MetS and provide a precise prediction model for the complicated relationship between
metabolic symptoms and their comorbidities for early detection in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13070822/s1, Figure S1: The box plot depicts the difference
between different conditions of MetS patients with whole clinical biomarkers without outliers.;
Figure S2: The receiver operating characteristic curve of various AI machine learnings methods
compared with other traditional scoring models; Table S1: Stages of two scores from Fibroscan; Table
S2: Confusion matrix for machine learning performance criteria; Table S3: Summary of parameters of
machine learning model available in caret package in R.
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