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Abstract: Dietary flavanols are known for disease preventative properties but are often poorly
absorbed. Gut microbiome flavanol metabolites are more bioavailable and may exert protective
activities. Using metabolite mixtures extracted from the urine of rats supplemented with flavanols
and treated with or without antibiotics, we investigated their effects on INS-1 832/13 β-cell glucose
stimulated insulin secretion (GSIS) capacity. We measured insulin secretion under non-stimulatory
(low) and stimulatory (high) glucose levels, insulin secretion fold induction, and total insulin content.
We conducted treatment-level comparisons, individual-level dose responses, and a responder vs.
non-responder predictive analysis of metabolite composition. While the first two analyses did not
elucidate treatment effects, metabolites from 9 of the 28 animals demonstrated significant dose
responses, regardless of treatment. Differentiation of responders vs. non-responder revealed that
levels of native flavanols and valerolactones approached significance for predicting enhanced GSIS,
regardless of treatment. Although treatment-level patterns were not discernable, we conclude that
the high inter-individual variability shows that metabolite bioactivity on GSIS capacity is less related
to flavanol supplementation or antibiotic treatment and may be more associated with the unique
microbiome or metabolome of each animal. These findings suggest flavanol metabolite activities are
individualized and point to the need for personalized nutrition practices.

Keywords: gut microbiome; phytochemicals; flavanol metabolites; glucose sensitivity; responder
analysis; personalized nutrition

1. Introduction

The human gut microbiome is comprised of ~100 trillion microbes and exhibits signifi-
cant inter-individual variation in composition and function [1,2]. These microbes metabo-
lize unabsorbed dietary components [3,4], forming metabolites which may manipulate host
health [1,5,6]. Dietary flavanols, which are of interest for their chronic disease preventative
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properties, are also metabolized by the gut microbiome to more bioavailable forms [3,7].
Typically, these microbial metabolites are the major form of flavanols in circulation (based
on circulating concentrations) and may be responsible for many of the effects of flavanol
consumption observed in peripheral tissues [8]. The potential for the resultant flavanol mi-
crobial metabolites to promote host health outcomes is currently being explored, especially
in the context of chronic diseases including diabetes, cancer, and obesity [9–12].

Dietary flavanols are a structurally diverse group of secondary plant metabolites found
in foods such as fruits, vegetables, tea and cocoa (Supplemental Figure S1) [13–16]. Despite
their abundance in the diet, the bioavailability of most flavanols is relatively poor [17]. Low-
molecular weight monomers such as (+)-catechin and (−)-epicatechin are comparatively
well absorbed in the small intestine [9,18]. High-molecular weight oligomers and polymers
are poorly absorbed, however once metabolized by the gut microbiome their metabolites
can be absorbed, deposited into circulation, and ultimately excreted in urine [19,20]. Fla-
vanol feeding interventions in antibiotic (Abx) treated animals support this integral role of
the gut microbiome in producing bioavailable and beneficial metabolites [1,21,22]. Evidence
shows that bioavailable flavanol microbial metabolites may possess greater bioactivity than
the native flavonoids [8,19,21,23]. Clinical research also connects various health outcomes
to specific metabolite profiles, or metabotypes, stemming from the variability in micro-
biome populations and functions observed between individuals [2,24–27]. Health effects
of the microbial metabolites are often stratified by metabotypes to elucidate relationships
between microbial metabolites and the observed health outcomes [28–31]. In vivo and
in vitro models of these metabotypes indicate that metabolites can beneficially modulate
metabolism [7,8,19–21].

This growing body of evidence suggests that microbial metabolites may be the key
by which flavanol intake modulates chronic diseases risk; however, current data present
limitations [16]. Most in vitro microbial metabolite studies rely on commercially available
purified metabolites which do not adequately recapitulate the complex physiological mix-
tures of compounds generated by the gut microbiome in vivo. We previously investigated
the profiles of bioavailable native and metabolite compounds in rats treated with or with-
out Abx and supplemented with high molecular weight flavanol rich grape seed extract
(GSE), low molecular weight flavanol monomers catechin and epicatechin (C/EC), or a
control [22]. Urinary flavanol metabolites (valerolactones, phenylalkyl acids, and hippuric
acids) were associated with reduced cancer cell proliferation in vitro [22]. While We pre-
viously observed several metabolite bioavailability and bioactivity phenotypes between
the experimental animal groups in the context of uroepithelial cell cancer, and therefore in
the present study we investigated if the same metabolite mixtures impact the β-cell insulin
secretion pathway in vitro [22].

Dysregulated insulin secretion by pancreatic islet β-cells is a key pathological charac-
teristic of diabetes [16,32]. Under healthy conditions, β-cells secrete low levels of insulin
during the unfed state when blood glucose levels are low (below ~5.6 mM) and considered
non-stimulatory, while postprandially elevated blood glucose levels (~12 mM) stimulate
insulin secretion in high levels [33,34]. Pathogenic β-cell function can result from a mis-
match between blood glucose and insulin secretion, such as elevated insulin secretion
during low glucose conditions or limited secretion during high glucose conditions. Glucose
responsivity is measured in β-cells with the glucose stimulated insulin secretion (GSIS)
assay [35–37]. The four common GSIS parameters include insulin secretion under low
glucose exposure, insulin secretion under high glucose exposure, insulin secretion fold
induction, and total insulin content of the β-cells. In the present study, we used GSIS
to investigate the glucose responsivity of INS-1 832/13 β-cells cultured with the extracts
of urinary flavanol metabolite mixtures collected previously [22]. While some studies
demonstrate that flavanols may impact β-cell function, this cellular model is less commonly
used than others such as adipose and skeletal muscle [8,33,34,38]. Building on promising
in vitro, in vivo, and human studies [39–43], our objective was to investigate the bioactivity
of the previously collected urine metabolite mixtures on β-cell GSIS capacity.
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2. Methods
2.1. Animals and Diets

All animal work was approved by the Institutional Care and Use Committee of the
David H. Murdock Research Institute (protocol #19-005) and was described previously [22].
Outbred male Wistar rats (N = 28) age 6-weeks were obtained from Charles River (Wilming-
ton, MA, USA). Rats were individually housed under standard conditions (12-h light/dark
cycle, 30–70% relative humidity, 20–26 ◦C) with ad libitum standard chow and water. After
receiving the animals, the rats were acclimatized for 5 days on standard chow. Following
acclimatization the rats were transitioned to the AIN-93G Growing Rodent Diet (D10012G,
Research Diets Inc., New Brunswick, NJ, USA). Rats were randomly assigned to receive
either grape seed extract (GSE), 1;1 catechin/epicatechin mixture (C/EC), or the vehicle
control (water). The groups where further divided to receive either no Abx or an Abx
treatment, forming a total of 6 experimental groups (n = 4–5 rats/group) [22].

2.2. Antibiotics (Abx) Treatment

A cocktail of 0.5 g/L vancomycin (Triangle Compounding Pharmacy, Cary, NC, USA),
1 g/L neomycin sulfate (Huvepharma, Maxton, NC, USA), 1 g/L metronidazole (Unichem
Laboratories, Hasbrouck Heights, NJ, USA), 1 g/L ampicillin (Auromedics Pharma, East
Windsor, NJ, USA) was administered in drinking water of all Abx treatment groups as
described previously [21,22].

2.3. Flavanol Standards and Extracts

The preparation and oral gavage (Kent Scientific, Torrington, CT, USA) of the flavanol
supplements Vitaflavan® GSE (DRT Neutraceuticals, Dax, France), (+)-catechin hydrate (C)
and (−)-epicatechin (EC, Millipore Sigma, Burlington, MA, USA) mix are described in the
previous study [22]. The composition of the GSE is reported in Supplementary Table S1.
Each supplement used gavage solutions composed of 125 mg/mL total concentrations and
water was used as a vehicle control. GSE was administered to provided C/EC in monomer
and mixed oligomer form. Rats were gavaged 1 mL of the assigned gavage solutions,
independent of body mass, to provide the same total dose. Rats therefore received either
GSE (125 mg total flavanols in the form of mixed flavanol monomers and oligomers), C/EC
(125 mg total flavanols in the form of 62.6 mg C + 62.5 mg EC), or vehicle (0 mg flavanols).

2.4. Flavanol Metabolite Collection and Purification

After overnight fasting, treatments were administered by a single, acute oral gavage
and urine was collected via a metabolic cage for 48 h as described previously [22]. Urine
samples were frozen at −80 ◦C and rats were euthanized at the conclusion of the study.
Water was removed by freeze-drying. Lyophilized urine solids were reconstituted with 5 mL
of 0.1% formic acid in 1:1 methanol:ethanol, and then vortexed, sonicated, and centrifuged
to precipitate out urea and salts. Supernatants were 0.22 micron sterile filtered (Sigma,
Burlington, MA, USA), speedvapped to dryness (Thermo Fisher, Waltham, MA, USA), and
stored at −80 ◦C. Prior to cell culture treatments, the samples were all reconstituted to the
same volume (representing the approximate average urine volume) with sterile double-
distilled water. All rats received the same dose and urine extracts were reconstituted to the
same volume, representing a 1x concentration relative to the average urine volume. Thus,
urine extracts normalized excreted compounds concentrations, eliminating urine volume
as a variable, as our objective was to obtain the pool of total excreted (i.e., bioavailable)
metabolites, independent of urine volume.

2.5. Metabolite Profiling

Native flavanols and their microbial metabolites in the urine derived samples were
quantified by LC-MS/MS as described previously [22]. Compounds determined post hoc
as not applicable due to lack of presence in the samples, and those with poor linearity for
external standards, were excluded from data analysis. Compounds presenting signals with
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intensities at or below the lower limits of detection were reported as 0 µM. Peaks with inten-
sities between the lower limits of detection and quantification were reported as 0.0001 µM.
After performing these adjustments, a total of 75 compounds were further analyzed. These
compounds were classified based on the three categories: (1) native flavanol or flavanol
microbial metabolites, (2) unconjugated form or Phase-II conjugated, and (3) metabolite
stage: native flavanol, valerolactone, phenylalkyl acid or related, cinnamic acids or related,
benzoic acids or related, hippuric acids or related, other aromatics, and non-aromatics.

2.6. Cell Culture

The rat derived INS-1 832/13 β-cells were maintained in RPMI 1640 + L-glutamine
(Corning, Glendale, AZ, USA) with 10% fetal bovine serum (Sigma, Burlington, MA, USA),
50 µg/mL streptomycin and 50 U/mL penicillin (LONZA, Morristown, NJ, USA), 10 mM
HEPES (Thermo Fisher, Waltham, MA, USA), and INS-1 832/13 supplement as previously
described [8,44]. Cells under 100 passage doublings were plated in 24-well culture plates
at ~1.05 × 105 cells/mL (VWR, Radnor, PA, USA). Twenty-four hours after plating, cells
were treated with the reconstituted urine derived extract samples diluted in media. Final
treatment concentrations represented 10–100x dilutions relative to urine levels (due to
the relative concentration from blood to urine) to approximate physiologically relevant
circulating metabolites in vivo. Control β-cells were cultured with sterile double-distilled
water equal to the value added for the 10% metabolite treated samples. After 24-h culture
treatments, GSIS assays and harvesting were performed.

2.7. Glucose Stimulated Insulin Secretion (GSIS)

A static GSIS assay was performed on all treated cells as described previously [8,45–50].
Treatment media was washed from the cultured cells and replaced with secretion assay
buffer containing low glucose (2.8 mM) to replicate the unfed state. Cells were acclimatized
to the low glucose condition for 2 h followed by 1-h static stimulations in low glucose and
then in high glucose (12 mM) to replicate the postprandial state. Insulin secretion samples
were collected at the conclusion of the low and high stimulation periods. Finally, cells
were lysed and harvested for total insulin content. Unstimulated, stimulated and total
insulin were measured by ELISA [45,51] and normalized to total protein content measured
by the bicinchoninic acid assay (Thermo Fisher, Waltham, MA, USA). Fold induction
was calculated by dividing stimulated insulin secretion by unstimulated insulin secretion.
Glucose responsiveness of cells was validated by measuring fold induction greater than
2 in vehicle treated β-cells (Supplemental Figure S2). To account for variation in β-cell
glucose responsiveness at baseline, all results were normalized to the accompanying per
plate vehicle controls, thus all insulin secretion and content results being are reported as
relative values which are comparable across experiments.

2.8. Statistical Analysis

Urine composition: To determine statistical significance of the main effects (flavanol
and Abx treatment) and interactions, the concentrations of measured compounds in urine
samples were compared by 2-way ANOVA. If a significant main effect or interaction was
detected, Holm-Sidak post hoc tests to account for multiple comparisons were performed
to determine differences among the 3 flavanol treatments within each antibiotic treatment
group (Control and Abx). Holm-Sidak post hoc tests were also performed to determine
differences between antibiotic treatments (Control and Abx) for each flavanol. The overall
family-wise error rate was set as 0.05, with one family per group.

Treatment-level comparisons and individual-level dose responses: As indicated in the
figure legends, means of treatment groups (n = 4 or 5 animal biological replicates repre-
sented as dots) were compared by 2-way ANOVA with Šidák’s post hoc test and presented
in the treatment-level comparisons graphs. For the individual-level dose responses, the
means of individual experiments (n = 3 β-cell culture biological triplicates represented as
dots) were compared by 1-way ANOVA with Dunnett’s post hoc test. Error bars indicate
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standard deviation (SD). GraphPad Prism 9 (GraphPad, La Jolla, CA, USA) was used for
all statistical analyses. Values of p < 0.05 was defined as significant a priori.

Responder vs. non-responder analysis: Analyses were performed to determine predic-
tive relationships between urine composition and GSIS capacity. Due to the large number
of doses and extensive list of compounds, individual compounds were not analyzed for
correlations with activity and only data from the 5% urine dose (which showed the most
significant effects) were employed for responder analyses. Associations between groups of
compounds and inhibitory activities were performed for groups of compounds to establish
general relationships between compound classes and activity. The data points were the
calculated composition values for each urine sample, and the mean GSIS values for that
urine sample. Error bars indicate standard error (SEM). Statistical analyses were performed
using GraphPad Prism 9 software (GraphPad, La Jolla, CA, USA). Although p < 0.05 was
defined as significant a priori, p ≤ 0.2 are presented in the graphs due to the conservative
comparisons used.

GSIS values were compared between the highest vs. lowest quartiles (urine samples
with lowest vs. highest % insulin secretion compared to control) for each compound
class. GSIS values were compared between the highest vs. lowest quartiles by t-tests, with
the Holm-Sidak method to control for multiple comparisons (1 family per GSIS response
measure, 4 t-tests: 1 per compound class), with the overall family a = 0.05. Each compound
class was analyzed individually, without assuming a consistent SD. Concentrations of each
analyte class were compared between the highest vs. lowest quartiles by t-tests, with the
Holm-Sidak method to control for multiple comparisons (1 family per compound class; 6
t-tests: 1 per GSIS measure). Within each compound class, GSIS values were compared
between cells exposed to the highest vs. lowest quartiles of analyte concentration by t-tests,
with the Holm-Sidak method to control for multiple comparisons (1 family per compound
class, 4 t-tests: 1 per GSIS response metric). Each GSIS measure was analyzed individually,
without assuming a consistent SD. One animal each from the vehicle and vehicle/Abx
groups was euthanized due to poor response to gavage, and thus the final sample sizes are
n = 4 for those treatments and n = 5 for all others.

3. Results
3.1. Flavanol Type and Abx Treatment Modify Bioavailable Flavanol and Metabolite Profiles

In our previous study, we collected and profiled metabolites in urine derived samples
from rats supplemented with flavanols and treated with or without Abx. We profiled
native flavanols and their phase-II and microbial metabolites to approximate total flavanol
bioavailability, as most native compounds and their phase-II and microbial metabolites are
excreted in the urine within 24-h of intake. We previously reported these profiles and con-
centration data, including individual compound concentrations [22]. This data, organized
by compound class, are presented graphically in Supplementary Figure S3 (reproduced with
permission from Taylor & Francis Group, Milton, United Kingdom). Pie charts showing the
distribution of compounds are shown in Supplementary Figures S4–S6. Briefly, C/EC and
GSE treatments exhibited similar native flavanols levels, which were significantly elevated
compared to the vehicle control (Supplementary Figure S3A). However, Abx treatment did
not affect native flavanol levels between C/EC and GSE. Similarly, the profiles of C/EC
and GSE treatments did not differ in metabolites, and both were significantly enriched
in flavanol-derived metabolites compared to vehicle control (Supplementary Figure S3B).
As expected, Abx treatment completely reversed formation metabolites and levels in rats
administered C/EC and GSE did not differ from the vehicle controls. While we note here
that flavanol and Abx treatment affected some metabolite classes in the urine derived
samples, a full discussion of urine profiles is beyond the scope of the present report and
was discussed previously [22].

In the present study, we treated INS-1 832/13 β-cells with these flavanol metabolite-
rich urinary extract for 24-h and measured classic GSIS parameters: unstimulated insulin
secretion, stimulated insulin secretion, insulin secretion fold induction, and insulin con-
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tent. We analyzed the GSIS data in three distinct ways: a treatment-level comparison, an
individual-level dose response, and a responder vs. non-responder analysis of metabolite
composition and GSIS. We hypothesized that among animals not treated with Abx, the
metabolites from the high-molecular weight flavanol GSE would have the most beneficial
bioactivity, followed by those from the low-molecular weight monomer flavanols C/EC,
and then the vehicle control diet. We expected a loss of bioactivity across all Abx treated
animals due to the diminished microbiome capacity to generate metabolites. Finally, like
other microbiome studies, we anticipated some level of individualized responses due to
unique microbiome variation in the outbred rats.

3.2. Treatment-Level Comparisons: Urine Metabolites Increase β-Cell Insulin Secretion during Low
Glucose Condition

In the first step of the GSIS assay, we measured the insulin secretion of β-cells treated
with urine-derived metabolites during unstimulated conditions (Figure 1), where healthy
β-cells should secrete low levels of insulin. We hypothesized that flavanol metabolites
would beneficially reduce insulin secretion while loss of these metabolites by Abx treatment
would inappropriately increase insulin secretion or have no effect. In this treatment-level
analysis, β-cells cultured with 1%, 2.5% and 7.5% concentrations of urine metabolites
showed no significant difference across treatment groups (Figure 1A,B,D) while the flavanol
factor showed a significant effect in the 10% culture (Figure 1E). As hypothesized, β-cells
cultured with the 5% concentration of metabolites from the vehicle and Abx treated animals
detrimentally increased insulin secretion compared to the vehicle only control (Figure 1C).
In contrast, the metabolites from the C/EC and GSE supplemented animals surprisingly
also showed a detrimental increase in the absence of Abx treatment (Figure 1C). Therefore,
we observed detrimental Abx and flavanol effects when animal treatments were grouped
for analysis.
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reported relative to the control β-cells cultured with water (Supplemental Figure S2). Data represent 
the average of 3 β-cell culture triplicates for each animal (n = 4-5 animals). * Represent 2-way 
ANOVA with Šidák’s post hoc test results of flavanol effects, Abx effects, interaction effects, and 
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Figure 1. Treatment-level Comparisons show Urine Flavanol Metabolites Increase β-cell Insulin
Secretion during Low Glucose Condition. Low glucose (2.8 mM) insulin secretion results of INS-
1 832/13 β-cells following 24-h culture with metabolites from rats fed the vehicle (white bars),
catechin/epicatechin (C/EC) (light gray bars), or grape seed extract (GSE) (dark gray bars) and
treated with (striped bars) or without antibiotics (Abx) (solid bars). Urine flavanol metabolites were
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diluted in media at 1% (A), 2.5% (B), 5% (C), 7.5% (D), and 10% (E) final concentrations. Values are
reported relative to the control β-cells cultured with water (Supplemental Figure S2). Data represent
the average of 3 β-cell culture triplicates for each animal (n = 4–5 animals). * Represent 2-way ANOVA
with Šidák’s post hoc test results of flavanol effects, Abx effects, interaction effects, and significance
compared to the vehicle control. * p < 0.05, ** p < 0.01, *** p < 0.001 or not significant (ns).

3.3. Metabolites Do Not Affect Insulin Secretion or Content during High Glucose Conditions

In healthy β-cells, elevated insulin secretion and production is stimulated by increased
blood glucose [52,53]. To investigate glucose response capacity of β-cells cultured with
metabolites, we measured their insulin secretion rates during high glucose, or stimulatory
conditions (Figure 2) and calculated the relative induction (fold increase) from low to
high glucose conditions (Figure 3). We also measured their insulin content as an indirect
report of their insulin production (Figure 4). Due to high variability between individuals,
we observed no significant main effects or interactions and thus post hoc tests to assess
differences between treatment groups were not performed (Figures 2–4). As expected,
individual variability was much higher for high glucose insulin secretion and insulin
secretion fold induction (Figures 2 and 3) compared to low glucose insulin secretion
(Figure 1).
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Figure 3. Metabolites Do Not Affect Insulin Secretion Fold Induction. Insulin secretion fold 
induction difference between high (Figure 2) and low (Figure 1) glucose stimulation results of INS-
1 832/13 β-cells following 24-h culture with metabolites from rats fed the vehicle (white bars), 
catechin/epicatechin (C/EC) (light gray bars), or grape seed extract (GSE) (dark gray bars) and 
treated with (striped bars) or without antibiotics (Abx) (solid bars). Metabolites were diluted in 
media at 1% (A), 2.5% (B), 5% (C), 7.5% (D), and 10% (E) final concentrations. Values are reported 
relative to the control β-cells cultured with water (Supplemental Figure S2). Data represent the 

Figure 2. Metabolites Do Not Affect Insulin Secretion during High Glucose Condition. High glucose
(12 mM) insulin secretion results of INS-1 832/13 β-cells following 24-h culture with metabolites
from rats fed the vehicle (white bars), catechin/epicatechin (C/EC) (light gray bars), or grape seed
extract (GSE) (dark gray bars) and treated with (striped bars) or without antibiotics (Abx) (solid
bars). Metabolites were diluted in media at 1% (A), 2.5% (B), 5% (C), 7.5% (D), and 10% (E) final
concentrations. Values are reported relative to the control β-cells cultured with water (Supplemental
Figure S2). Data represent the average of 3 β-cell culture triplicates for each animal (n = 4–5 animals).
Represent 2-way ANOVA with Šidák’s post hoc test results of flavanol effects, Abx effects, interaction
effects, and significance compared to the vehicle control. Not significant (ns).
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Figure 3. Metabolites Do Not Affect Insulin Secretion Fold Induction. Insulin secretion fold in-
duction difference between high (Figure 2) and low (Figure 1) glucose stimulation results of INS-1
832/13 β-cells following 24-h culture with metabolites from rats fed the vehicle (white bars), cate-
chin/epicatechin (C/EC) (light gray bars), or grape seed extract (GSE) (dark gray bars) and treated
with (striped bars) or without antibiotics (Abx) (solid bars). Metabolites were diluted in media at
1% (A), 2.5% (B), 5% (C), 7.5% (D), and 10% (E) final concentrations. Values are reported relative to
the control β-cells cultured with water (Supplemental Figure S2). Data represent the average of 3
β-cell culture triplicates for each animal (n = 4–5 animals). Represent 2-way ANOVA with Šidák’s
post hoc test results of flavanol effects, Abx effects, interaction effects, and significance compared to
the vehicle control. Not significant (ns).
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Figure 4. Metabolites Do Not Affect Insulin Content. Insulin content values of INS-1 832/13 β-cells
following 24-h culture with metabolites from rats fed the vehicle (white bars), catechin/epicatechin
(C/EC) (light gray bars), or grape seed extract (GSE) (dark gray bars) and treated with (striped bars)
or without antibiotics (Abx) (solid bars). Reconstituted urine metabolites containing metabolites were
diluted in media at 1% (A), 2.5% (B), 5% (C), 7.5% (D), and 10% (E) final concentrations. Values are
reported relative to the control β-cells cultured with water (Supplemental Figure S2). Data represent
the average of 3 β-cell culture triplicates for each animal (n = 4–5 animals). Represent 2-way ANOVA
with Šidák’s post hoc test results of flavanol effects, Abx effects, interaction effects, and significance
compared to the vehicle control. Not significant (ns).
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3.4. Individual-Level Effects on GSIS Regardless of Treatment

Despite observing minimal changes in the traditional treatment-level comparisons,
we saw many significant dose responses from analyses on the individual animal-level.
Surprisingly, metabolites from animals in different treatment groups showed a deleteriously
elevated insulin secretion during the low glucose condition (Supplementary Figure S7).
Both beneficial and deleterious effects were observed on insulin secretion during high
glucose (Supplementary Figure S8), fold induction (Supplementary Figure S9) and insulin
content (Supplementary Figure S10). These mixed results were seemingly irrespective of
animal treatment groups and at least one individual from each group presented significant
individualized results. Paradoxically, even the vehicle only control group was represented
(Supplementary Figure S10A). When results for all parameters are considered together, one
animal did stand out as consistently supporting our hypothesis that Abx treatment would
be detrimental. Metabolite cultures from animal 7 in the GSE and Abx group demonstrated
reduced insulin secretion during high glucose (Supplementary Figure S8A), fold induction
(Supplementary Figure S9A) and insulin content (Supplementary Figure S10B). However,
conclusions about overall metabolite patterns were unclear because one third of the animals
(9 of 27) showed some significant, and often contradictory, individualized response.

While some treatment-level (Figures 1–4) and individual-level (Supplementary
Figures S7–S10) results supported our original hypotheses, we observed high inter-individual
variability which obscured broad treatment-level conclusions. Therefore, we postulated that
the bioactivity of the urine extracts is less associated with the experimental treatment and
more related to the unique individual microbiome or metabolite profile resulting from the
outbred animals. Another confounding factor is that we only characterized flavanol-derived
metabolites in the urine. We may have missed some key metabolites that either remain
unknown or were present at concentrations too low to characterize. There are numerous
unmeasured metabolites, both of flavanol origin as well as endogenous or from the bulk diet,
present in the urine. This is a limitation of the present analysis. Untargeted metabolomics
would address some of these differences.

3.5. Responder Analyses Show Metabolite Profiles Predict GSIS Activity Independent of Treatment

We next performed individual-level analysis of GSIS activity based on metabolite
profile, independent of treatment. Due to the large number of treatments, only GSIS data
from the 5% urine dose were used. We determined which samples were most vs. least
effective modulators of GSIS capacity relative to the vehicle control for the GSIS parameters
(irrespective of treatment) and selected the most vs. least effective quartiles (7 animals per
quartile) (Figure 5A). This analysis resulted in significant separation, with low variability
within quartiles, which facilitates a responder analysis not possible with the constrains of
the traditional treatment-based grouping.

We next compared profiles for various compound classes of only the most vs. least
effective quartiles of metabolites by compound class and GSIS parameter (Figure 5B–E). Due
to the large number of quantified metabolites, individual compound data was not used for
this analysis. Benzoic acids, other aromatics, and non-aromatics were also excluded due to
lack of significant differences across treatments (Supplementary Figure S3G–I). This analysis
resulted in some differences approaching significance. For low and high glucose responses
there were no significant differences, but levels of valerolactones (a microbial metabolite
unique to flavanols) approached significance between low and high responders (p = 0.14
and 0.20 for low and high glucose responses, respectively) (Figure 5B,C). There were no
significant differences for fold induction (Figure 5D). For insulin content, the differences
in composition between lowest and highest responders approached significance for total
natives, microbial metabolites, and valerolactones (p = 0.11, 0.18 and 0.15, respectively).
In all cases approaching significance, higher levels appear correlated with greater GSIS
activity. Due to the exploratory post hoc nature of this analysis, the statistical tests were
intentionally very conservative, as the overall family error rate (1 family per GSIS response,
6 t-tests per family, one per compound class) was set at α = 0.05 to reduce the rate of false
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positives; adjusted p-values are presented and used for evaluation of statistical significance.
In a less conservative analysis, statistical significance would be achieved. This analysis
suggests that native flavanols, total microbial metabolites and valerolactones are the active
compounds for enhancing GSIS. These data agree with our previous publications showing
that native catechins and valerolactones possess β-cell stimulatory activities [8,46].
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Figure 5. Responder vs. Non-responder Predictive Analyses of GSIS based on Metabolite Profiles.
(A) Differentiation of urine sample extracts (5% dose only) by highest vs. lowest quartiles for GSIS
parameters. GSIS was compared between the highest (black bars) vs. lowest quartiles (gray bars) by
t-tests, with the Holm-Sidak method to control for multiple comparisons (1 family, 4 t-tests: 1 per GSIS
response measure), with the overall family α = 0.05. Each GSIS measure was analyzed individually,
without assuming a consistent SD. Comparison of urine compositions between the most effective
vs. least effective samples for each GSIS measure including insulin secretion during low glucose
(B), during high glucose (C), insulin secretion fold induction (D), and insulin content (E). Within
each GSIS measure, levels of each compound class were compared between the highest vs. lowest
quartiles by t-tests, with the Holm-Sidak method to control for multiple comparisons (1 family per
GSIS measure, 6 t-tests: 1 per compound class). For all tests: **** p < 0.0001.
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The findings in Figure 5 suggest that specific compound classes are associated with
enhanced GSIS activity, when the highest vs. lowest efficacy urine samples were compared
independent of treatment. To further evaluate these findings, the reverse analysis was
performed: the highest and lowest concentration quartile of each compound class were
determined, and the GSIS capacity of these urine derived samples were compared (Figure 6).
This reverse analysis strengthened several results from Figure 5. For total native flavanols,
the highest quartile of metabolite levels produced significantly higher insulin content levels
compared to the lowest levels (Figure 6A). For valerolactones (Figure 6C), the highest vs.
lowest quartile approached significance during the high glucose condition (p = 0.15) and
insulin content (p = 0.13). There was no significant separation in GSIS response between
quartiles for total microbial metabolites or any microbial metabolite class (Figure 6B,D–F).
Again, highly conservative tests were used due to the exploratory nature of this analysis
and the number of comparisons.
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Figure 6. Predictive Value of Metabolite Profiles on GSIS activity. Comparison of GSIS response
between urine derived samples with the highest and lowest quartiles of concentrations of various
classes of compounds, including total (A) native flavanols, (B) microbial metabolites, (C) valero-
lactones, (D) phenylalkyl acids, (E) cinnamic acids and (F) hippuric acids. Values are presented as
mean ± SEM. Within each compound class, response was compared between the highest vs. lowest
quartiles by t-tests, with the Holm-Sidak method to control for multiple comparisons (1 family per
compound class, 4 t-tests: 1 per response measure). * p < 0.05.

4. Discussion

Type 2 Diabetes has historically been defined as a disease characterized by muscle,
adipose and liver insulin insensitivity with lost functional β-cell mass, including dysregu-
lated GSIS being a later occurrence resulting from long-term insulin insensitivity. However,
recent findings strongly demonstrate that defective insulin secretion may be an instigating
factor in Type 2 Diabetes diseases progression. While the effect of flavanols on muscle,
adipose and liver have historically been more studied [16], in recent years studies have
begun to look at the effect of flavanols on β-cell proliferation, insulin secretion and sur-
vival [33,40,41]. While early studies of flavanols and β-cell proliferation, survival, and
insulin secretion focused on in vivo feeding studies and treatment of β-cells with native fla-
vanols in vitro [33,40,41], we have shown that epicatechin [46] and three of its metabolites
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(hippuric acid, homovanillic acid, and 5-phenylvaleric acid) individually are sufficient to
enhance GSIS in INS-1 832/13 β-cells [8]. While epicatechin enhances GSIS by increasing
mitochondrial respiration and mitochondrial electron transport chain component expres-
sion [46], our published data demonstrates that hippuric acid, homovanillic acid, and
5-phenylvaleric acid increase insulin secretion and insulin content without modulating
mitochondrial electron transport chain component levels or modulating mitochondrial res-
piration [8]. These data suggest that gut microbiome derived metabolites may be sufficient
to enhance GSIS, indicating that microbial metabolites may mediate some of the observed
metabolic effects in flavanol consumption studies. Furthermore, with our previous pub-
lished data, our findings suggest that the method of action may be significantly different
from that induced by the native flavin. However, this represents isolated β-cells only, and
the whole-body effects of these metabolites on other complementary tissues cannot be
determined in this model. The purpose of the present study was to move beyond isolated
native flavanols and microbial metabolites and study the physiologically relevant complex
mixtures of bioavailable native flavanols and their metabolites that were produced and
absorbed in rats gavaged with either simple monomeric flavanols or GSE containing larger
flavanols on insulin secretion.

Looking at the compiled data, our findings show that the urine derived metabolites
from the C/EC- or GSE-gavaged rats increased unstimulated insulin secretion while sam-
ples from Abx treated animals had no change. The potential implications of increased
unstimulated insulin secretion in low glucose conditions by flavanols remain unclear and
warrant further consideration. As mentioned above, the targeted nature of the present
analysis may have omitted key metabolites that may explain this effect. We observed no
changes in stimulated insulin secretion, fold insulin secretion, or insulin content when
averaged across groups. Interestingly, our data did demonstrate variability in the INS-1
832/13 β-cell response based on the individual rat source of the urine derived metabolites,
independent of treatment. These data demonstrate an animal specific effect, based on
the metabolites found in the urine, specifically looking at total native flavanols on insulin
content. Similarly, the concentration of valerolactons appeared to have the strongest effect,
comparing quartile 1 and quartile 4, on unstimulated, stimulated, and fold insulin secretion,
as well as insulin content. These differences, which appear to reflect the individual micro-
biome composition, are supported by our previous findings demonstrating significant sex
based and microbiome-based differences in terms of response to EC [54]. Overall, these
findings suggest that native flavanols and valerolactones, but not the smaller metabolites
(such as phenylpropionic or acetic acids, cinnamic acids, hippuric acids, benzoic acids, etc.),
appear to exert some effect on increasing insulin secretion capacity by β-cells.

Our findings may also be impacted by the complex nature of the urine derived
metabolites. While we have previously shown beneficial effects of single metabolites
on insulin secretion and other metabolic processes of β-cells [8,46], the use of complex,
physiologically relevant in vivo-derived metabolites allows for combinatorial effects that
are dose dependent. Within the milieu of metabolites there may be compounds that activate
and compounds that inhibit insulin secretion and content. Understanding the individual
effects, as well as the combinatorial effects, is extremely important. Alternatively, the use
of metabolites found in the urine may select against metabolites that are bound to and
removed from circulation by β-cells, or other tissues. The ability to do a similar study
looking at postabsorptive serum metabolites would significantly strengthen the findings
from the present study [55].

The high inter-individual variability between animals within treatment groups posed
the greatest challenge to interpreting the present data, precluding conclusions at the treat-
ment level. Some steps were taken to reduce variability. We fed all rats a uniform total dose
and reconstituted urine extracts to a uniform volume to normalize concentration differences
across animals due to factors such as body size, urine volume, etc. This eminimized the
effect of body mass or urine volume. Urine extract identities were blinded to individuals
performing the in vitro cell culture assays, and β-cell culture and assay protocols were
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highly standardized a priori and performance was harmonized through careful staff train-
ing. At the data analysis level, all calculations were relative to within-experiment controls
to enable comparisons between all experiments regardless of differences that would arise
from small differences in the passage number of β-cells used in each experiment. Never-
theless, significant inter-individual variability was observed in chemical composition and
in vitro activity between urine samples from animals within treatment groups. One major
source of inter-individual variation was the choice of rodent model. While using outbred
rats is a standard approach in bioavailability research, inbred animals may be required to
reduce variability to isolate and study treatment-level effects. Alternatively, urine samples
could be pooled for replicate animals with a treatment to reduce variability. Another
sources of variation, particularly in metabolite production, may have been microbiome
differences. Humanization of rats from a single common fecal sample of human origin
could further reduce individual variability. These approaches will be explored in future
studies. In response to this high interindividual variability, we explored compound-activity
associations in a relatively novel approach by analyzing the responders vs. non-responders,
independent of treatment. This analysis revealed that elevated levels of bioavailable native
flavanols and valerolactones were associated with improved beta cell function. Due to the
exploratory nature of the responder analysis and large number of comparisons, conserva-
tive post hoc tests were used, and these results (adjusted p-values) thus approached but
did not reach significance.

There are several limitations of the present work. First, we used urine as the source of
physiologically relevant sources of metabolite mixtures based on the logic that all flavanol-
derived compounds in urine must be present in the bloodstream. While we took precautions
to reduce the content of salts and urea and included a vehicle group to account for the
urine background, the fact remains that β-cell are never exposed to actual urine in vivo,
and thus there are potential effects in this model that do not occur in vivo. Additionally,
flavanol exposure may have induced secretion of other factors that were present in the
urine that contribute to beta cell function, and this is a limitation of the present design.
Use of serum for similar studies has been performed [55,56] but presents challenges of low
sample volumes. Such strategies may be required in the future. Furthermore, urine is an
accumulated sample and does not represent the natural pharmacokinetic concentration
and profile changes that occur in circulating bioavailable compounds over time post-
dose. Second, the observed inter-individual variability in urine profiles and activities
was much larger than we expected, as discussed above. Third, the flavanols treatments
may not have differed enough to produce the desired separation in treatment effects. We
know that some of these metabolites can come from the background diet, even highly
purified diets, and thus some variability and non-treatment background effect in metabolite
composition was unavoidable regardless of the treatments selected [22,57]. While the
C/EC treatment had only monomeric flavanols, the GSE treatment contained monomeric
as well as larger flavanols. The overlap in composition (monomeric flavanols in both
groups) may have muddled the result. A cleaner design would have been to eliminate one
of the flavanol treatments or compare C/EC vs purified oligomers/polymers. However,
standards of purified oligomeric/polymeric flavanols are not economically available in
the large quantities needed for the gavage studies. Finally, these studies were all done
under optimal culture conditions. β-cell insulin secretion is impaired by elevated blood
glucose or culture with fatty acids [45]. While the current study looked at the ability of these
metabolites to modulate GSIS under optimal conditions, use of glucoplipotoxic conditions
would have permitted us to explore the ability of these compounds to modulate GSIS
under suboptimal conditions. Future studies will need to determine if these metabolites
are sufficient to ameliorate impaired GSIS under suboptimal conditions.

In conclusion, this study demonstrates that the profile of bioavailable flavanol-derived
metabolites is highly variable, as is the subsequent effect of these mixtures on β-cell function.
Bioavailable mixtures obtained following flavanol administration appeared to enhance
insulin secretion under low-glucose (unstimulated) conditions, which warrants further
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study. The effects on beta cells under high-glucose (stimulated) conditions was more
variable between individuals, precluding conclusions by treatment groups. However, when
the most vs. least active samples and the highest vs. lowest metabolite concentrations were
studied independent of treatment group, associations between higher levels of flavanols
and valerolactones and increased β-cell function approached significance. While not
conclusive, the present study provides hypothesis-generating data and new experimental
protocols that can be used to further investigate the role of bioavailable flavanol-derived
metabolites in protecting β-cell health and function in vivo.
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