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Abstract: Tamarindus indica Linn (tamarind, F. Leguminosae) is one of the most widely consumed
edible fruits in the world. Phytochemical investigation of tamarind pulp n-butanol fraction yielded
one new (+)-pinitol glycoside compound 1 (25% w/w), and 1D, 2D NMR, and HRESIMS investigation
were used to confirm the new compound’s structure. (+)-Pinitol glycoside showed anti-Alzheimer
potential that was confirmed in prophylactic and treatment groups by decreasing time for the T-maze
test; decreased TAO, brain and serum AChE, MDA, tau protein levels, and β amyloid peptide protein
levels; and increasing GPX, SOD levels, and in vivo regression of the neurodegenerative features of
Alzheimer’s dementia in an aluminum-intoxicated rat model. The reported molecular targets for
human Alzheimer’s disease were then used in a network pharmacology investigation to examine
their complex interactions and identify the key targets in the disease pathogenesis. An in silico-based
analysis (molecular docking, binding free energy calculation (∆GBinding), and molecular dynamics
simulation) was performed to identify the potential targets for compound 1. The findings of this
study may lead to the development of dietary supplements for the treatment of Alzheimer’s disease.

Keywords: Tamarindus; tamarind; pinitol; Alzheimer

1. Introduction

The majority of neurodegenerative disorders affecting the aged are amyloid-plaques,
neurofibrillary tangles, cholinergic dysfunction, and oxidative stress. The most prevalent
of these is Alzheimer disease (AD), which causes progressive neurocognitive deterioration
and memory impairment (dementia) [1]. Patients experience a deterioration in their physi-
cal and cognitive abilities as they age, which may be related to a higher vulnerability to the
cumulative effects of oxidative stress and inflammation [2]. Currently, only symptomatic
treatments are available for AD. Three AChE inhibitors, donepezil, rivastigmine, galan-
tamine, and memantine, are currently available and approved for the treatment of mild to
moderate AD; however, they come with a number of side effects [3]. The “one change, one
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disease, one drug” paradigm is no longer appropriate because AD is a typical example of a
complicated multifactorial disease [4]. There is a high demand for the discovery of novel
natural products with the potential to protect against or even prevent this neurodegen-
erative disease, slow or even stop the disease’s progression and deterioration in its early
stages, and/or lessen its side effects, all of which could promote healthy aging [5].

Given the critical functions of antioxidant chemicals in the treatment and prevention
of illnesses connected to the oxidative stress that is produced by free radicals, research on
plants with antioxidative potential has gained growing attention [6,7]. Antioxidants do,
in fact, serve to scavenge free radicals that can interfere with cellular genetic material and
destroy cellular membranes [6]. Natural products provide excellent chances to slow the pro-
gression and symptoms of AD [6]. The antioxidant, anti-inflammatory, anticholinesterase,
and anti-amyloidogenic properties of plant-derived natural compounds such quercetin,
berberine, epigallocatechin-3-gallate, huperzine A, resveratrol, and luteolin are of particular
interest [8].

Inositols are naturally occurring cyclitols or polyols, and they can be found in the
mammalian and plant kingdoms [9]. In terms of more specific chemical structure, these
natural products are stereoisomers of hexahydroxy cyclohexane. The biological proper-
ties of inositols have been extensively studied, including insulin regulation, antidiabetic,
antioxidant, antibacterial, female fertility enhancement, metabolic syndrome treatment,
antidepressant, gastroprotective, hepatoprotective, hypolipidemic, and antiaging [10–18].

Tamarind is a native edible plant in Eastern Africa [19,20]. Recently, the positive anti-
Alzheimer effects of metabolites (e.g., 4-phloroglucinol, 5-methoxybenzoicacid,
4-(3′-methoxyphloroglucinol), 5-hydroxybenzoic acid, along with 3,5-dihydroxyphenyl
formate, 5-methoxy, 3-hydroxyphenyl formate, tartaric acid, gondoicacid, and β-sitosterol)
isolated from tamarind pulp have been carefully established [7]. Moreover, from tamarind
root bark, (+)-pinitol was previously isolated and characterized [21]. (+)-Pinitol is the
inositol methyl ether derivative, which can be found in more than 20 plant sources, and
its highest content is in carob pods, at 5.5% [22]. The biological properties of (+)-pinitol
have also been extensively studied, including anti-Alzheimer, antiaging, antibacterial, anti-
cancer, antidepressant, antidiabetic, antifibrotic, antihyperlipidemic, and anti-inflammatory
activities [23–32].

By illustrating the mode of action using several in silico assays, the purpose of the
current study was to emphasize the potential therapeutic and positive benefits of the
new (+)-pinitol glycoside isolated from Tamarindus indica pulp. This was indicated by a
regression in the neurodegenerative features of Alzheimer’s dementia in an Al-intoxicated
rat model, together with further examination of tau protein and β amyloid peptide levels.

2. Materials and Methods

Plant materials and experiments were conducted in accordance with relevant institu-
tional, national, and international guidelines.

2.1. Plant Material

We bought T. indica pulp at the market. Dr. Abd El-Halim A. Mohammed of the
Horticultural Research Institute’s Department of Flora and Phytotaxonomy Research in
Dokki, Cairo, Egypt, graciously recognized T. indica. At the Department of Pharmacognosy,
Faculty of Pharmacy, Beni-Suef University, Egypt, a voucher specimen (2021-BuPD 77)
was deposited.

2.2. Chemicals and Reagents

The solvents utilized in this study came from El-Nasr Company for Pharmaceuticals and
Chemicals (Egypt) and included n-hexane (n-hex.), dichloromethane (DCM), ethyl acetate
(EtOAC), n-butanol (n-but.), ethanol, and methanol (MeOH). Methanol-d4 (CD3OD-d4) and
other deuterated solvents were bought from Sigma-Aldrich (Saint Louis, MO, USA) for
spectroscopic studies. With the use of Sephadex LH-20 (0.25-0.1 mm, GE Healthcare, Sigma-
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Aldrich), column chromatography (CC) was carried out. Precoated silica gel 60 GF254
plates (E. Merck, Darmstadt, Germany; 20 × 20 cm, 0.25 mm in thickness) were used
for thin-layer chromatography (TLC). Spraying the spots with para-anisaldehyde (PAA)
reagent (85:5:10:0.5 absolute EtOH: sulfuric acid: glacial acetic acid: para-anisaldehyde),
and then heating them to 110 ◦C, allowed the spots to be seen [33].

2.3. Spectral Analyses

At 400 and 100 MHz, respectively, proton 1H and 13C distortionless enhancement by
polarization transfer-Q (DEPT-Q) NMR spectra were captured. Tetramethylsilane (TMS)
was employed in methanol-d4 (CD3OD-d4) as an internal standard, with the residual
solvent peak (δH = 3.34, 4.78; and δC = 49.9) serving as references. Bruker AG, Biller-
ica, Massachusetts, USA, provided the Bruker Advance III 400 MHz, BBFO Smart Probe,
and Bruker 400 MHz AEON Nitrogen-Free Magnet for the measurements. A DEPT-Q
experiment was used to determine carbon multiplicities. A Shimadzu UV 2401PC spec-
trophotometer (Shimadzu Corporation—UV-2401PC/UV-2501PC, Kyoto, Japan) was used
to measure the UV spectrum of methanol. An infrared spectrophotometer, model Jasco
FTIR 300E, was used to measure the infrared (IR) spectra. An Acquity Ultra Performance
liquid chromatography system connected to a Synapt G2 HDMS quadrupole time-of-flight
hybrid mass spectrometer (Waters, Milford, MA, USA) was used to obtain HRESIMS data.

2.4. Extraction and Fractionation of Tamarindus Indica Pulp

Tamarindus indica pulp (2 kg) was extracted using a rotary evaporator (Buchi Rotavapor
R-300, Cole-Parmer, Vernon Hills, IL, USA) and five liters of 70% ethanol macerated at room
temperature for three days each to yield one thousand grams of crude extract. The dry
extract was successfully portioned with solvents of various polarities (n-Hex, DCM, EtOAC,
and n-but) after being suspended in 700 mL of distilled water (H2O). Each step’s organic
phase was individually evaporated under reduced pressure to produce the fractions I
(10.0 g), II (7.0 g), III (16.0 g), and IV (500.0 g), respectively. The leftover mother liquor was
then concentrated to produce the aqueous fraction (V). The final fractions were all stored at
4 ◦C for biological and phytochemical analysis [7,34–38].

2.5. Isolation and Purification of Compounds

Fraction IV (50 g) was further purified on a Sephadex LH20 column (0.25–0.1 mm,
400× 0.5 cm, 400 gm), which was eluted with MeOH to afford compound 1 (49.5 g) (content
in the pulp, at 25.0% w/w).

3-O-[[3′-O-[β-D-glucopyranosyl-(1′′-3′)]-[6′-O-[β-D-fructofuranosyl–(1′′′-6′)]-α-D-
glucopyranosyl]-(+)-pinitol (1): yellow powder; [UV (MeOH) λmax (logε) 270 (6.0), 300 (6.5) nm;
IR υmax (KBr) 3429, 3100, 3030, 1680, 1600 cm−1; NMR data; see Table 1; HRESIMS m/z
681.2454 [M + H]+ (calc. for C25H45O21, 681.2453).

Table 1. DEPT-Q (400 MHz) and 1H (100 MHz) NMR data of compound 1 in CD3OD-d4; carbon
multiplicities were determined by the DEPT-Q experiments.

Position 1

Moiety δ
C

δ
H (J in Hz)

(+)-pinitol
1 84.4, CH 3.28, overlapped
2 73.0, CH 3.92, overlapped
3 73.3, CH 4.55, m
4 72.2, CH 3.71, m
5 74.5, CH 3.70, overlapped
6 71.5, CH 3.81, overlapped

-OCH3 60.6 3.63, s
α-D-glucopyranosyl

1′ 93.5, CH 5.14, d (3.5)
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Table 1. Cont.

Position 1

Moiety δ
C

δ
H (J in Hz)

2′ 71.4, CH 3.81, overlapped
3′ 77.2, CH 4.06, overlapped
4′ 69.1, CH 3.81, overlapped
5′ 71.6, CH 3.81, overlapped
6′ 64.0, CH2 3.62, 4.04, m

β-D-glucopyranosyl
1′′ 97.7, CH 4.51, d (8)
2′′ 73.8, CH 3.62, overlapped
3′′ 76.3, CH 3.16, t
4′′ 70.8, CH 3.87, overlapped
5′′ 77.5, CH 3.35, overlapped
6′′ 62.4, CH2 3.81, 4.04, m

β-D-fructofuranosyl
1′′′ 65.5, CH2 3.50, 3.69, m
2′′′ 99.0, qC
3′′′ 77.6, CH 3.35, overlapped
4′′′ 71.2, CH 3.31, m
5′′′ 82.7, CH 3.78, overlapped
6′′′ 64.3, CH2 3.51, 4.04, m

qC, quaternary; CH, methine; CH2, methylene; CH3, methyl carbons.

2.6. Acid Hydrolysis and Sugar Analysis

Hydrolysis of sugars and GC-MS analysis of derivatives was performed according to
Abbet et al. (2011) [39]. Compound 1 (1.0 mg) was hydrolyzed. After heating at 100 ◦C for
1 h in 2 M TFA (1 mL), the mixture was extracted with CH2Cl2 (3 × 1.0 mL). The aq. phase
was freeze-dried, and redissolved in dry pyridine (200 mL) containing 5 mg/mL L cysteine
methyl ester hydrochloride. The reaction mixture was heated at 60 ◦C for 1 h, followed
by silylation with hexamethyldisilazane and chlorotrimethylsilane (Fluka) in pyridine
(3:1:10, 300 mL) at 60 ◦C for 30 min. [40]. After silylation, pyridine was evaporated, and the
solid residue extracted with n-hexane. GC-MS analysis was performed on a 5890 Series
II gas chromatograph coupled to a HP 5971A mass detector (Hewlett Packard, Palo Alto,
CA, USA). The separation was carried out on a DB-225 MS column (30 m × 0.25 mm,
I.D., Waters, Taunton, MA, USA); column temp. 150 ◦C for 2 min, and then a gradient
of 58 ◦C/min to 210 ◦C, then 10 ◦C/min to 240 ◦C. Comparison of the retention times of
derivatized reference sugars with those obtained from samples resulted in (+)-pinitol (Rt
23.48 min), D-glucose (Rt 28.64 min), and D-fucose (Rt 25.96 min) in the tested compound.

2.7. Animals and Ethics

The Laboratory Animal Centre at Deraya University provided 32 adult male Wistar rats
(12–15), weighing between 150 and 200 g. The Experimental Animal Centre and Research
Ethics Committee, Deraya University, Minia, Egypt (12/2022 approved on 1 August 2022)
developed the standards for animal care and study protocols. All rats were kept in groups
of eight and kept on a 12-h light/dark cycle in an animal room with temperature and
pressure controls.

2.8. Experimental Design

The animals were divided into four groups of eight rats each, and they received the
following oral treatments for 21 days: Group (1): Normal healthy rats served as negative
control; Group (2): Alzheimer disease (AD)-induced rats received AlCl3 orally at a dose of
17 mg/kg body weight daily, as described before [41]; Group (3): AD-induced rats received
(+)-pinitol glycoside orally (100 mg/kg) from day 1 as prophylactic approach [42]; Group
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(4): AD-induced rats followed by (+)-pinitol glycoside treatment orally (100 mg/kg) for
another 21 days.

Blood samples were taken at the conclusion of the experiment right before the rats were
sacrificed for additional biochemical testing. Additionally, the entire brain was quickly
separated into two parts and dissected on a glass dish that had been chilled with ice.
For subsequent Western blotting examination, the first part was maintained at 80 ◦C. In
phosphate-buffered saline pH (7.00), the second portion was homogenized using a Branson
Digital Sonifier SFX 550 (EMERSON, Ferguson, MO, USA). To prepare the homogenate’s
clear supernatant for acetyl choline esterase measurement, the homogenate was centrifuged
at 4000 RPM for 40 min at 4 ◦C.

2.9. T-Maze Test

The T-maze test was utilized to evaluate the neurocognitive function of rats according
to Deacon and Rawlins [43]. Before setting up this experiment, animals were not provided
with food for 24 h with only water to drink. All animals were subjected to the T-maze test.
The experiment was done thrice; at zero time before the induction of AlCl3, after 24 h of
the first dose of ALCl3, and at the end of the experiment. Behavioral observations were
recorded before and at the end of the experiment.

2.10. Biochemical Analysis

According to the manufacturer’s instructions, serum total antioxidant activity (TAO)
was measured using a total antioxidant colorimetric test kit (#E-BC-K801-M, Elabscience,
Houston, TX, USA). According to manufacturer’s instructions, the acetyl choline esterase
activity kit (#E-BC-K174-M, Elabscience, Houston, TX, USA) was used to measure the
activity of the AchE enzyme in the brain and serum.

2.11. ELISA Assays

Serum GPX, SOD, and MDA were determined according to the kits manufacturer’s in-
structions (#MBS744364, MyBioSource, San Diego, CA, USA), (#MBS036924, MyBioSource,
San Diego, CA, USA), and (#MBS268427, MyBioSource, San Diego, CA, USA), respectively.
Protein tissue homogenates were used for evaluating the protein levels of phosphorylated
and total tau and β amyloid peptide utilizing rat tau protein ELISA kit (#MBS029585,
MyBioSource, San Diego, CA, USA), (#MBS725098, MyBioSource, San Diego, CA, USA),
and (#MBS726579, MyBioSource, San Diego, CA, USA).

2.12. In Silico Investigation
2.12.1. Prediction of the Potential Targets

The isomeric structure of compound 1 was prepared by ChemDraw [44] and then sub-
mitted to the Swiss Targetto Pharm Mapper (http://www.lilab-ecust.cn/pharmmapper/,
accessed on 20 March 2022) [45] to obtain the potential targets in the organism “Homo
sapiens” (Table S1).

2.12.2. Possible Targets of Alzheimer’s Disease

AD’s target proteins (Table S1) were collected from the following four databases: Gene
Cards (https://www.genecards.org/, accessed on 20 March 2022) [46]; Therapeutic Target
Database (TTD, http://db.idrblab.net/ttd/, accessed on 20 March 2022) [47]; Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/, accessed on 20 March 2022 ); and the
Drug Bank database (https://www.drugbank.ca/, accessed on 20 March 2022) [48]. The
word “Alzheimer Disease” was selected as the keyword, and the species was limited as
“Homo sapiens”. The targets that repeated at least two times were selected.

2.12.3. Molecular Docking MD Simulation and Network Construction

Docking was carried out using AutoDock Vina software, and MD simulations were
performed using Desmond software, while the construction of PPI network was carried

http://www.lilab-ecust.cn/pharmmapper/
https://www.genecards.org/
http://db.idrblab.net/ttd/
http://ctdbase.org/
https://www.drugbank.ca/
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out using Cytoscape. The detailed descriptions of these procedures can be found in the
Supplementary Materials [49–57].

2.13. Statistical Analysis

Standard deviations (SD) were used to report the mean for all data sets. Utilizing
Co-State for Windows version 8 and one-way ANOVA software, the data were statistically
checked for normal distribution. The values of different letters are statistically significant
at p <0.001.

3. Results
3.1. Phytochemical Investigation

Analysis of the HRESIMS, 1D, and 2D NMR data for compound 1 suggested possible
oligosaccharide core scaffold [58]. The HRESIMS data for compound 1 showed an adduct
pseudo-molecular ion peak at m/z 681.2454 [M + H]+, (calc. for C25H45O21, 681.2453),
suggesting four degrees of unsaturation. The 1H and DEPT-Q 13C NMR data (Table 1,
Figures S1 and S2) along with the Heteronuclear Single Quantum Correlation Experiment
(HSQC) data (Figure S3) suggested seven characteristic resonances appeared as six oxyme-
thine groups at δH 3.28 (1H, overlapped) δC 84.4, δH 3.92 (1H, overlapped) δC 73.0, δH
4.55 (1H, m) δC 73.3, δH 3.71 (1H, m) δC 72.2, δH 3.70 (1H, overlapped) δC 74.5, δH 3.81
(1H, overlapped) δC 71.5, and one methoxy group appeared at δH 3.63 (1H, s) δC 60.6,
suggesting the characteristic core structure for a cyclitol, a cyclic polyol, (+)-pinitol unit that
was previously isolated from T. indica bark [21]. NMR data also showed five oxymethine
groups at δH 5.14 (1H, d, J = 3.5) δC 93.5, δH 3.81 (1H, overlapped) δC 71.4, δH 4.06 (1H,
overlapped) δC 77.2, δH 3.81 (1H, overlapped) δC 69.1, δH 3.81 (1H, overlapped) δC 71.6, and
one oxymethylene group at δH 3.62, 4.04 (2H, m) δC 64.0, suggesting the characteristic core
structure for α-D-glucopyranosyl unit [19,59–61]. NMR data also showed five oxymethine
groups at δH 4.51 (1H, d, J = 8) δC 97.7, δH 3.62 (1H, overlapped) δC 73.8, δH 3.16 (1H, t) δC
76.3, δH 3.87 (1H, overlapped) δC 70.8, δH 3.35 (1H, overlapped) δC 77.5, and one oxymethy-
lene group at δH 3.81, 4.04 (2H, m) δC 62.4, suggesting the characteristic core structure for
β-D-glucopyranosyl unit [60,62]. NMR data also showed three oxymethine groups at δH
3.35 (1H, overlapped) δC 77.6, δH 3.31 (1H, m) δC 71.2, δH 3.78 (1H, overlapped) δC 82.7,
two oxymethylene groups at δH 3.50, 3.69 (2H, m) δC 65.5, δH 3.51, 4.04 (2H, m) δC 64.3,
and one quaternary carbon appeared at δC 99.0, suggesting the characteristic core structure
for β-D-fructofuranosyl unit [63]. The Heteronuclear Multiple Bond Correlation (HMBC)
experiment (Figure S4) showed the 3J-HMBC correlation of the proton H-1′ δH 5.14 (δC
93.5) with CH-3 (δC 73.3), confirming the connections of the (+)-pinitol moiety at C-1′ of the
α-D-glucopyranosyl moiety (Figures 1 and 2). Additionally, HMBC showed 3J-HMBC corre-
lation of the proton H-1′′ δH 4.51 (δC 97.7) with CH-3′ (δC 77.2), confirming the connections
of β-D-glucopyranosyl moiety at C-3′ of the α-D-glucopyranosyl moiety. Moreover, HMBC,
showed 3J-HMBC correlation of the proton H-6′ δH 3.62, 4.04 (δC 64.0) with CH-2′′′ (δC 99.0),
confirming the connections of β-D-fructofuranosyl moiety at C-6′ of the α-D-glucopyranosyl
moiety. Accordingly, compound 1 identified as 3-O-[[3′-O-[β-D-glucopyranosyl-(1′′-3′)]-[6′-
O-[β-D-fructofuranosyl–(1′′′-6′)]-α-D-glucopyranosyl]-(+)-pinitol (Figures 1 and 2).

3.2. Behavioral Assessment Using the T-Maze Test

As shown in Figure 3, our findings showed a significant (p < 0.001) increase in time
(s) taken by animals to reach food during the induction stage in the AD-induced group,
25.31 ± 1.78 s, compared to the NC group, while the prophylactic ingestion of (+)-pinitol
glycoside showed a notable (p < 0.001) decrease in time for rats to reach their food during
the induction stage, 21.98 ± 1.92 s, compared to the AD-induced group. Interestingly, at
the end of the experiment, the AD-induced group showed significant elevation in time
to 28.06 ± 2.22 s compared to the NC group, while the (+)-pinitol glycoside-prophylactic
and (+)-pinitol glycoside-treated groups showed a notable (p < 0.001) decrease in time,
18.45 ± 0.68 s and 18.66 ± 0.94 s, respectively, compared to the AD-induced group.
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Figure 3. Prophylactic and therapeutic effect of (+)-pinitol glycoside on time spent in T-maze by
different animals. Data represent mean ± SD (n = 8). Significant difference was analyzed by the
one-way ANOVA test followed by the post hoc Dunnett test, where * indicates p < 0.001, compared to
the AD-induced group.

3.3. Biochemical Analysis

TAO, serum AChE, and brain AChE levels were evaluated in the different groups
to examine the prophylactic and treatment activity of (+)-pinitol glycoside on the AD-
induced groups. As shown in Figure 4, TAO, brain AChE, and serum AChE levels
were significantly (p < 0.001) elevated in the AD-induced groups to 1.64 ± 0.09 mmol
Equiv/l, 56.41 ± 5.21 U/mL, and 70.42 ± 6.83 U/mL, respectively, compared to the NC
group. Prophylactic ingestion of (+)-pinitol glycoside lowered (p < 0.001) serum TAO,
brain AChE, and serum AChE to 0.71 ± 0.06 mmol Equiv/l, 30.21 ± 0.8 U/mL, and
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34.76 ± 2.31 U/mL, respectively, compared to the AD-induced group. Additionally, treat-
ment with (+)-pinitol glycoside showed notable (p < 0.001) inhibition to 1.09 ± 0.11 mmol
Equiv/l, 42.52 ± 4.87 U/mL, and 38.74 ± 2.81 U/mL for TAO, brain AChE, and serum
AChE, respectively.
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Figure 4. Prophylactic and therapeutic effect of (+)-pinitol glycoside on serum TAO (A), serum AChE
activity (B), and brain AChE (C) activity in the different groups. Data represent mean ± SD (n = 8).
Significant difference was analyzed by the one-way ANOVA test followed by the post hoc Dunnett
test, where * indicates p < 0.001, compared to the AD-induced group.

3.4. Evaluation of Oxidative Markers

Serum GPX, SOD, and MDA levels were examined to evaluate the oxidative stress
status during prophylaxis and treatment with (+)-pinitol glycoside in AD-induced rats. As
shown in Figure 5A, B, GPX and SOD were notably (p < 0.001) decreased in the AD-induced
group, compared to the NC group. During (+)-pinitol glycoside prophylaxis and treatment,
serum levels of GPX and SOD were significantly (p < 0.001) elevated, compared to the AD-
induced group. Regarding MDA levels, the AD-induced group showed a notable (p < 0.001)
increase in their serum levels, compared to the NC group. However, the prophylactic and
treatment ingestion of (+)-pinitol glycoside showed inhibition (p < 0.001) in MDA levels.
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Figure 5. Prophylactic and therapeutic effect of (+)-pinitol glycoside on serum GPX (A), SOD (B),
and MDA (C) in the different groups. Data represent mean ± SD (n = 8). Significant difference
was analyzed by the one-way ANOVA test followed by the post hoc Dunnett test, where * indicates
p < 0.001, compared to the AD-induced-group.

3.5. Evaluation of Tau and Amyloid Peptide

Tau protein and β amyloid peptide were evaluated in the present study to examine
the prophylactic and treatment activity of (+)-pinitol glycoside on the AD-induced groups.
As shown in Figure 6, tau protein level was calculated as the ratio of phosphorylated to
total tau. Tau and β amyloid peptide protein levels were notably (p < 0.001) elevated in
the AD-induced groups, while showing a significant (p < 0.001) decrease in the (+)-pinitol
glycoside-prophylactic and treated groups.
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Figure 6. Brain tissue levels of tau (phosphorylated/total) (A) and β amyloid peptide proteins (B). 
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Figure 6. Brain tissue levels of tau (phosphorylated/total) (A) and β amyloid peptide proteins (B).
Data represent mean ± SD (n = 8). Significant difference was analyzed by the one-way ANOVA test
followed by the post hoc Dunnett test, where * indicates p < 0.001, compared to the AD-induced group.

3.6. In Silico-Based Study
3.6.1. PPI Network of the Predicted Targets and KEGG-Based Enrichment Analysis

To identify all human-based proteins associated with Alzheimer’s disease, we searched
for them in the Toxicogenomics (https://ctdbase.org/, accessed on 20 March 2022) and
the GeneCards databases (https://www.genecards.org/, accessed on 20 March 2022) in
addition to the previously published literature. We used the Cytoscape software to construct
a protein–protein interaction (PPI) network among the retrieved 83 proteins found in the
literature and the databases to have direct links to human Alzheimer’s disease (Table S1).

In Figure 7, we can see that the generated PPI network had many connections, with
256 edges connecting 80 nodes and an average node degree of 6.4 and a local clustering
coefficient of 0.42. Proteins and/or genes with high degrees of interaction are usually the
most important and relevant molecular targets (i.e., hub proteins or genes) in a particular
network, and hence, targeting such proteins in Alzheimer’s disease might improve the

https://ctdbase.org/
https://www.genecards.org/
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likelihood for developing successful therapeutic strategies. As a result, we highlighted the
top 13% (11 proteins) of the most heavily interacted molecular targets (i.e., hub proteins)
ranked by their degree value (Figure 7B,C).
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Figure 7. (A) Human Alzheimer’s disease PPI network. This network consists of 80 nodes and
256 edges with an average node degree of 6.4. In this network, the 83 Alzheimer-related proteins
collected were clustered into five clusters according to their signaling pathways: blue nodes are
for the enzymatic degradation of dopamine by monoamine oxidase and by COMT; green nodes
are involved in the signaling by receptor tyrosine kinases; red nodes are for proteins involved in
the amyloid fiber formation; yellow nodes are involved in the interleukin-10 signaling; cyan nodes
are involved in the degradation of the extracellular matrix. (B) Human Alzheimer’s disease PPI
network showing the top-interacting nodes (13.25% of all interacting nodes, i.e., hub proteins, red
nodes). (C): The top 13.25% interacting-nodes (i.e., hub nodes arranged by their degree value). Green
arrows represent the proteins predicted as probable targets for the anti-Alzheimer natural products
investigated in the presented study. The thickness of the lines (i.e., edges) represents the degree of
confidence (i.e., the strength of data support).

Additionally, we classified the proteins in the present network according to their
involvement in the different signaling pathways related to the disease. This protein enrich-
ment analysis was carried out according to the KEGG database (https://www.genome.jp/
kegg/pathway.html, accessed on 20 March 2022). As shown in Figure 7A, the retrieved
Alzheimer’s disease-related proteins were clustered into five groups according to their sig-
naling pathways involved in the pathogenesis and/or the pathophysiology of the disease:
(i) the enzymatic degradation of dopamine by monoamine oxidase and by COMT; (ii) the
signaling mediated by receptor tyrosine kinases; (iii) the amyloid fiber formation; (iv) the
interleukin-10 signaling pathway; and (v) the degradation of the extracellular matrix.

Taken together, the present Alzheimer’s disease PPI network provided a brief outline
of the interacting proteins and the signaling pathways associated with them, indicating the
key proteins that can be considered critical to the disease development, and hence, good
targets for future drug development.

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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3.6.2. Prediction of AD Target Proteins

In order to outline its anti-Alzheimer potential, compound 1 was subjected to a number
of in silico-based experiments. First, we suggested a number of targets (82 targets, Table S1)
relevant to Alzheimer disease using Gene Cards and KEGG [64]. Subsequently, the modeled
structure of compound 1 was submitted to PharmMapper Prediction software to reveal its
probable correlation with these suggested targets [65]. We set a fit score of 1 as the cutoff
for the protein to be considered as a probable target for compound 1.

From the 82 protein targets that were suggested to be highly relevant to AD, 11 proteins
were predicted as potential targets for compound 1 (Table S2). Three of these predicted
targets (i.e., APP, BACE1, and MAPT) were found to be highly interacting proteins (i.e., hub
proteins) in the constructed Alzheimer’s disease PPI network (Figure 7B,C).

To refine these pharmacophore-based preliminary virtual screenings, we carried out
molecular docking and MD simulation experiments for these predicted targets in association
with compound 1. Proteins that received docking scores <−7 kcal/mol with compound 1,
and their calculated absolute binding free energies (∆Gbinding) were also <−7 kcal/mol,
were considered as targets for compound 1. Accordingly, only β-secretase (BACE1) and
acetylcholine esterase (ACHE) were considered as potential targets for compound 1 (Table S2).

3.6.3. Analysis of Possible Molecular Mechanisms

In order to investigate how these predicted targets interact with each other and
what is (are) the key target(s) in AD pathogenesis, we constructed a sub-protein–protein
interactions (PPI) network between these predicted targets (Table S2, Figure 8). The sub-PPI
analysis revealed that β-amyloid (APP) and acetylcholine esterase (ACHE) showed the
most connections among the other 11 proteins, and this finding is highly consistent with
the many reports that have described cholinergic activity and β-amyloid aggregation as
a hallmark in AD pathogenesis [66]. β-secretase (BACE1) is the key hydrolytic enzyme
responsible for the formation of APP [67], and hence, inhibition of such enzyme can lead
eventually to suppress the most important protein in our PPI analysis (Figure 8).
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Figure 8. (A) PPI network (p < 8 × 10−16). Network nodes represent predicted protein targets, and
the edges represent protein–protein interactions. The size of nodes represents the connectivity of each
protein: the larger the node size, the greater its connectivity to other nodes. Orange-edged nodes
represent the protein targets that received the highest scores in terms of their affinity in binding with
compound 1. The green bold arrow between BACE1 and APP indicates that BACE1 is the main
catalytic enzyme responsible for the production of APP. (B) CPI network represents the interactions
between compound 1 and its predicted protein targets by PharmMapper (i.e., dotted edges). Thick
solid bold edges represent the interactions (i.e., dockings) with targets (green nodes) that were
validated by MDS-based experiments.
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3.6.4. Binding Mode Analysis

Further looking into the binding modes of compound 1 inside the active sites of β-
secretase (PDB ID: 3ixj) [68] and acetylcholine esterase (PDB ID: 1qti) [69] revealed that
the structure of compound 1 was able to achieve molecular interactions comparable with
that of the co-crystallized ligands (Figure 9). In regard to acetylcholine esterase, compound
1 shared two H-bonds with the co-crystallized ligand, i.e., TRP-286 and TYR-341. In
addition, it formed four extra H-bonds with SER-293, PHE-295, TYR-72, and THR-75
(Figure 9A). Fifty nanosecond-long MD simulations revealed that both compound 1 and
the co-crystallized ligand were able to establish stable bindings inside the enzyme’s active
site with low fluctuations and an average RMSD of ~1.6 Å (Figure 9C).
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Figure 9. (A,B) Binding modes of compound 1 (brick red-colored structure) inside the active sites
of acetylcholine esterase (PDB ID: 1qti) and β-secretase (PDB ID: 3ixj) in alignment with the co-
crystallized inhibitor of each enzyme (cyan and blue structures, respectively). (C,D) RMSDs of
compound 1 in comparison with the co-crystallized inhibitors inside the active sites of acetylcholine
esterase and β-secretase during the course of the 50 ns-long MD simulation.

On the other hand, compound 1 was highly interacted inside β-secretase’s active site
through H-bonding, where it was partially aligned with the enzyme’s co-crystallized ligand
(Figure 5B). Compound 1 shared six H-bonding interactions with the co-crystallized ligand,
i.e., ASP-80, GLY-82, THR-120, GLN-121, TYR-246, and GLY-278. Upon 50 ns-long MD
simulations, compound 1’s stability inside the enzyme’s active site was superior to that of
the co-crystallized ligand. (Average RMSD = 1.5 Å and 2.1 Å, respectively).

It is worth noting that despite the poor drug-likeness properties of compound 1, being
a highly hydrophilic compound, it can be absorbed from GIT [70] and also transported
via specific carriers across the BBB [71]. The therapeutic potential via the oral route has
been proven for similar oligosaccharides, e.g., sodium oligomannate that was authorized
by the National Medical Products Administration (NMPA) of China in November 2019 for
treating mild to moderate AD [71].

4. Discussion

Phytochemical investigation of tamarind pulp n-butanol fraction showed it to contain
only one new (+)-pinitol glycoside compound 1 (25% w/w); (+)-pinitol was reported to
have a long history as an anti-Alzheimer agent [23,24,72].

Figure 3 shows the study’s findings. The results of the behavioral tests are consistent
with earlier findings that showed AlCl3-neurointoxicated rats took longer to capture food



Metabolites 2023, 13, 732 14 of 19

in the T-maze than control rats, indicating decreased neurocognitive function [41]. Rats
using the (+)-pinitol glycoside compound 1 required noticeably less time to find food in the
T-maze than those using the AD-induced group, demonstrating improved cognitive ability.

Additionally, AlCl3 is reported as a cholinotoxin that provokes functional alterations
in the cholinergic, dopaminergic, and noradrenergic neurotransmission. Therefore, it has
the propensity to cause impaired cholinergic transmission by affecting the synthesis and
release of neurotransmitters [73]. Impaired cholinergic transmission occurs in two ways:
First, it occurs either due to a decline in ACh release or decreased choline acetyltransferase
activity, which results in the scarcity of ACh. Second, elevated AChE activity further adds
to the scarcity of ACh at the synapse by accelerating the decomposition of available ACh;
this degradation of ACh is abolished by effective RIVA (AChE-inhibitor) [74]. Moreover,
acetyl Co-A synthesis relies on pyruvate formation through energy-dependent glycolysis,
which was also found to be altered and therefore justified the deterioration in ACh levels
and AChE activity [75]. Furthermore, AlCl3-induced oxidative disruption in membrane
fluidity/composition can also affect the membrane-bound AChE activity; thus, also corrob-
orating the decreased AChE activity [74]. Our findings demonstrated that administering
AlCl3 to AD-induced rats resulted in cholinergic impairment as evidenced by a signifi-
cant increase in cerebral serum AChE activity as compared to the control group. These
findings are consistent with Mohamd et al.’s findings from 2011 [76], which showed that
AlCl3 treatment significantly increased AChE activity in the brain relative to neurologically
normal control rats. In comparison to AD rats, (+)-pinitol glycoside compound 1 treatment
significantly reduced the brain AChE activity in AD-induced rats (Figure 4).

According to published research, the main causes of mitochondrial dysfunction-
induced intracellular damage are believed to be disruptions in antioxidant defense mech-
anisms and excessive production of reactive oxygen species (ROS) [77]. According to
the current findings (Figures 4 and 5), AlCl3 induction significantly increased the lev-
els of biomarkers for oxidative damage in brain tissue. This finding is consistent with
Aly et al. (2015) [77] declaration that the neurotoxicity associated with AlCl3 may be a
contributing factor to the elevation in lipid peroxidation. Further reports added a marked el-
evation in thiobarbituric acid reactive substances in rats brain post-AlCl3-induction, which
is related to Fe3+-carrying protein transfer bonding, hence lowering Fe2+ binding and
rising free intracellular Fe2+ that produces membrane lipids, protein peroxidation, and later
membrane destruction, although causing a loss of membrane fluidity, altering membrane
potential, elevating permeability of membrane, and disturbing the function of receptors [78].
Additionally, the current study found that the increase in MDA in AD-induced rats was
linked to the suppression of antioxidant enzymes, including SOD, GPX, and GSH, which
are involved in the elimination of ROS from brain tissue, indicating the pro-oxidant effect
of AlCl3. Instead, Sumathi et al. (2013) [78] found that exposure to AlCl3 causes changes
in the enzymatic antioxidant defense system that enhances the breakdown of neuronal
lipid. In addition, the data demonstrated a considerable drop in GSH levels in the brain
tissue of AlCl3-induced rats, which may be explained by a high level of H2O2-induced cy-
totoxicity in brain endothelial cells due to glutathione reductase inhibition [77]. Long-term
exposure to AlCl3 increases lipid peroxidation while depleting and exhausting a number
of antioxidant enzymes, which may explain the considerable reduction in brain TAO in
AlCl3-induced AD rats [77]. The decrease in axonal mitochondrial transformation, Golgi
dysfunction, and a reduction in synaptic vesicles, which lead to the release of oxidative
products such as hydroperoxide, carbonyls, and peroxyl nitrites, together with a decrease
in antioxidant enzymes and glutathione within the neurons, are additional explanations
given by Aly et al. (2018) [77]. The increased concentration of polyunsaturated fatty acids in
the brain, which readily interact with developed radicals and enable oxidative destruction
in AD-induced rats, also contributes to the high level of Fe that promotes ROS [77].

Treatment of rats with (+)-pinitol glycoside compound 1 showed their potent antioxi-
dant activities through increasing the levels of antioxidant defense system GSH, GPX, SOD,
and TAC, and reducing MDA in brain tissues and serum (Figures 4 and 5).
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The significant increase in serum amyloid-β protein and tau protein were able to
differentiate between AD-induced rats and neurologically normal controls. This agrees
with previous studies by Nayak and Yokel et al. (1999, 2002) [79,80], which demonstrated
that AlCl3 promotes the accumulation of insoluble Aβ (1–42) protein and Aβ plaque
formation. Moreover, the study performed by Pesini et al. (2019) [81] supported the
concept that the vascular system is a major player in controlling Aβ levels in the brain;
Aβ-plaques appear to be formed if their levels in brain extracellular space surpass the
transport capacity of the clearance mechanism across the blood brain barrier (BBB), or if
the vascular transport of the peptide was deteriorated and proved that increased blood
Aβ levels are an early event that precedes the onset of cognitive decline and increases
the risk of developing AD. The current significant increase in serum Aβ peptide levels in
untreated AD-induced rats indicated neuronal cytoskeleton disruption induced by AlCl3
intoxication led to abnormal accumulation of Aβ peptide in the brain, which is reflected
in its high serum level. Consequently, its clearance is considered a primary therapeutic
target for managing AD. Furthermore, tau is a neuronal microtubule-associated protein
that is primarily found in the axons [82]. In healthy brains, 2-3 tau residues are detected
as phosphorylated, while tau is significantly more phosphorylated, with nine phosphates
per molecule in AD and other cognitive illnesses [83]. Interestingly, (+)-pinitol glycoside
compound 1 showed a significant decrease in Aβ and the ph/T ratio of tau levels when
compared to AD rats, reflecting the possible role of polyols in serum Aβ peptide decrement
and clearance (Figure 6). Notably, there is no significance difference between prophylactic
or therapeutic use of (+)-pinitol glycoside compound 1 in the present study.

Network pharmacology analysis and docking-based and MD simulation-based in-
vestigations indicated the key proteins involved in AD’s pathogenesis, and putatively
identified the key proteins that can be targeted by the newly isolated (+)-pinitol glyco-
side (compound 1). Further molecular investigation in this regard will be critical to fully
understand the mode(s) of action of this compound.

5. Conclusions

In this study, the newly discovered (+)-pinitol glycoside (1) from T. indica pulp demon-
strated remarkable neuroprotective, antiapoptotic, and antiamnesic effects against AlCl3-
induced cerebral damages and cognitive decline. This action may be related to the com-
pound’s antioxidant and anti-AchE properties. A subsequent network pharmacology study
was carried out to analyze the reported molecular targets for human Alzheimer’s disease
and determine those that are most important in the pathogenesis of the disease. The po-
tential Alzehimer’s disease-related targets for compound 1 were then identified using an
in-depth in silico analysis (including molecular docking, binding free energy calculation
(∆GBinding), and molecular dynamics simulation). Future in-depth mechanistic research is
still required to support the findings of this study, which advocate the use of (+)-pinitol
glycoside as a potentially effective medication in the treatment of AD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13060732/s1, Table S1. The information of 82 targets re-
lated to Alzheimer’s disease, Table S2. Proteins predicted to be potential targets for compound 1,
Figure S1. 1H NMR spectrum of compound 1 measured in CD3OD-d4 at 400 MHz, Figure S2. DEPT-Q
NMR spectrum of compound 1 measured in CD3OD-d4 at 100 MHz, Figure S3. HSQC spectrum
of compound 1 measured in CD3OD-d4, Figure S4. HMBC spectrum of compound 1 measured
in CD3OD-d4.
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