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Abstract: Zingiberaceae plants are widely used in the food and pharmaceutical industries; how-
ever, research on the chemical composition and interspecific differences in the metabolome and
volatilome of Zingiberaceae plants is still limited. In this study, seven species of Zingiberaceae
plants were selected, including Curcuma longa L., Zingiber officinale Rosc., Alpinia officinarum Hance,
Alpinia tonkinensis Gagnep, Amomum tsaoko Crevost et Lemarie, Alpinia hainanensis K. Schum. and
Amomum villosum Lour. Myristica fragrans Houtt. was also selected due to its flavor being similar to
that of the Zingiberaceae plant. The metabolome and volatilome of selected plants were profiled
by widely targeted approaches; 542 volatiles and 738 non-volatile metabolites were detected, and
β-myrcene, α-phellandrene and α-cadinene were detected in all the selected plants, while chami-
gren, thymol, perilla, acetocinnamone and cis-α-bisabolene were exclusively detected in certain
Zingiberaceae plants. Differential analysis showed that some terpenoids, such as cadalene, cadalene-
1,3,5-triene, cadalene-1,3,8-triene and (E)-β-farnesene, and some lipids, including palmitic acid,
linoleic acid and oleic acid were amongst the most varied compounds in Zingiberaceae plants. In
conclusion, this study provided comprehensive metabolome and volatilome profiles for Zingiber-
aceae plants and revealed the metabolic differences between these plants. The results of this study
could be used as a guide for the nutrition and flavor improvement of Zingiberaceae plants.

Keywords: Zingiberaceae plants; widely targeted method; volatilome; metabolome; terpenoids; lipids

1. Introduction

Zingiberaceae is a group of monocotyledonous plants that are widely distributed in
south and southeast Asia, comprising 53 genera and around 1300 species [1]. Alpinia is the
largest and most widely distributed genus in the family, with a total of 230 species [2]. Amomum
Roxb. is the second largest genus after Alpinia, containing approximately 180 species [3]. In
addition, the Zingiber genus is also an important genus in the family of Zingiberaceae,
including about 141 species [4]. Zingiberaceae plants are extensively used in the food
industry [5,6], and their rhizomes are known for their characteristic aromas; the rhizome
of Curcuma longa and Etlingera elatior are widely used as food flavoring ingredients in
cooking [1,7]. Moreover, the seeds of some Zingiberaceae species can be used as spices,
such as the seeds of Amomum villosum, which have a “grassy” odorant frequently used
in meat dishes [8]. In addition, Zingiberaceae plants possess significant medicinal value
and have been reported for their anticancer, antioxidative, anti-inflammatory, antiplatelet,
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anti-ulcer, anticonvulsive and analgesic effects [9]. Therefore, Zingiberaceae plants are also
widely used in traditional medicine and the pharmaceutical industry [10]. The rhizomes
of some Zingiberaceae plants are frequently used in traditional Chinese medicine: the
rhizomes of Curcuma longa were used as a household remedy for sprains and swellings [3],
and the rhizomes of Zingiber officinale have anti-inflammatory, antioxidant, analgesic and
cardiovascular health promoting activities [11]. Moreover, many Zingiberaceae seeds are
utilized to treat various ailments; the seeds of Amomum tsaoko, for instance, are commonly
used to boost immunity and the treatment of bloating, vomiting and malaria [12].

The metabolites of Zingiberaceae plants determine their flavor and medical properties.
For instance, gingerol is well-known to give Zingiberaceae plants a pungent taste, while
volatiles such as geranial, eucalyptol, β-linalool and bornyl acetate contribute to the unique
aroma of Zingiberaceae plants [13]. On the other hand, curcumin is the main compound
in the rhizome of Curcuma longa and is anti-inflammatory, antioxidant, antimutagenic, an-
tidiabetic, antibacterial, hepatoprotective, expectorant and anticancerous [14]. In addition,
it was discovered that the curcuminoids isolated from Zingiber cassumunar Roxb could
prevent the H2O2-induced decrease in cell viability of thymocytes and protect living cells
suffering from H2O2-induced oxidative stress [15]. The leaves of Etlingera elatior were found
to have a high content of antioxidative phytochemicals such as p-hydroxybenzoic acid,
ferulic acid and syringic acid, which could reduce the risk of cancer, cardiovascular disease
and many other diseases [16]. The diarylheptanoids from Amomum muricarpum seeds
were reported to act as phytoestrogens, anti-tumor promoters, antiplatelet aggregation,
antioxidant, anti-influenza and anti-inflammatory compounds [17]. Therefore, analyzing
the metabolite composition and variations among different species of Zingiberaceae plants
is of great significance for their applications and breeding improvement.

Currently, there have been several studies using metabolomics to analyze the metabo-
lite composition and variations of Zingiberaceae plants. A recent study reported the
volatilome profiling of ten species of Zingiberaceae; a total of 162 compounds were iden-
tified, and most of the identified volatiles were monoterpenes and sesquiterpenes, in
which (E)-labda-8(17),12-diene-15,16-dial, n-hexadecanoic acid, 4-methoxy-6-phenethyl-
2H-pyran-2-one and L-β-pinene were found in high concentrations [18]. The authors
also noted that monoterpenes and sesquiterpenes were significantly varied among Zin-
giberaceae plants. Another study researched the chemical composition of the essential
oils of four Zingiberaceae species [19]. A total of 87 chemical components were detected,
and the major compounds were α-terpinyl acetate, β-turmerone, α-zingiberene and 1,8-
cineol. Further analysis revealed that Elettaria cardamomum L. Maton rhizome contains
the highest content of α-terpinyl acetate, which occurs in low concentrations in Curcuma
Longa, Zingiber Officinale and Alpinia Officinarum. In addition, by using liquid chromatog-
raphy hyphenated with high-resolution tandem mass spectrometry, researchers studied
the metabolome of the seeds of Aframomum melegueta K. Schum [20]. In total, 25 diarylhep-
tanoids, five gingerol derivatives and nine phenolic/organic acids were annotated, and the
antimicrobial, antioxidant and enzyme inhibitory effects of these compounds were investi-
gated as well. Asamenew et al. reported the profiling of phenolic compounds in Zingiber
officinale and Kaempferia parviflora Wall. [21]. They found that gingerol-related phenolic
acid was detected only in Zingiber officinale, while methoxyflavones were identified exclu-
sively in Kaempferia parviflora. The major constituents among 18 phenolic acids detected
from Zingiber officinale were 6-gingerol, 8-gingerol, 10-gingerol, 1-dehydro-6-gingerdione
and diacetoxy-8-gingerdiol; 3,5,7,3′,4′-pentamethoxyflavone and 5,7,4′-trimethoxyflavone
were confirmed as predominant constituents among 13 methoxyflavones from Kaempferia
parviflora. Nonetheless, further analysis is still required to fully dissect the metabolite
composition and variations among different species of Zingiberaceae plants.

At present, non-targeted metabolomics and volatilomics are the most commonly
used methods to profile plants' metabolome and volatilome [22,23]. The non-targeted
method focuses on the analysis of all the detectable metabolites in a sample, including
chemical unknowns. However, the low sensitivity of non-targeted methods hinders their
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detection and annotation coverage [24]. Widely targeted metabolomics technology is
an effective strategy to combine the advantages of high sensitivity that are conferred by
targeted profiling and the wide coverage rate achieved by non-targeted analysis [25]. We
previously developed a liquid chromatography-mass spectrometry (LC-MS)-based widely
targeted metabolomics method and used it to quantify metabolites in crops and fruits,
including those with low-intensity signals [26–28]. Additionally, our group developed a
gas chromatography-mass spectrometry (GC-MS)-based volatilomics method to profile
the volatilomes of different rice accessions [29]. Due to the increased sensitivity of widely
targeted volatilome technology, the number of annotated volatiles increased from 43 to
132 in rice grain. Therefore, we could adopt widely targeted methods to obtain a more
comprehensive metabolic profile of Zingiberaceae plants.

In this study, seven species of Zingiberaceae plants, including Curcuma longa (CL),
Zingiber officinale (ZO), Alpinia officinarum (AO), Alpinia tonkinensis (ATG), Amomum tsaoko
(AT), Alpinia hainanensis (AH), Amomum villosum (AV), and Myristica fragrans Houtt. (MF)
were selected, and their metabolome and volatilome were profiled by widely targeted
metabolomics and volatilomics methods. Although Myristica fragrans does not belong to
the Zingiberaceae family, it was selected in this study because it is also rich in monoterpenes
and sesquiterpenes and has a similar flavor to some Zingiberaceae plants [30]. Thanks to the
high sensitivity, high detection and annotation coverage of the widely targeted methods,
we obtained more comprehensive volatilome and metabolite profiles of Zingiberaceae
plants. Moreover, we revealed the metabolic differences within the Zingiberaceae species
and found differences in the accumulation of geraniol and geranial in different genera of
Zingiberaceae, which provides a guide for the application of Zingiberaceae plants in the
food and pharmaceutical industries.

2. Materials and Methods
2.1. Plant Material

To study the metabolites composition and difference in Zingiberaceae plants, we
selected seven Zingiberaceae species, including rhizomes of Curcuma longa L. (CL), Zingiber
officinale Rosc. (ZO) and Alpinia officinarum Hance (AO), and seeds of Alpinia tonkinensis
Gagnep (ATG), Amomum tsaoko Crevost et Lemarie (AT), Alpinia hainanensis K. Schum. (AH)
and Amomum villosum Lour (AV), as well as seeds of Myristica fragrans Houtt. (MF). These
Zingiberaceae plants were purchased from local stores in Haikou.

2.2. Chemicals

The hexane was acquired from Fisher Scientific (FL, NJ, USA). Calcium chloride
dihydrate, sodium chloride, pyridine and EDTA were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Chromatographic-grade acetonitrile, acetic acid and
methanol were purchased from Merck (Darmstadt, Germany). N-alkanes (C8-C20) and
all standards were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China) and Sigma-Aldrich (St. Louis, MO, USA).

2.3. Sample Preparation

Two biological replicates were collected for each species. The samples were ground
into powder using a grinder machine (MM400, Retsch) with steel balls at 28 Hz for 1 min
or more. For volatilome profiling, 0.35 g of the resulting powder was transferred into a
22 mL glass headspace vial, incubated for 10 min at 37 ◦C, and then 0.7 g of CaCl2·2H2O
and 0.7 mL of a 100 mM EDTA-NaOH solution (pH 7.5) were added, gently mixed and
sonicated for 5 min. Two repetitions were performed for each species. Samples were
pre-heated for 10 min at 50 ◦C and extracted for 20 min at 50 ◦C. To perform metabolomics
analysis, 0.05–0.1 g of sample powder was suspended in a 70% methanol-water solution in
a ratio of 500–1000 mL. Next, the samples were extracted by ultrasonic wave for 10 min at
50 Hz for a total of three times [31]. At the end of each time, vortex vibration and mixing
were required.
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2.4. GC-MS Analysis

The volatilomes were profiled by gas chromatography (7890A GC, Agilent Technolo-
gies, Santa Clara, CA, USA) with an Agilent 7000D mass selective detector. An HP-5
MS capillary column (30 m × 0.25 mm i.d, 0.25 µm film thickness, Agilent Technologies)
was used to separate compounds. The temperature program was as follows: the initial
column temperature was 40 ◦C, held for 3 min, with a temperature increase of 2 ◦C/min
temperature of 160 ◦C, and a temperature increase of 50 ◦C/min to a final temperature
of 300 ◦C after reaching 160 ◦C, followed by a 3 min preservation at 300 ◦C. The injection
temperature was 270 ◦C in splitless mode with a 0.75 mm i.d. inlet liner tube (Agilent
Technologies, Santa Clara, CA, USA). The flow rate was He 1.0 mL/min (99.999%). Volatiles
were first detected by full scan mode; then, these signals were converted to multiple reac-
tion monitoring (MRM) transitions and integrated into the MS2T library, according to a
previous report [29]. A fiber with a usage count of ~70 was used to perform volatilomics
analysis to ensure method reproducibility.

2.5. LC-MS Analysis

Non-targeted metabolic profiling analyses were performed with Q Exactive Focus
Orbitrap LC-MS/MS (Thermo Scientific, Waltham, MA, USA). Scanning mass ranged
from m/z 100–1000 with an accumulation time of 0.1 s. The MRM mode with QTRAP
6500 + LC-MS/MS (Shimadzu, Kyoto, Japan) was used for targeted metabolome analyses.
The detection window was set to 80 s, and the targeted scanning time was 1.5 s. The
chromatographic column was a C18 column (Shim-pack GLSS C18, 1.9 UM, 2.1 × 100,
Shimadzu). Mobile phase A was 0.04% acetic acid-water solution, and mobile phase B was
0.04% acetic acid-methanol solution. The qualitative and quantitative chromatographic
conditions were consistent.

2.6. Qualitative and Quantitative Analysis of Metabolomics Data

In the volatilomics analysis, the C8-C20 alkane standard mix solution was measured
using the same temperature program to calculate the retention index (RI). Signals were
deconvoluted by MS-DIAL (Version 4.70) and identified by comparing the deconvoluted
mass spectra and RI with those reported in the NIST library (Version 2.3) [32]. The peak
areas were integrated using the Agilent MassHunter Quantitative Analysis software and
manually adjusted. The metabolomics data were processed with compound discoverer (CD)
3.1 software to obtain the mass-to-charge ratio, retention time, and MS/MS2 information of
all detected substances. Then, the detected signals were automatically matched through the
internally established reference libraries of chemical standard entries of software to predict
and identify the metabolite information. Commercially available standards were purchased
and analyzed to confirm the identification results. The peak areas were integrated using
the MultiQuant™ MD software and manually adjusted.

2.7. Statistical Data Analysis

The phylogeny analysis was conducted by the National Center for Biotechnology
Information (NCBI) [33] and was drawn using iTol (Interactive Tree of Life, https://itol.
embl.de/ (accessed on 3 March 2023)). The pie charts of metabolite types were drawn
using Origin 2023 (http://www.uone-tech.cn/Origin.html (accessed on 12 April 2023)).
Venn diagram and principal component analysis (PCA) were performed using Sanger
Box (http://sangerbox.com/ (accessed on 15 April 2023)). TBtools was used to normalize
the relative intensities of metabolites (transformed the intensity value by log2), draw the
heatmap and perform the clustering analysis of metabolites [34]. The accumulation of
geraniol, geranial, linalool and myrcene in the monoterpene pathway of Zingiberaceae
plants was analyzed through the Kyoto Encyclopedia of Genes and Genomes (KEGG) [35].

https://itol.embl.de/
https://itol.embl.de/
http://www.uone-tech.cn/Origin.html
http://sangerbox.com/
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3. Results
3.1. Phylogeny Analysis of Zingiberaceae Plants

The phylogeny analysis indicated that the selected Zingiberaceae plants belonged to
five major genera: ATG, AH and AO belong to the Alpinia genus, while CL, AV, AT and ZO
belong to the Curcuma, AmomumL, Lanxangia and Zingiber genera, respectively. In addition,
MF belongs to the Myristicaceae Myristica genus (Figure 1). Next, a metabolomics analysis
was conducted to investigate the metabolic profiles and differences in Zingiberaceae plants.
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Figure 1. Phylogenetic tree analysis of seven species of Zingiberaceae plants.

3.2. Volatilome and Metabolome Profiling of Zingiberaceae Plants

The volatilome and metabolome of Zingiberaceae plants were profiled (Supplementary
Tables S1 and S2). A total of 542 volatile compounds were detected, including 93 sesquiter-
penes, 83 monoterpenes, 37 benzene derivatives, 30 esters, 30 aldehydes, 28 alcohols,
20 ketones, 12 acids, 10 furans, 6 alkanes and 193 other volatiles (Figure 2A). Additionally,
738 metabolites were detected, including 342 lipids, 102 amino acids and their derivatives,
91 vitamins and their derivatives, 86 flavonoids, 58 organic acids, 27 terpenoids, 14 sugars,
10 alkaloids and 8 polyphenols (Figure 2B). Overall, terpenoids and lipids are the main com-
ponents of Zingiberaceae plants; zingiberene, eucalyptol, α-curcumene and γ-curcumen
have the highest content in terpenoids, and the highest content of lipids compounds are
LysoPC 16:0, LysoPC 18:1, LysoPC 18:2 and LysoPC 18:3.
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Figure 2. Classification of metabolome and volatilome data of Zingiberaceae plants. (A) Volatilome
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3.3. Venn Diagram Analysis

Based on the volatilome and metabolome profiles, we analyzed the metabolic similari-
ties and differences of Zingiberaceae plants. Thirteen volatiles were detected in all selected
Zingiberaceae plants, including β-myrcene, α-phellandrene and α-cadinene (Figure 3A). In
addition, 57 volatiles, including chamigren, thymol and perilla, were exclusively found in
AV, while 55 volatiles, including acetocinnamone and cis-α-bisabolene, were detected only
in AT. Metabolomics analysis showed that 255 metabolites were detected in all selected
Zingiberaceae plants, including LysoPC 18:3, LysoPC 18:1, stearic acid and palmitoleic
acid (Figure 3B). Thirteen metabolites, such as 1-monopalmitin and 4-ketolutein, were
exclusively measured in AT. In summary, AV and AT were found to have a greater diversity
of volatiles and non-volatile metabolites in Zingiberaceae plants, respectively.
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3.4. Principal Component Analysis

To obtain a deep insight into the metabolic composition and differences of Zingib-
eraceae plants, we conducted a principal component analysis (PCA). The first principal
component (PC1) separated the Zingiberaceae plants in both plots, and PC1 accounted for
19.05% and 22.25% of the total variance in volatilome and metabolome data, respectively,
which indicated that there might be significant metabolic differences among Zingiberaceae
plants (Figure 4A,C). In addition, AV and AT were distinctly separated from other species in
the PCA plot of volatilome data. AV, MF, CL and AO were distinctly separated from other
species in the PCA plot of metabolome data, indicating the distinctively volatilome profile
of AV and AT and the characteristic metabolome profile of AV, MF, CL and AO. Then, we
calculated the loading scores to screen the differential metabolites in Zingiberaceae plants.
The results revealed that in the volatilome data, cadalene, cadalene-1,3,5-triene, cadalene-
1,3,8-triene, (E)-β-farnesene, elemol, geraniol and zingiberene have the highest absolute
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value of loading score, while in the metabolome data, γ-aminobutyric acid, L-isoleucine,
niacin, arginine, pyridoxine, palmitic acid, linoleic acid and oleic acid have the highest
absolute value of loading score (Figure 4B,D), which showed that these compounds might
be responsible for the discrimination of Zingiberaceae plants.
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3.5. Cluster Analysis

Venn diagram analysis and PCA revealed that amino acids, lipids, vitamins and
terpenoids were significantly varied among Zingiberaceaes plants. Therefore, we conducted
a cluster analysis on these metabolites (Figure 5). Based on the content of amino acids,
lipids and vitamins, the selected Zingiberaceae plants can be divided into two clusters;
the clustering of AV, AH and ZO was consistent with their distribution in PC1 of the
metabolome PCA plot. A comparative analysis of metabolites in Zingiberaceae plants
revealed that AV, AH and ZO were rich in amino acids, including arginine, leucine, L-
isoleucine, tyrosine and γ-aminobutyrate. In addition, AV accumulated the most Lysopc
18:1, Lysopc 18:3, niacin and nicotinamide. ATG and CL were rich in lipids, such as oleic
acid, palmitic acid, palmitoleic acid and stearic acid. AO produced more alanine and linoleic
acid, and CL provided high content of linoleic acid and nicotinamide ribonucleotide.
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Clustering analysis of terpenoids in Zingiberaceae plants (Figure 6A,B) revealed
that AV accumulated monoterpenes, including geranial, isoterpinolene, linalool, thymol,
β-terpinen, myrtenol and β-gurjunene, and sesquiterpenes, such as chamigren and α-
vetivone. AT was rich in α-terpinene, γ-terpinene, α-phellandrene, β-myrcene and other
monoterpenes, as well as guaiol, cis-α-bisabolene, α-farnesene, axenol and some other
sesquiterpenes. AO produced more monoterpenes, such as camphene hydrate and isobor-
neol, and more sesquiterpenes, including caryophyllene, γ-cadinene, cyclosativene, α-
cadinene, β-eudesmene and α-epi-muurolol. ATG provided a high content of geranial,
cadalene, ylangene, β-elemen, E-nerolidol and α-bisabolol. ZO has a high content of
isopulegol, neral, β-phellandrene, cis-geraniol, α-citral, (Z)-α-atlantone, α-curcumene,
γ-curcumene, amorpha-4,11-diene, 1-bisabolone and curcuphenol.
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4. Discussion

The widely targeted methods enable us to obtain more comprehensive metabolome
and volatilome profiles of Zingiberaceae plants. Zingiberaceae plants contain many com-
plex volatiles, some of which are still unknown. In recent years, based on the non-targeted
volatilomics approaches, a total of 58 secondary compounds were tentatively identified in
four Malaysian Zingiber officinale Roscoe, and 130 metabolites were detected from seven
common Zingiberaceae plants [36]. In this study, by integrating MS2 spectral tag library, we
not only improved the method sensitivity but also broadened the annotation coverage and
detected and annotated more compounds compared to previous reports in Zingiberaceae
plants. In a similar study, researchers conducted a comparative metabolomic analysis
of cordyceps by widely targeted metabolomics and non-targeted metabolomics; 778 and
1449 metabolites were identified by the non-targeted metabolomics and widely targeted
metabolomics, respectively, which also demonstrated an increased annotation coverage of
the widely targeted approach [37]. Overall, the widely targeted metabolomics method is
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more efficient than methods previously used and may considerably promote the study of
plant metabolomes [38].

Monoterpenes such as linalool, geranial, geraniol and myrcene are known not only for
their flavor contributions but also for their diverse biological activities [39–41]. Geraniol,
linalool and myrcene were all generated with geranyl diphosphate as their precursor
(Figure 7). Linalool is synthesized by linalool synthase using geranyl diphosphate as a
precursor or by linalool dehydratase catalyzed myrcene [42], and myrcene is produced
from geranyl diphosphate by myrcene synthase [43]. The results showed that linalool and
myrcene are detected in all selected Zingiberaceae plants, indicating the similarity in this
pathway of the selected Zingiberaceae species. In addition, geraniol is produced under
the action of geranyl diphosphate diphosphatase and monoterpene diphosphatase; it can
also be produced by linalool under the action of geraniol isomerase [44]. Geraniol exists
in CL, ZO and MF, and geranial is the downstream product of geraniol; it is catalyzed by
geraniol dehydrogenase. Geranial also exists in AV, AT and MF. In summary, geraniol and
its downstream product, geranial, were not detected in Alpinia plants. The differences in
the accumulation of geraniol and geranial in Zingiberaceae plants may be caused by the
differences in gene expression and metabolic enzyme activities.
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Zingiberaceae is a taxonomically complex family [45]. A recent report proposed an
approach for comparing the metabolite content of plants and classifying plants by their
metabolite content [46]. Accordingly, the metabolic differences can reflect their phyloge-
netic relationships to some extent. In previous studies, AT and AV are classified into the
same genus [47]. However, a recent report considered that AT belonged to the Lanxangia
genus [48]. In this study, the obvious separation of AV and AT in the volatilome PCA plot
supports this point of view. In order to provide a metabolome-based classification of Zin-
giberaceae plants, marker metabolites are widely used to distinguish species. Researchers
studied the chemical components of Zingiberaceae plants through a volatilomics analysis,
and bornyl acetate, α-cadinol, linalool, β-myrcene, camphor, limonene, terpinolene and
borneol were selected as the potential markers for discriminating AV and Amomum villosum
Lour. var. xanthioides T. L. Wu et Senjen [3], and the major compounds found in ATG, CL,
ZO and AO were α-terpinyl acetate, β-turmerone, α-zingiberene and 1,8-cineol, respec-
tively [20]. In this study, we screened some potential markers to discriminate MF from Zin-
giberaceae plants; the content of these metabolites in MF is much higher than other selected
Zingiberaceae plants, including 3-thujene, cis-piperitol, trans-piperitol and α-terpinene.



Metabolites 2023, 13, 700 12 of 15

Bioactive compounds and nutritional compositions are differentially accumulated
in Zingiberaceae plants. Our findings showed that compared to other Zingiberaceae
plants, ZO contains the most abundant zingiberene and α-pinene. Zingiberene, a non-zinc-
dependent inhibitor of histone deacetylase inhibitors class I, was applied in trauma-related
neuropathic pain forms [49], and α-pinene has anti-inflammatory and wound healing
activity [50]. ATG provided high content of α-bisabolol, and many studies demonstrated
the pharmacological properties of α-bisabolol, including anticancer, antinociceptive, neuro-
protective, cardioprotective and antimicrobial [51]. AT had high levels of α-phellandrene,
and α-phellandrene was reported to have antinociceptive and antineoplastic properties [52].
AO produced more isoborneol and caryophyllene than other Zingiberaceae plants in our
study, and isoborneol could be used as a natural and safe antisporulating agent for commer-
cial applications to control spore infections of Aspergillus flavus; caryophyllene possesses
significant anticancer activities, affecting growth and proliferation of numerous cancer
cells [53,54]. In addition, we found AH and ZO were rich in amino acids; these amino
acids are fundamental building blocks supporting life, such as arginine, which is involved
in the biosynthesis of proteins, the host immune response, urea cycle and nitric oxide
production [55]. Zingiberaceae plants have wide biological activities, and more laboratory
investigations and product developments are needed.

5. Conclusions

This work conducted widely targeted volatilomics and metabolomics analyses of seven
Zingiberaceae plants and Myristica fragrans Houtt., and detected 542 volatiles and 738 non-
volatile metabolites. Further analysis revealed the most varied volatiles and metabolites,
found differences in the accumulation of geraniol and geranial in different genera of
Zingiberaceae, and screened some potential markers to discriminate Myristica fragrans
Houtt. from Zingiberaceae plants. Specifically, Amomum villosum Lour was observed
to have high concentrations of various amino acids, and Alpinia tonkinensis Gagnep and
Curcuma longa L. were rich in most lipids, while Zingiber officinale Rosc. contained high
contents of terpenoids, geraniol and its downstream product, geranial, were not detected
in Alpinia plants. The potential markers, which may discriminate Myristica fragrans Houtt.
from Zingiberaceae plants are 3-thujene, cis-piperitol, trans-piperitol and α-terpinene.
Overall, this research provides new insight into the chemical composition and metabolic
diversity of Zingiberaceae plants, which could be used as a guide for Zingiberaceae plants'
application and breeding improvement.
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