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Abstract: Disrupted fatty acid metabolism is one of the most important metabolic features in heart
failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results
in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess
lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current
understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake,
lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of
many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed
their contributions to the development of heart failure and highlighted potential targets that may
serve as promising new therapeutic strategies.
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1. Introduction

Heart failure is a complex clinical syndrome characterized by elevated intracardiac
pressure or inadequate cardiac output due to structural or functional cardiac abnormali-
ties [1]. It is a major cause of death in patients with heart disease. Coronary artery disease
and hypertension are the predominant factors leading to heart failure [2]. The large im-
provement in healthcare worldwide has failed to improve the five-year mortality rate of
heart failure, which remains at 52.6% [3]. Therefore, there is an urgent need to discover
new therapeutic targets for the treatment of heart failure.

A normal heart predominantly relies on fatty acid oxidation (FAO) to produce energy;
however, a failing heart is characterized by a decrease in FAO [4,5]. Fatty acids (FAs) are
carboxylic acids that contain hydrocarbon chains, ranging from 4–36 carbon atoms. Based
on the number of carbon atoms, FAs can be divided into four groups: short-chain FAs (up
to 6 carbon atoms), medium-chain FAs (8–12 carbon atoms), long-chain FAs (14–18 carbon
atoms), and very long-chain FAs (above 20 carbon atoms). The chains of FAs are either
fully saturated (do not contain double bonds) or contain one or more monounsaturated
or polyunsaturated double bonds. The most commonly occurring FAs contain an even
number of carbon atoms with lengths of 12–24 carbon atoms (Table 1). The heart prefers
to use long-chain fatty acids as oxidizing substrates to maintain normal function [6]. The
utilization of FAs requires complex metabolic processes. Alterations in the key enzymes
involved in this process result in aberrant FA metabolism, which contributes to the severity
of heart failure.

This review summarized recent knowledge regarding advances in FA metabolism
during heart failure. We discussed the function of each key enzyme involved in the
regulation of FA uptake, lipogenesis, lipolysis, and FAO in heart failure. We also examined
the transcriptional and phosphorylation regulation of FA homeostasis. Based on these
results, this is the first review to explore the potential roles of enzymes and regulatory
proteins, which might be considered in the treatment of heart failure.
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2. Fatty Acid Uptake

Cells obtain FAs via de novo lipogenesis and exogenous uptake (Figure 1). The entry of
exogenous FAs from the surrounding microenvironment into cells is facilitated by specific
transporters, including fatty acid translocase (FAT/CD36), fatty acid transport protein
family (FATPs), and heart-type fatty acid-binding proteins (H-FABP) [6].
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Figure 1. The cardiomyocytes obtain fatty acids (FAs) from exogenous uptake and de novo lipogenesis.
The entry of FAs from microenvironment needs specific transporters, including FAT/CD36, FATPs,
and H-FABP. The cellular FAs obtained from extracellular uptake or intracellular lipolysis can be
used for ATP production through fatty acid oxidation in the mitochondria. De novo lipogenesis
relies on citrate and acetate. With the help of ACLY, ACS, ACC and FASN, palmitate is ultimately
generated, which is further desaturated and elongated to form other lipid species. The transcription
factor PPARs with the integrated capacity of several enzymes in FA metabolism control the entire
system. Abbreviations: SCFA, short-chain FA; MCFA, medium-chain FA; LCFA, long-chain FA;
VLCFA, very long-chain FA; LPL, lipoprotein lipase; FAT/CD36, fatty acid translocase/cluster of
differentiation 36; FATPs, fatty acid transport proteins; H-FABP, heart-type fatty acid-binding protein;
ACS, acetyl-CoA synthetase; CPT1, carnitine acyltransferase I; ETC, electron transport chain; ATP,
adenosine triphosphate; ACLY, ATP-citrate lyase; ACC, acetyl-CoA carboxylases; MCD, malonyl-CoA
decarboxylase; FASN, fatty acid synthase; SCD, stearoyl-CoA desaturase; ATGL, adipose triglyceride
lipase; DGAT, diacylglycerol acyltransferase; HSL, hormone-sensitive lipase; MGL, monoglycerol
lipase; TAG, triacylglycerol; DAG, diacylglycerol; MAG, monoacylglycerol; PPARs, peroxisome
proliferator-activated receptors; AMPK, AMP-activated protein kinase.

2.1. Fatty Acid Translocase (FAT/CD36)

Fatty acid translocase (FAT) was discovered in rat adipocytes as an 88 kDa integral
membrane protein participating in FA transport. The primary protein sequence is 85%
homologous to glycoprotein IV (CD36) [7]. FAT/CD36 is abundantly expressed in the
heart, intestine, fat, and muscle. Several studies reported a high prevalence of FAT/CD36
deficiency in patients with dilated [8], ischemic [9], or hypertrophic cardiomyopathy with
asymmetric septal hypertrophy [10]. Clinical studies in the Japanese population show that
point mutations in FAT/CD36 (478C>T) may result in deficiency [11,12]. Similarly, patients
with heart failure have decreased FAT/CD36 and overall FA content, whereas FAT/CD36
gene expression is elevated after left ventricular assist device implantation, although the
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FA content remained unchanged [9]. These studies imply that FAT/CD36 deficiency might
be an etiology of heart failure.

Animal studies conducted over the last two decades further clarified the function of
FAT/CD36 in heart failure. The myocardial FAT/CD36 expression level correlates with the
cardiac ejection fraction in the infarcted rat heart, with a 36% reduction in the protein level
compared to sham-operated controls [13]. FAT/CD36 decreases in hypertrophic hearts in
response to pressure overload. Tamoxifen-inducible cardiomyocyte-specific CD36 knockout
mice exhibit rapid progression from compensated hypertrophy to heart failure [14]. These
phenotypes may be caused by sufficient adenosine triphosphate (ATP) production and in-
creased glycolytic flux-mediated structural remodeling [15]. However, FAT/CD36 is highly
induced in cardiac lipotoxicity models, including age-induced murine cardiomyopathy
and diabetic cardiomyopathy. FAT/CD36 deficient mice show significantly enhanced car-
diac function, with lower intramyocardial lipid levels and improved ATP production [16].
Similarly, FAT/CD36 deficient mice show reduced cardiomyocyte triacylglycerol (TAG)
accumulation and cardiac dysfunction after high-fat diet feeding [17]. These findings
strongly support that moderate levels of FAT/CD36 protect against hemodynamic stress,
whereas high expression is associated with cardiac lipotoxicity.

2.2. Fatty Acid Transport Protein Family (FATPs)

Fatty acid transport proteins facilitate the transmembrane transport of FA [18]. These
candidate proteins were firstly identified by cloning an adipocyte cDNA library in COS7
cells and exhibiting an uptake of fluorescent FA analogs. This protein was named FATP1.
FATP1 is expressed in most mammalian tissues, including the heart, brain, adipocytes, and
kidney. Cardiac-specific overexpression of FATP1 using the α-myosin heavy chain gene
promoter increases cardiomyocyte FA accumulation and stimulates FAO. However, the
heart predominantly exhibits diastolic dysfunction and a prolonged corrected QT interval
(QTc) after three months. These results confirm the role of FATP1 in FA import into the
heart [19]. Another predominant cardiac FATP is FATP6, which is over 20 times more
abundant than FATP1 in mouse heart lysates. The heart preferentially takes up palmitate
compared to oleate, and the FATP6-stable cell line has the same uptake pattern. The authors
suggest that a significant portion of FA uptake in the heart is mediated by FATP6 [20]. A
clinical study revealed that a variation in the 5′-untranslated region of the FATP6 gene
(7T>A polymorphism) is associated with features of metabolic syndrome and signs of
myocardial alteration or heart failure [21]. The protein levels of FATP6 and FATP1 decrease
in infarcted heart failure mice [13]; however, the detailed mechanism of reduced FATPs is
less clear in these animal models.

2.3. Heart-Type Fatty Acid-Binding Protein (H-FABP)

Fatty acid-binding proteins are low-molecular-weight proteins (approximately 15 kDa)
that facilitate FA uptake. Heart-type FABP (H-FABP) is probably the best-known member
of the FABP family. It is encoded by FABP3, which is located in the 1p33-p32 region
of chromosome 1 [22]. Tissues with a high demand for FAs (including the heart, brain,
kidney, and adrenal gland) express H-FABP. H-FABP is more abundantly expressed in the
ventricle and atrium than in other organs [23]. It can be rapidly released from myocytes into
circulation, owing to its small molecular weight and free cytoplasmic localization; therefore,
it is thought to be a biomarker in the pathogenesis of heart failure [24]. H-FABP levels are
significantly increased in patients with chronic heart failure [25], which correlates with the
New York Heart Association (NYHA) functional class and inversely correlates with ejection
fraction. Furthermore, persistently high H-FABP levels are associated with adverse events
during the follow-up of patients with heart failure [26]. Mice with disrupted H-FABP
show elevated plasma long-chain FA (LCFA) levels, decreased cardiac deposition of an
LCFA analog, and increased cardiac deoxyglucose uptake; therefore, there is a requirement
for H-FABP in cardiac LCFA utilization [27]. Furthermore, glucose oxidation increases
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in H-FABP-knockout mice to compensate for cardiac energy production, as the palmitate
uptake and oxidation are reduced [28].

3. Lipogenesis

Lipogenesis is the process of FA synthesis from non-lipid precursors and mainly
occurs in the liver and adipose tissues. Fatty acids are synthesized in the heart using several
lipogenic enzymes [29]. Lipogenesis encompasses two major processes: the activation of
acetyl-coenzyme A (acetyl-CoA) and FA biosynthesis. The main substrate for lipogenesis
is acetyl-CoA, which is derived from acetate by acetyl-CoA synthetase (ACS) or citrate
by ATP-citrate lyase (ACLY). The carboxylation of acetyl-CoA to malonyl-CoA by acetyl-
CoA carboxylase (ACC) is an irreversible rate-limiting step, and the opposite reaction is
catalyzed by malonyl-CoA decarboxylase (MCD). Next, seven molecules of malonyl-CoA
and one molecule of acetyl-CoA are condensed by fatty acid synthase (FASN), which finally
produces saturated palmitate. Palmitate desaturation by stearoyl-CoA desaturase (SCD)
generates monounsaturated FA (MUFA). Polyunsaturated FAs (PUFAs) are formed after a
series of elongation and desaturation steps (Figure 1) [30].

FA membrane transport proteins are supposed to induce endogenous lipogenesis by
increasing FA uptake into the heart. However, muscle-specific overexpression of FAT/CD36
failed to show significant changes in cellular lipids, such as TAG and phospholipids [31].
Consistently, overexpression of FATP1 or H-FABP in the heart did not affect the cardiac
TAG content [19,28]. These results suggest that the activation of lipogenesis may require
integrated control of particular enzymes.

3.1. Acetyl-CoA-Producing Enzymes ACS and ACLY

Acetyl-CoA synthetase (ACS) produces acetyl-CoA via the ligation of acetate and CoA,
and acetyl-CoA is utilized to synthesize FAs in an anabolic pathway or via mitochondrial
oxidation via a catabolic pathway. The series of reactions begins with acetyl-CoA; therefore,
the acetyl-CoA level is a key element in FA metabolism. The ACS family comprises a large
group of enzymes subdivided into five subfamilies: short-chain ACS (ACSS), medium-chain
ACS (ACSM), long-chain ACS (ACSL), long-chain synthetase (ACSVL), and bubblegum
ACS (ACSBG) [32].

Long-chain ACS is the most intensively studied enzyme in the ACS family, owing
to its essential role in cardiac function. It participates in FA thioesterification to produce
long-chain fatty acyl-CoA, together with acetyl-CoA production [33]. The five identified
ACSL isoforms (ACSL1, ACSL3-6) exhibit specific substrate preferences, and responses to
nutritional and hormonal regulation. ACSL1 is the major isoform expressed in highly oxida-
tive tissues, including the heart, skeletal muscle, and brown adipose tissues. Mice lacking
cardiac ACSL1 show impaired FAO and cardiac hypertrophy [34]. However, studies using
ACSL1 transgenic mice have exhibited opposite results. For example, cardiac overexpres-
sion of ACSL1 leads to cardiac lipotoxicity, resulting in mild left ventricular hypertrophy
with modest systolic dysfunction, which is associated with increased production of reactive
oxygen species (ROS) and FA uptake, followed by mitochondrial remodeling [35]. In
contrast, cardiac dysfunction induced by transverse aortic constriction (TAC) is improved
in ACSL1 transgenic hearts by reducing cardiac lipotoxicity [36].

ATP citrate lyase (ACLY) is a cytosolic enzyme that generates acetyl-CoA for fatty acid
biosynthesis. Citrate was used as the substrate for ACLY, unlike ACS. It is derived from
pyruvate oxidation in the tricarboxylic acid (TCA) cycle (which is derived from glucose) [37],
or through reductive carboxylation (which is derived from glutamine) [38]. Therefore,
ACLY represents a combination of three different metabolic pathways. Homozygous
ACLY knockout mice died early in development, and heterozygous mice were healthy,
fertile, and normolipidemic on both chow- and high-fat diets. Half-normal amounts
of ACLY in heterozygous mice did not perturb triglyceride or cholesterol synthesis or
ACS expression [39]. Genetic variants in genes encoding ACLY are associated with the



Metabolites 2023, 13, 615 5 of 22

risk of cardiovascular events [40]; however, the role of ACLY in heart failure remains to
be explored.

3.2. Fatty Acid Biosynthesis Enzymes

Acetyl-CoA carboxylase (ACC) and malonyl-CoA decarboxylase (MCD) are respon-
sible for malonyl-CoA production. The heart predominantly relies on FAO to fuel ATP
production, and the FAO flux is regulated at the level of entry of long-chain fatty acyl-CoA
into the mitochondria by carnitine acyltransferase I (CPT1). Malonyl-CoA is a CPT1 in-
hibitor, which is essential for regulating cardiac function. Cardiac contractile stimulation
activates MCD, which decreases the malonyl-CoA content and, hence, increases FAO [41].
MCD levels are highly induced in high-fat diet-fed rats and streptozotocin-treated diabetic
model. Peroxisome proliferator-activated receptor-α (PPARα) is activated by the increasing
concentrations of non-esterified FAs in the plasma, and thereby stimulates the expression
of MCD. In contrast, pressure overload-induced cardiac hypertrophy has reduced MCD
activity owing to PPARα inhibition. This results in the suppression of FAO [42]. Notably,
pharmacological inhibition or genetic deletion of MCD protects the ischemic heart by
inhibiting FAO and stimulating glucose oxidation [43–45].

In contrast, acetyl-CoA activates ACC; this results in increased malonyl-CoA levels that
inhibit FAO [46]. The two main ACC isoforms in mammals (ACC1 and ACC2) have distinct
tissue distributions and functions: ACC1 is predominantly expressed in the liver and
adipocytes, whereas ACC2 is enriched in the heart and skeletal muscle [47]. Furthermore,
ACC1 is localized in the cytosol, and ACC2 is associated with the mitochondria [48].
Mice with a null mutation in ACC1 show embryonic lethality, while ACC2-null mice are
viable [49]. ACC2 knockout mice have a normal lifespan, a higher rate of FAO, and a
lower amount of fat compared to wild-type mice [50]. Moreover, ACC2 mutant hearts
display normal functional parameters despite a significant decrease in size, with a marked
preference for the oxidation of glucose and Fas [51]. Cardiac-specific deletion of ACC2
leads to a reduction in cardiac malonyl-CoA with an increase in FAO and decreased glucose
utilization. An ACC2 knockout in the heart did not affect left ventricular function or
oxygen consumption. A genetic deletion of ACC2 attenuates cardiac hypertrophy and
prevents metabolic remodeling during pressure overload hypertrophy [52]. Furthermore,
an ACC2 deletion with pre-existing cardiac pathology improves cardiac function during
the transition from pathological hypertrophy to heart failure, but only in female mice.
This different response derives from a sex-dependent regulation of the PPARα signaling
pathway in heart failure. ACC2 knockout mice resist obesity and retain insulin sensitivity
in a high-fat diet-induced diabetes model [49]. This is thought to protect the heart from
diabetic cardiomyopathy.

3.3. Fatty Acid Synthase (FASN) and Stearoyl-CoA Desaturase (SCD)

Fatty acid synthase is a multi-enzyme complex that catalyzes the conversion of acetyl-
CoA and malonyl-CoA to long-chain saturated FAs. Heterozygous FASN mutants are
ostensibly normal; however, the null FASN mutant results in embryonic lethality [53].
FASN also generates an endogenous ligand for PPARα signaling [54,55]. It is highly
induced in murine heart failure models, including ACS transgenic mice. Moreover, the
mRNA level of FASN increases in cardiac tissue from individuals with sudden cardiac
death and in patients with class IV cardiomyopathy requiring left ventricular assist device
(LVAD) support. Cardiac specific FASN knockout mice manifested normal resting heart
function, cardiac PPARα signaling, and FAO. However, most mice died within one hour of
pressure overload induced by transverse aortic constriction, probably due to arrhythmia.
Calcium–calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling appears to
be pathogenic because inhibition of this signaling rescues mice from early mortality after
transverse aortic constriction [56].

Stearoyl-CoA desaturase is the rate-limiting enzyme that catalyzes the synthesis of
MUFA, such as palmitoleic acid and oleic acid, which are substrates for the synthesis of
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phospholipids, cholesterol, and triacylglycerol. Four isoforms (SCD1–4) are identified
in mice, and SCD1, SCD2, and SCD4 are expressed in the heart. SCD1 and SCD5 were
identified in humans, and each isoform is found in the heart. Compared with wild-type
mice, the heart tissues from SCD1 knockout mice have reduced FA transport and oxidation,
as well as increased glucose uptake and oxidation. The left ventricular weight is higher
in SCD-deficient mice; however, cardiac function is not significantly affected [57]. In
addition, there is no significant difference in SCD activity and palmitoleic acid levels in
SCD1 knockout mice, as SCD4 compensates for the lack of SCD1 in the heart [58]. Human
plasma SCD activity is also associated with the risk of heart failure [59]. SCD1 expression is
induced in several heart failure models [60]. The myocardium-specific expression of SCD1
mice triggers cardiac hypertrophy and symptoms of heart failure at an age of eight months
with an overload of cardiotoxic saturated lipids [61]. The loss of SCD1 by RNAi still led
to cardiac dysfunction and lipotoxicity [62]; however, systemic SCD1 deficiency in ob/ob
obese mice improves impaired cardiac function owing to the inhibition of apoptosis [63].
Together, these findings suggest that SCD1 participates in pathological remodeling during
heart failure.

3.4. Diacylglycerol Acyltransferase (DGAT)

Diacylglycerol acyltransferase catalyzes the final step in the formation of triglycerides
from diacylglycerol (DAG) and fatty acyl-CoA. The mammalian heart has two DGAT
isoforms: DGAT1 and DGAT2. Failing human hearts show severely reduced DGAT1
expression with the accumulation of DAG and ceramides [64]. DGAT1-null mice show
no cardiac phenotype, with normal TAG and DAG levels in the heart [65]. However, the
cardiac-specific deletion of DGAT1 increases DAG levels without altering TAG levels. Half
of the cardiac DGAT1 knockout mice died by nine months of age, with an increase in
heart failure markers and cardiac dysfunction [66]. In contrast, transgenic overexpression
of DGAT1 in the heart results in approximately normal cardiac function at three to four
months of age. ACS and DGAT1 double-transgenic mice show improved heart function
compared to ACS transgenic mice [64]. However, DGAT1 transgenic mice develop severe
cardiomyopathy with moderate systolic dysfunction at 52 weeks of age [67]. DGAT1
knockout mice are resistant to obesity and insulin without changes in TAG levels in a
high-fat diet-induced murine model. Co-inhibition of DGAT1/2 in the cardiomyocytes
still protects the heart against high-fat diet-induced lipid accumulation and decreases TAG
levels [68]. Recent data suggest that DGAT plays an important role in the pathogenesis and
development of heart failure.

4. Lipolysis and FAO

Lipolysis is a catabolic process, involving the breakdown of TAGs into FAs and
glycerol. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key
enzymes in lipolysis that generate FAs as energy substrates for FAO and subsequent ATP
production. Fatty acid oxidation enzymes are located in the mitochondrial matrix, and FAs
in the cytosol must be further activated and transported into the mitochondria. The first
reaction of FA activation is catalyzed by ACS via the formation of fatty acyl-CoA, which is
transiently attached to the hydroxyl group of carnitine by CPT1 to form fatty acyl-carnitine.
Fatty acyl-carnitine ester diffuses into the inner mitochondrial membrane with the help
of the acyl-carnitine/carnitine transporter. The final step of the carnitine shuttle pathway
involves the regeneration of fatty acyl-CoA by carnitine acyltransferase II (CPT2), and
carnitine reenters the intermembrane space via the acyl-carnitine/carnitine transporter.
Fatty acyl-CoA then undergoes FAO to produce acetyl-CoA, which enters the TCA cycle
and generates nicotinamide adenine dinucleotide (NADH) and FADH2 (flavin adenine
dinucleotide) for the electron transport chain to produce ATP (Figure 1).
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4.1. Intracellular LIPOLYSIS Enzymes ATGL and HSL

Patients with heart failure show high TAG levels in the left ventricular tissue [69].
Lipid accumulation can result from increased TAG synthesis or defective lipolysis. Adipose
triglyceride lipase (ATGL) is a rate-limiting enzyme in intracellular lipolysis that releases
FAs from TAG. Most patients carrying the ATGL mutation develop cardiac steatosis and
present with cardiomyopathy [70]. In heart failure, most ATGL-deficient patients develop
severe cardiac dysfunction that requires heart transplantation [71]. Cardiomyocyte-specific
ATGL overexpression protects against cardiac dysfunction in a murine model of pressure
overload-induced heart failure. The mice show reduced myocardial TAG content; however,
the levels of DAG and ceramides remained unchanged. Notably, the FAO rate decreases,
whereas the glucose oxidation rate increases [72]. In contrast, ATGL deficient mice develop
excessive lipid accumulation, cardiac insufficiency, and lethal cardiomyopathy [73]. ATGL
generates essential mediators that serve as ligands for PPAR activation. ATGL knockout
mice treated with PPARα agonist completely restore normal heart function and prevent
premature death [74,75]. Cardiac ATGL protein and TAG levels significantly increased in
a murine model of diabetic cardiomyopathy, and ATGL deficiency results in lipotoxicity
and diastolic dysfunction, whereas ATGL overexpression in cardiomyocytes is resistant to
cardiac dysfunction [76]. These studies strongly indicate that ATGL activity affects cardiac
function and that ATGL is a promising target for heart failure treatment.

Hormone-sensitive lipase (HSL) is the second lipolytic enzyme next to ATGL that
catalyzes the breakdown of DAG into monoacylglycerol (MAG) and FAs. The substrates for
HSL are much broader than that for ATGL, which including cholesteryl esters, retinyl esters,
and TAG [77]. Humans with HSL deficiency show dyslipidemia, hepatic steatosis, systemic
insulin resistance, and diabetes; however, no cardiac phenotype was found [78]. Murine
studies have primarily focused on diabetic cardiomyopathy. Cardiac overexpression of
HSL inhibits myocardial steatosis and fibrosis in diabetic mice by hydrolyzing toxic lipid
metabolites [79]. Moreover, cardiac overexpression of HSL in ATGL-null mice rescues
the cardiac dysfunction caused by ATGL knockout. This indicates that HSL compensates
for ATGL deficiency [80]. HSL knockout mice have impaired adipose lipolysis and male
infertility without severe cardiac defects. However, HSL-deficient mice are still protected
from high-fat diet-induced cardiac insulin resistance associated with reduced intramuscular
TAG [81]. The role of HSL in lipolysis may be more complex, and the elucidation of a more
detailed mechanism requires further exploration.

Triacylglycerols are stored in the heart as lipid droplets. The presence of Perilipin
proteins on the surface of lipid droplets protects TAG from lipolysis. It comprises five
members: Perilipin 1–5. Perilipin 5 is abundantly expressed in the heart, Perilipins 1
and 4 are mainly expressed in adipose tissue, whereas Perilipin 2 and 3 are found in a
variety of tissues. Compared to wild-type mice, Perilipin 5 knockout mice lacked detectable
lipid droplets and more actively oxidized FA. Mutant mice show a greater decline in
cardiac function with age [82]. However, type 1 diabetic Perilipin 5-null mice exhibit lower
levels of lipotoxic molecules and resistance to diabetes-induced cardiac malfunction [83].
Mice that specifically overexpress Perilipin 5 in the heart have increased TAG content,
and a chronic excess of lipid droplets causes mild heart dysfunction [84]. In addition,
Perilipin phosphorylation by protein kinase A is required for the translocation of HSL from
the cytosol to lipid droplets, a key event in triggering lipolysis [85]. However, cardiac
overexpression of Perilipin 5 with a mutant phosphorylation site shows a comparable level
of cardiac TAG compared to non-mutated Perilipin 5 transgenic mice, with completely
normal heart function in these two mice. This finding suggests that Perilipin 5-mediated
cardiac lipolysis requires multiple Perilipin 5 phosphorylation sites [86].

4.2. Extracellular Lipolysis Enzyme Lipoprotein Lipase (LPL)

The energy of the heart mainly relies on FA oxidation. Therefore, the supply of FAs
to the heart is essential for cardiac function. The hydrolysis of TAG-rich lipoproteins by
lipoprotein lipase (LPL) is another source of FAs in the heart in addition to the uptake of
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albumin-bound FAs derived from adipose tissue. Lipoprotein lipase-null mice exhibit se-
vere hypertriglyceridemia, reduced high-density lipoprotein levels, and neonatal death [87].
LPL is expressed at its highest level in the heart, and its expression in the heart alone is suffi-
cient to maintain normal plasma triglyceride levels and rescue LPL-null mice from neonatal
death [88]. LPL overexpression in cardiomyocytes causes dilated cardiomyopathy with
lipid accumulation in the heart [89]. In contrast, cardiac-specific LPL knockout mice have
significantly elevated plasma triglyceride levels and increased glucose oxidation; however,
the cardiac uptake of albumin-bound FAs is unchanged [90]. Cardiac LPL deletion mice
died within 48 h of pressure overload, and older mice developed cardiac dysfunction [91].
Thus, LPL may play a central role in maintaining the balance of plasma TAGs during
heart failure.

Recently, several LPL regulators were discovered, including lipase maturation factor 1
(LMF1), Sel suppressor of Lin-12-like 1 (SEL1L), glycosylphosphatidylinositol-anchored
high-density lipoprotein-binding protein 1 (GPIHBP1), and angiopoietin-like proteins
(ANGPTLs) [92]. LMF1 and SEL1L in endoplasmic reticulum functionally ensure the
maturation of LPL [93]. The mature LPL will be captured by GPIHBP1 on the surface of
endothelial cell, and then it moves to the endothelial lumen through transcytosis [94,95].
ANGPTL3, 4, and 8 have been reported to inhibit LPL activity and increase plasma triglyc-
eride level in a tissue-specific manner [96–98]. Additionally, the ANGPTL3–ANGPTL8
complex has been shown to dramatically suppress the activity of LPL compared to either
protein alone [99]. As ANGPTL3 is exclusively expressed in the liver, it is likely to be
released as a complex with ANGPTL8 to suppress LPL activity in fat and muscle tissues.
ANGPTL4 is expressed in numerous tissues and may act as a local LPL inhibitor [100]. In-
terestingly, transgenic overexpression of ANGPTL4 in the heart developed left-ventricular
dysfunction. The mice exhibited hypertriglyceridemia after inhibiting LPL activity [101].
Importantly, patients in a dyslipidemia cohort showed association between LMF1 gene
variants and postheparin LPL activity [102]. Mutation or deletion in the GPIHBP1 gene
also resulted in severe hypertriglyceridemia in patients [103]. Moreover, people carrying
loss-of-function variants in ANGPTL3 or ANGPTL4 have a reduced risk of coronary artery
disease with decreased plasma level of triglycerides [104–106]. It suggests that the modula-
tion of these LPL regulators could offer a therapeutic treatment for hypertriglyceridemia
and reduce the risk for related heart disease.

4.3. Carnitine Acyltransferase I (CPT1)

Carnitine acyltransferase I (CPT1) is responsible for the formation of fatty acyl-
carnitines by transferring the acyl group of fatty acyl-CoA to carnitine. It is also known
as carnitine palmitoyltransferase I as its main product is palmitoylcarnitine. A decreased
rate of FAO is suggested to occur secondary to the reduced carnitine content in the hyper-
trophied myocardium [107–109]. The role of propionyl L-carnitine in cardiac dysfunction
was extensively investigated in the last century because it is a naturally occurring carnitine
derivative that increases tissue carnitine levels [110]. Multiple studies show that the ad-
ministration of propionyl-L-carnitine improves the contractile function of hypertrophied
hearts [109,111]. However, the drug failed to normalize FAO, and the beneficial effect was
due to the increased efficiency of ATP in cardiac function [112]. CPT1 is the rate-limiting
enzyme in FAO, and it was actively investigated as a potential therapeutic target. CPT1
activity significantly decreases in hypertrophied hearts under pressure overload [113] and
advanced heart failure [9]. CPT1 has three isoforms: CPT1a, CPT1b, and CPT1c. CTP1a
is predominant isoform in the liver, and it is also known as a liver isoform. CPT1b is
highly expressed in the heart and skeletal muscles, whereas CPT1c is only expressed in
neurons. Heterozygous CPT1b knockout mice exhibit exacerbated cardiac hypertrophy and
are susceptible to premature death due to congestive heart failure after pressure overload.
Moreover, the mice presented with severe mitochondrial abnormalities and myocardial
lipotoxicity, leading to cardiomyocyte apoptosis [114]. However, clinical trials show that
specific CPT1 inhibitors (such as etomoxir) improve the cardiac function in patients with



Metabolites 2023, 13, 615 9 of 22

heart failure [115]. In contrast, overexpression of the CPT1 liver isoform elevates atrial
natriuretic peptide levels [116]. This indicates that it induces hypertrophic signaling. CPT1
may be beneficial in the progression of heart failure; however, further studies are required
to elucidate its role.

4.4. Fatty Acid Oxidation

Efficient energy production in cardiomyocytes requires three mitochondrial metabolic
pathways: FAO, the TCA cycle, and the electron transfer chain. Acetyl-CoA produced from
FAO enters the TCA cycle to generate NADH and FADH2 for the electron transport chain
to produce ATP in normal hearts. Therefore, the rate of FAO is regulated by FAs supply
and uptake, malonyl-CoA content, the ratio of FAD/FADH2 and NAD+/NADH, the mito-
chondrial acetyl-CoA/CoA ratio, and transcriptional and post-translational modifications
of FAO enzymes [117]. Decreased FAO is reported in humans with idiopathic dilated
cardiomyopathy [118–121], post-infarction heart failure [122], heart failure in Dahl salt-
sensitive hypertensive rats [123], pressure overload-induced heart failure models [124–126],
and canine models of cardiac pacing [127]. This alteration may be caused by a reduction in
the number of genes and enzymes involved in FAO [9,124,126]. In contrast, FAO is highly
induced in type 2 diabetes [128], obesity [129], and heart failure with a preserved ejection
fraction [130]. Activated FAO also consistently occurs in diabetic and obese mice lacking
leptin [131,132]. The increased FAs and induction of FAO enzymes by lysine acetylation
may be the underlying mechanism [133,134].

Nicotinamide adenine dinucleotide (NAD) serves as the major electron carrier coen-
zyme in all three FAO stages. Initially, FAs undergo β-oxidation and remove successive
two-carbon units to form acetyl-CoA. The formation of acetyl-CoA releases two pairs of elec-
trons. NAD+ and FAD serve as electron acceptors and carry electrons in the form of NADH
and FADH2. In the second stage, acetyl-CoA enters the TCA cycle to generate NADH
and FADH2. Finally, NADH and FADH2 electron carriers produced in the above two
stages donate electrons to the mitochondrial respiratory chain for ATP synthesis (Figure 1).
Therefore, the NAD+/NADH redox pathway is critical for FA metabolism in patients with
heart failure. A reduction in NAD or a decreased NAD+/NADH ratio is observed in
patients with heart failure and in a murine model with pathologic hypertrophy [135,136].
Consistently, impaired expression of genes involved in NAD biosynthesis was confirmed
in cardiac tissue from patients with ejection fraction preserved heart failure [137]. Mecha-
nistically, a low level of NAD stimulates the hyperacetylation of mitochondrial proteins by
inhibiting sirtuin, which impairs the cytosolic redox state and energy deficiency. Notably,
the elevation of NAD+ levels by stimulating the nicotinamide phosphoribosyl transferase
(Nampt)-dependent NAD+ salvage pathway or supplying NAD precursors improves car-
diac function in response to stress (Figure 2) [135,136]. Furthermore, a clinical trial revealed
that the administration of NAD precursor in patients with advanced heart failure enhances
respiratory capacity through complex I activity in peripheral blood mononuclear cells and
reduces proinflammatory cytokine gene expression [138].

The mitochondrial respiratory chain consists of five members (complexes I–IV) that are
the engines producing energy in the heart. In contrast, complex I is considered a potential
source of oxygen free radicals in the failing myocardium [139]. Therefore, determining the
role of complex I in heart failure is challenging. Rong Tian et al. modeled the impairment
of respiratory capacity by knocking out the Ndufs4 gene encoding a critical protein for
complex I assembly. Cardiac deletion in Ndufs4 mice maintains normal cardiac function
that is consistent with a >40% reduction in respiration. However, the heart develops accel-
erated dysfunction under pressure overload or repeated pregnancies. The authors thought
that this phenotype was derived from a decreased NAD+/NADH ratio owing to complex
I deficiency and increased protein acetylation [140]. Moreover, the knockout of Ndufs4
in macrophages worsens cardiac function 30 days after myocardial infarction. Suppres-
sion of respiration in macrophages impairs efferocytosis, leading to a low expression of
anti-inflammatory cytokines and tissue repair factors [141]. The mitochondrial respiratory
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chain has multiple functions; these studies confirmed the cell type-dependent functions of
these proteins in heart failure.
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Figure 2. The nicotinamide adenine dinucleotide (NAD) metabolism. The level of NAD+ is deter-
mined by NAD+ synthesis from the salvage pathway or NAD+/NADH ratio. NAD+ is required in
the Sirtuin-mediated deacetylase reaction. This reaction also generates NAM. NAM then enters the
salvage pathway. Nampt is the rate limiting enzyme in this pathway, catalyzing the conversion from
NAM to NMN. NMN is thereby converted to NAD+ by NMNAT. Abbreviations: NAD, nicotinamide
adenine dinucleotide; Nampt, nicotinamide phosphoribosyl transferase; NAM, nicotinamide; NMN,
nicotinamide mononucleotide; NMNAT, nicotinamide mononucleotide adenyltransferase.

5. The Regulatory Factors of Fatty Acid Homeostasis

Transcriptional factors, such as PPARs and phosphorylation kinase (such as AMP-
activated protein kinase (AMPK)), are central mechanisms that control complex metabolic
networks in the heart during hemodynamic stress, as they can tune energy utilization of
the heart by FA or glucose [4]. Transcription control requires three components: upstream
events that activate signaling, molecular mechanisms that cooperate with transcription fac-
tors, and downstream actions that transcribe target genes [142]. Additionally, protein kinase
also needs molecular triggering, as well as spatial and temporal factor cross-talking. Modi-
fication of these components has emerged as a potential target for therapeutic intervention.

5.1. Peroxisome Proliferator-Activated Receptors (PPARs)

Peroxisome proliferator-activated receptors are nuclear receptors sharing a common
structure, including a conserved DNA-binding domain and a ligand binding domain [143].
They comprise three subtypes (PPARα, PPARδ, and PPARγ), and each is expressed in the
heart. PPARα and PPARδ are relatively abundant [144]. PPARα expression is relatively
decreased in heart failure patients with hypertensive heart disease compared to patients
with normal cardiac function [145,146]. Consistently, PPARα is deactivated in ventricular
pressure overload studies in mice, which is accompanied by the downregulation of FAO
enzymes [147]. The activation of PPARα increases several downstream targets, including
FAT/CD36, CPT1, and MCD [148]. PPARα deficiency in the heart is sufficient to main-
tain normal energy homeostasis and cardiac function. However, knockout mice show
accelerated cardiac remodeling and contractile dysfunction during hemodynamic over-
load [149,150]. Transcriptome analysis reveals the activation of glucose metabolism genes
and a switch in substrate utilization from FA to glucose. Notably, overexpression of glucose
transporter GLUT1 in PPARα-deficient mice improves the metabolic and functional defects.
This suggests that the upregulation of glucose metabolism from intrinsic responses to
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PPARα deficiency or from glucose transporter overexpression has different effects on heart
failure. In contrast, PPARα activation by inducible transgenic mice maintains myocardial
function with enhanced FAO in the early stages of heart failure [151]. PPARα knockout
mice are protected from the severe cardiomyopathic phenotype in diabetes-induced cardiac
hypertrophy. However, PPARα overexpression in diabetic hearts exacerbated the hyper-
trophy with myocardial triglyceride accumulation [152,153]. These results suggest that
PPARα modulation could be a promising therapeutic strategy for heart failure.

PPARγ/δ is differentially regulated in the heart. Unlike the expression of PPARα,
PPARγ is highly induced in heart failure. As PPARγ is a downstream target of hypoxia-
inducible factor 1 (HIF1α), the activation of PPARγ induced by HIF1α stimulated the FA
uptake and lipid accumulation. Ventricular HIF1a deficiency inhibits PPARγ expression
and attenuates stress-induced pathological hypertrophy [154]. Besides, cardiac PPARγ over-
expression develops a dilated cardiomyopathy associated with increased lipid stores [155].
The detailed mechanism is unclear; however, PPARγ-induced cardiolipotoxicity is ame-
liorated by deleting PPARα [156], and PPARγ activation seems to be protective in sepsis-
related cardiac dysfunction [157]. PPARδ deletion downregulates the expression of FAO
genes and decreases the basal myocardial FAO rate. These mice exhibit cardiac dysfunction
and progressive lipid accumulation [158].

PPARγ coactivator 1 (PGC1) is defined as a protein that interacts with transcription
factors and increases the probability of target gene transcription. PPARα, PPARδ, and
PPARγ are all subject to transcriptional coactivation by PGC1. There are three PGC1
members: PGC1α, PGC1β, and PGC1-related coactivator [159]. PGC1α repression is
a signature of the failing human heart [160]. PGC1 activity induces the expression of
nuclear and mitochondrial genes in cultured cardiomyocytes, in addition to its role in
cooperation with PPARs. However, cardiac-specific PGC1 overexpression develops dilated
cardiomyopathy with uncontrolled mitochondrial proliferation [161]. Consistently, serious
mitochondrial structural derangements were observed in the hearts of PGC1α/β-deficient
mice during postnatal growth associated with the development of lethal cardiomyopathy.
However, PGC1α/β-deficient adult mice did not result in heart failure and mitochondrial
abnormalities [162]. PGC1α knockout mice develop marked dilated cardiomyopathy with
the downregulation of several target genes in FA metabolism and electron transport chain
in the pressure overload heart failure model [163].

5.2. AMP-Activated Protein Kinase (AMPK)

AMP-activated protein kinase serves as a cellular fuel gauge and metabolic regulator
in the heart. It is a heterotrimeric complex, comprising a catalytic α subunit and two
regulatory β and γ subunits. The α subunit contains a serine–threonine kinase domain
that includes an activating Thr172 residue. Phosphorylation of this site is critical for AMPK
activation [164]. AMPK regulates FA synthesis by phosphorylating ACC and HMG-CoA
reductase [165]. It induces the expression and translocation of FAT/CD36 to the cell
membrane and improves FA transport [166–168]. Furthermore, it regulates genes, such as
PGC1, MCD, CPT1, and GLUT4 [169–171]. However, AMPK activation during pressure
overload stress mainly increases the rates of glucose transport and glycolysis [172].

AMPKα2 knockout mice exacerbate ventricular hypertrophy and cardiac dysfunction
in the pressure overload model [173] or high-fat diet-induced heart failure model [174]. In
contrast, long-term activation of AMPK by the specific chemical activator AICAR attenuates
pressure overload-induced cardiac hypertrophy [175]. In addition, AMPK deficiency in the
ischemic heart increases cardiac injury and impairs contractile function with exacerbated
ATP depletion [176,177]. Thus, AMPK exerts protective effects against heart failure. Several
studies confirm that the pharmacological AMPK activator (metformin) improves ventricular
function and survival in heart failure [178,179].
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Table 1. The classification and function of fatty acids.

Classification Typical FAs Carbon Skeleton Common Name Function

Saturated FAs

n-Dodecanoic acid 12:0 Lauric acid Increased risk of cardiovascular disease by
aggravating dyslipidemia [180]

n-Tetradecanoic acid 14:0 Myristic acid Increased risk of coronary heart disease [180]
n-Hexadecanoic acid 16:0 Palmitic acid Increased risk of coronary heart disease [180]
n-Octadecanoic acid 18:0 Stearic acid Increased risk of coronary heart disease [180]
n-Eicosanoic acid 20:0 Arachidic acid Decreased risk of incident heart failure [181]
n-Teracosanoic acid 24:0 Lignoceric acid Decreased risk of incident heart failure [181]

Monounsaturated FAs
cis-9- Hexadecanoic acid 16:1 (∆9) Palmitoleic acid Increased risk of heart failure [59]
cis-9- Octadecanoic acid 18:1 (∆9) Oleic acid Not associated with heart failure risk [59]

Polyunsaturated FAs

cis, cis-9,12-Octadecadienoic acid 18:2 (∆9,12) Linoleic acid Decreased risk of coronary heart disease [182]
cis, cis, cis-9,12,15-Octadecatrienoic acid 18:3 (∆9,12,15) α-Linolenic acid Increased risk of cardiovascular disease [183]
cis, cis, cis, cis-5,8,11,14-Icosatetraenoic
acid 20:4 (∆5,8,11,14) Arachidonic acid Increased risk of cardiovascular disease [184]

cis, cis, cis, cis,
cis-5,8,11,14,17-Eicosapentaenoic acid 20:5(∆5,8,11,14,17) Eicosapentaenoic acid Decreased risk of cardiovascular disease and

incident heart failure [185,186]
cis, cis, cis, cis, cis,
cis-4,7,10,13,16,19-Docosahexaenoic
acid

24:6 (∆4,7,10,13,16,19) Docosahexaenoic acid Decreased risk of cardiovascular disease [185]

6. Conclusions and Perspectives

Emerging evidence supports the notion that unbalanced FA metabolism occurs in heart
failure, which is characterized by the repression of FAO and the accumulation of toxic lipids.
Almost all enzymes are downregulated in heart failure, including FAT/CD36, FATPs, ACS,
MCD, and CPT1. However, FASN and SCD lipogenic enzymes are highly induced, thereby
causing excess DAG or ceramide storage (Figure 3). Consequently, the heart suffers from a
double burden of insufficient energy supply and lipotoxicity. ACC and ATGL may serve as
potential targets to treat hemodynamic stress-induced heart failure. In contrast, FAT/CD36,
DGAT, ATGL, HSL, and Perilipin may be candidates to treat cardiac dysfunction related
to metabolic syndrome. Fatty acid metabolism involves a tight and cooperative network;
therefore, transcriptional factors and protein kinase with the integrated capacity of several
enzymes provide another potential therapeutic strategy in failing hearts. Importantly,
clinical trials in patients with heart failure show that supplementation with NAD precursors
has beneficial effects. The limitation of this review is we only focus on some key enzymes
and important regulatory factors, and other proteins, such as cholesterol biosynthesis
enzymes, are not involved here. Overall, significant progress has been made in broadening
our understanding of the pathophysiology of cardiac dysfunction. However, further
comprehensive studies are warranted to identify therapeutic targets to treat heart failure.
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Figure 3. Overview of fatty acid metabolism in the normal heart and failing heart. Abbreviations:
FAT/CD36, fatty acid translocase/cluster of differentiation 36; FATPs, fatty acid transport proteins;
TCA cycle, tricarboxylic acid cycle; ETC, electron transport chain; ATP, adenosine triphosphate; FASN,
fatty acid synthase; SCD, stearoyl-CoA desaturase; DAG, diacylglycerol.
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ACC acetyl-CoA carboxylases
ACLY ATP-citrate lyase
ACS acetyl-CoA synthetase
AMPK AMP-activated protein kinase
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ATP adenosine triphosphate
CPT1 carnitine acyltransferase I
DAG diacylglycerol
DGAT diacylglycerol acyltransferase
ETC electron transport chain
FA fatty acid
FASN fatty acid synthase
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FAT/CD36 fatty acid translocase/cluster of differentiation 36
FATPs fatty acid transport proteins
FAO fatty acid oxidation
H-FABP heart-type fatty acid-binding protein
HSL hormone-sensitive lipase
LCFA long-chain FA
LPL lipoprotein lipase
MAG monoacylglycerol
MCD malonyl-CoA decarboxylase
MGL monoglycerol lipase
MUFA monounsaturated FA
PPARs peroxisome proliferator-activated receptors
PUFA polyunsaturated FA
SCD stearoyl-CoA desaturase
TAG triacylglycerol
TCA cycle tricarboxylic acid cycle
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