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Abstract: High-throughput metabolomics has enabled the development of large-scale cohort studies.
Long-term studies require multiple batch-based measurements, which require sophisticated quality
control (QC) to eliminate unexpected bias to obtain biologically meaningful quantified metabolomic
profiles. Liquid chromatography–mass spectrometry was used to analyze 10,833 samples in 279 batch
measurements. The quantified profile included 147 lipids including acylcarnitine, fatty acids, glu-
cosylceramide, lactosylceramide, lysophosphatidic acid, and progesterone. Each batch included
40 samples, and 5 QC samples were measured for 10 samples of each. The quantified data from
the QC samples were used to normalize the quantified profiles of the sample data. The intra- and
inter-batch median coefficients of variation (CV) among the 147 lipids were 44.3% and 20.8%, respec-
tively. After normalization, the CV values decreased by 42.0% and 14.7%, respectively. The effect of
this normalization on the subsequent analyses was also evaluated. The demonstrated analyses will
contribute to obtaining unbiased, quantified data for large-scale metabolomics.

Keywords: targeted lipidomics; quality control; liquid chromatography–mass spectrometry; lipid;
cohort study

1. Introduction

Metabolomics is an omics science that analyzes hundreds of metabolites in biological
samples. Recent improvements in this technology have enabled high-throughput and
large-scale metabolomic studies. Metabolomics has been widely applied in epidemiological
studies that include ≥1000 participants. These studies have led to the discovery of novel
metabolic features and biomarkers for various chronic diseases, such as diabetes [1,2],
cardiovascular disease [3,4], chronic kidney disease [5], Alzheimer’s disease [6], obesity [7],
and blood pressure [8]. In addition to efficient data sharing and standardization, the
Consortium of Metabolomics Studies (COMETS) was established to encourage large-scale
collaboration of prospective cohort studies with human metabolome research [9].

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) have
been used in large-scale metabolomic studies. NMR is suitable for large-scale cohort studies
involving long-term measurements because it is highly reproducible, and metabolites can
be measured following simple pretreatment. However, NMR has relatively low sensitiv-
ity; therefore, only abundant metabolites can be profiled. In contrast, MS can measure
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a wide range of metabolites with high selectivity and sensitivity. It is impossible to an-
alyze all metabolites using either method because of their wide variety of physical and
chemical properties. Therefore, a combination of separation systems with MS, such as
gas chromatography–MS (GC–MS), liquid chromatography–MS (LC–MS), and capillary
electrophoresis–MS (CE–MS) are used according to the properties of the metabolites to be
measured.

The Tsuruoka Metabolomics Cohort Study (TMCS), a cohort study of the Japanese
population, was conducted in April 2012. This study used CE–MS to quantify charged
metabolites in plasma and urine, and LC–MS was used to analyze lipids in plasma. The
samples were collected from more than 10,000 registered participants, which required
long-term analyses including multiple batches. The quality control (QC) of the CE–MS
plasma data for 52 months resulted in coefficient of variation (CV) values of quantified
metabolites of <30% for 85.1% of metabolites [10]. Applications of this dataset have been
published for various diseases [11–13], physical activity [14], and food intake [15].

A strategy for obtaining high-quality LC–MS data for large-scale metabolomics has
been proposed. Luo et al. developed a pseudo-targeted LC–MS method to improve the
stability of large-scale metabolomic data [16]. This method included a blank wash step that
eliminated the build-up of contaminants from the system and a postcalibration process
using QC samples to correct signal drift among multiple batches. Consequently, the CV
of 54% of the metabolite features was <15% in three independent batches. Brunius et al.
proposed a new approach, including interbatch metabolite feature alignment and intrabatch
cluster-based drift correction, to normalize multiple batch data from large-scale nontargeted
LC–MS metabolomic data [17].

An approach for overcoming problems related to the conjunction of multiple batches
of LC–MS-based lipidomic data was examined in this study. We selected 147 lipid species
that are considered to be clinically important, such as bioactive lipids and lipid mediators.
This approach could be used for various metabolome analyses, including large-scale cohort
studies, although the original use was targeted at LC–MS lipidomics.

2. Materials and Methods
2.1. Study Population and Sample Collection

TMCS is a Japanese cohort study that started in April 2012 (Tsuruoka City, Yamagata
Prefecture, Japan), involving 11,002 participants aged 35 to 74 years old [10,12–14,18].
Participants were recruited from among attendees of annual municipal or workplace health
checkup programs held at four city sites at baseline (from April 2012 to March 2015).
Written informed consent was obtained from all participants. This study was approved by
the Medical Ethics Committee of the School of Medicine, Keio University (approval No.
20110264) and the corresponding regulatory agencies, and all experiments were performed
in compliance with approved guidelines.

Blood samples were collected in the morning after 12 h of overnight fasting, and
plasma samples were prepared using EDTA-2Na as an anticoagulant and immediately
stored at 4 ◦C. The samples were centrifuged at 1500× g for 10 min at 4 ◦C within 3 h of
sampling. The upper layer was stored at −80 ◦C until lipid extraction.

2.2. Extraction of Target Lipids

Plasma samples (100 µL) were mixed with 300 µL of methanol containing the follow-
ing internal standards (IS): cholic acid-d5, 500 nmol/L; fatty acid (FA) 18:0-d3, 500 nmol/L;
acylcarnitine 18:0-d3, 100 nmol/L; platelet-activating factor (PAF) 18:0-d4, 50 nmol/L;
lysoPAF 18:0-d4, 50 nmol/L; lysophosphatidylcholine (LPC) 16:0-d3, 50 nmol/L; sphin-
ganine d17:0, 50 nmol/L; sphingosine d17:1, 50 nmol/L; sphinganine 1-phosphate (1P)
d17:0, 50 nmol/L; sphingosine 1P d17:1, 50 nmol/L; ceramide 1P d18:1-12:0, 50 nmol/L;
glucosylceramide d18:1-12:0, 50 nmol/L; and lactosylceramide d18:1-12:0, 50 nmol/L. The
mixtures were vortexed for 5 min and then centrifuged at 9100× g for 10 min at 20 ◦C. The
supernatant (250 µL) was used for solid-phase extraction (SPE).
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SPE cartridges (MonoSpin® C18, GL Sciences, Tokyo, Japan) were conditioned with
300 µL of methanol (containing 0.1 vol% formic acid), followed by 300 µL of Milli-Q water
(containing 0.1 vol% formic acid). Milli-Q water (350 µL containing 0.1 vol% formic acid),
100 µL of methanol (containing 0.1 vol% formic acid), and 250 µL of supernatant were
mixed in SPE cartridges using pipetting and then centrifuged at 2000× g for 2 min at 20 ◦C.
The cartridges were washed with 300 µL of Milli-Q water (containing 0.1 vol% formic
acid), and the collection tube was changed. Lipids were eluted using 200 µL of methanol
(containing 0.1 vol % formic acid). The extracts (100 µL) and methanol (10 µL) containing
1 µmol/L of an external standard (PS 17:0-14:1) were mixed in a glass vial and subjected to
LC–MS/MS analysis.

2.3. Targeted Lipid Analysis

LC–MS/MS analysis was performed using an Agilent 1290 Infinity LC system (Ag-
ilent Technologies, Santa Clara, CA, USA) coupled to an AB Sciex QTRAP 5500 mass
spectrometer with a turbo ion spray electrospray ionization (ESI) source (Sciex, Framing-
ham, MA, USA). LC separation was performed using an Acquity UPLC HSS T3 column
(2.1 × 50 mm, 1.8 µm; Waters, Milford, MA, USA). The mobile phase comprised 3:1:1 wa-
ter:methanol:acetonitrile (v/v/v) with 5 mmol/L ammonium formate and 1 µmol/L EDTA
(A) and isopropanol with 5 mmol/L ammonium formate and 1 µmol/L EDTA (B). The
addition of a trace amount of EDTA is known to create chelates with residual metals in the
LC–MS system, resulting in improved peak shapes for many metabolites [19]. The flow rate
was 0.3 mL/min, and the following linear gradient was used: 0–5 min, 0–40% B; 5–7.5 min,
40–64% B; 7.5–12 min, 64% B; 12–12.5 min, 64–82.5% B; 12.5–15 min, 82.5–83.46% B; and
15–17.5 min, 83.46–97% B followed by equilibration with 0% B for 5 min. The injection
volume was 8 µL, and the column temperature was maintained at 45 ◦C. Columns were
replaced when the pressure exceeded 1.5-times the initial value.

ESI–MS/MS analysis was performed in positive/negative switching mode using
the following source parameters: ion spray voltage, 4500/−4500 V; dry gas temperature,
300 ◦C; curtain gas, 30 psi; collision gas, 6 psi; ion source gas 1, 40 psi; and ion source gas 2,
80 psi.

The multiple reaction monitoring (MRM) settings were determined using flow injec-
tion analyses of commercially available compounds. The lipids belonging to a respective
group were measured based on the conditions of the standard internal compounds, includ-
ing product ions, collision energy, and cell exit potential. The MRM conditions of IS and
corresponding lipids are summarized in Supplemental Table S1.

2.4. Method Validation

The developed analytical method, including linearity, accuracy, precision, recovery,
and sensitivity, was validated according to the bioanalytical method validation guidance
for industry (2018) issued by the U.S. Food and Drug Administration.

The IS mixture was diluted with methanol to prepare a 19-point calibration standard
at 0.2–100,000 nmol/L to evaluate linearity. Each calibration standard was analyzed five
times, and the mean area was used to prepare the calibration curve. Linearity was assessed
by calculating the least-squares regression and was expressed using the coefficient of
determination. The linear dynamic range was determined to be within ±20% accuracy of
the calibration curve.

The concentration of limit of detection (CLOD) can be calculated using Equation (1):

CLOD = ts × CSTD × SSTD, (1)

where ts is Student’s t-distribution factor for four degrees of freedom at the 99% confidence
level (ts = 3.747), CSTD is the minimum concentration of the standard in the dynamic range,
and SSTD is the standard deviation of the peak area after five repeated injections of the
standard at the minimum concentration.
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Accuracy and precision were evaluated based on low, middle, and high calibration-
curve concentrations. The following low, middle, and high concentrations of each standard
were used: acylcarnitine 18:0-d3, 0.5, 20, 2000 nmol/L; ceramide 1P d18:1-12:0, 1, 50,
5000 nmol/L; cholic acid-d5, 5, 250, 10,000 nmol/L; FA 18:0-d3, 20, 500, 20,000 nmol/L;
glucosylceramide d18:1-12:0, 2.5, 100, 5000 nmol/L; lactosylceramide d18:1-12:0, 10, 100,
1000 nmol/L; LPC 16:0-d3, 2.5, 100, 5000 nmol/L; PAF 18:0-d4, 0.5, 50, 5000 nmol/L;
lysoPAF 18:0-d4, 2.5, 1000, 5000 nmol/L; sphinganine d17:0, 5, 100, 5000 nmol/L; sph-
inganine 1P d17:0, 2.5, 100, 5000 nmol/L; sphingosine d17:1, 2.5, 50, 2500 nmol/L; and
sphingosine 1P d17:1, 25, 250, 5000 nmol/L. Accuracy was calculated as a percentage of
the quantified value with respect to the theoretical value, and precision was determined
as the relative standard deviation of five measurements. The extraction recovery test was
performed using plasma samples spiked with the standards at the following concentra-
tions: acylcarnitine 18:0-d3, 100 nmol/L; ceramide 1P d18:1-12:0, 50 nmol/L; cholic acid-d5,
500 nmol/L; FA 18:0-d3, 500 nmol/L; glucosylceramide d18:1-12:0, 50 nmol/L; lactosylce-
ramide d18:1-12:0, 50 nmol/L; LPC 16:0-d3, 50 nmol/L; PAF 18:0-d4, 50 nmol/L; lysoPAF
18:0-d4, 50 nmol/L; sphinganine d17:0, 50 nmol/L; sphinganine 1P d17:0, 50 nmol/L;
sphingosine d17:1, 50 nmol/L; and sphingosine 1P d17:1, 50 nmol/L.

2.5. Quantitative and Normalization Method of Metabolomic Profile

The concentration of each lipid was calculated using Equation (2) and the correspond-
ing IS (Supplemental Table S1).

CLipid = ALipid/AIS × CIS (2)

where CLipid is the concentration of the lipid, CIS is the concentration of the corresponding
IS, ALipid is the peak area of the lipid, and AIS is the peak area of the IS. The median value of
each lipid was calculated from the quantitative values of the five QC samples measured in
the same batch, and the relative value of each lipid in the sample was obtained by dividing
by this value.

2.6. Statistical Analysis

Metabolomic profiles with and without normalization were analyzed using partial
least squares-discriminant analysis (PLS-DA). The concentrations of lipids below the de-
tection limit were substituted with half of the minimum value across all detected samples.
Additionally, the relationship between the metabolites and age (each being ten years old)
was analyzed. Both data were log10 scaled and transformed to Z-scores. PLS-DA using
all data resulted in R2 values. The generalization ability (Q2) was assessed at the average
value of 5 times 10-fold cross-validations with various random values. The PatternHunter
function implemented in MetaboAnalyst with the Spearman correlation option was used
to explore the monotonous increase or decrease in metabolites depending on age. Scaling
and normalization, similar to those for PLS-DA, were used for this analysis.

JMP Pro 14.1.0 (SAS Institute, Cary, NC, USA) and MetaboAnalyst (ver. 5.0) [20] were
used for data analyses.

3. Results and Discussion
3.1. Method Validation

In large-scale metabolomic studies, quantified data are generally collected over long
periods of time in multiple batches. During this period, one of the most important factors
for obtaining stable and reliable data is the use of well-validated analytical methods. The
method used in this study was validated using IS. Figure 1 shows the chromatograms of
the 13 deuterated or odd-chain IS used in this study.
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Figure 1. Chromatograms of the 13 compounds used for IS. X- and Y-axes indicate the retention time
(RT; min) and intensity, respectively.

Table 1 shows the calibration curve results, R2 value of the coefficients of determination,
lower limit of detection, and linear dynamic range for the IS. The calibration curves for
all compounds were linear, with coefficients of determination of 0.979–0.994. The limits
of detection determined from the standard deviation of the peak area at a minimum
concentration in the dynamic range were between 0.41 and 29.17 nmol/L, sufficient to
detect low concentrations of lipid components. It was also found that the linear dynamic
range of the investigated compounds was between two and four orders of magnitude,
which could correspond to a wide concentration range.

Accuracy, precision, and extraction recovery were also investigated (Table 2). The error
between the quantitative and theoretical values at the three concentrations was within 20%
for all examined compounds. The precision of the results for some compounds exceeded
30% at low concentrations. However, almost all of these were within 10% at medium and
high concentrations. These results suggest that the analytical method developed in this
study is sufficiently accurate and precise for lipid quantification. The accuracy and precision
results at 19 standard calibration concentration points are summarized in Supplemental
Table S2.
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Table 1. Linearity, sensitivity, and dynamic range of internal standard (IS) in the liquid
chromatography–mass spectrometry (LC–MS/MS) method.

Compound Calibration Curve R2 Value
Limit of Detection

(nmol/L)
Linear Dynamic
Range (µmol/L)

Acylcarnitine 18:0-d3 y = (3.81 × 107)x − 1.81 × 103 0.994 0.41 0.0005–2
Ceramide 1P d18:1-12:0 y = (6.51 × 106)x − 1.68 × 102 0.988 1.13 0.001–5

Cholic acid-d5 y = (3.54 × 106)x + 1.86 × 103 0.994 3.48 0.005–10
FA 18:0-d3 y = (1.94 × 106)x + 3.36 × 104 0.979 23.05 0.02–20

Glucosylceramide d18:1-12:0 y = (1.09 × 107)x − 3.16 × 103 0.991 2.28 0.0025–5
Lactosylceramide d18:1-12:0 y = (3.87 × 106)x − 4.48 × 103 0.991 5.09 0.01–1

LPC 16:0-d3 y = (7.51 × 106)x − 1.40 × 103 0.991 2.03 0.0025–5
PAF 18:0-d4 y = (2.18 × 107)x − 7.87 × 102 0.990 0.45 0.0005–5

LysoPAF 18:0-d4 y = (1.21 × 107)x − 3.45 × 103 0.991 1.87 0.0025–5
Sphinganine d17:0 y = (6.41 × 106)x + 7.79 × 103 0.985 4.90 0.005–5

Sphinganine 1P d17:0 y = (3.93 × 106)x − 1.30 × 103 0.983 2.21 0.0025–5
Sphingosine d17:1 y = (2.12 × 107)x + 6.83 × 103 0.991 1.12 0.0025–2.5

Sphingosine 1P d17:1 y = (9.83 × 105)x − 5.92 × 103 0.983 29.17 0.025–5

Table 2. Accuracy and precision of the IS in the LC–MS/MS method.

Compound
Low (n = 5, %) Middle (n = 5, %) High (n = 5, %) Extraction

Recovery
(n = 3, %)Accuracy Precision Accuracy Precision Accuracy Precision

Acylcarnitine 18:0-d3 101.2 22.1 95.6 9.3 99.5 1.4 100.2 ± 10.0
Ceramide 1P d18:1-12:0 96.6 30.3 92.8 3.9 102.8 3.3 103.2 ± 8.1

Cholic acid-d5 98.3 18.6 105.0 4.4 102.2 5.6 111.1 ± 10.3
FA 18:0-d3 101.0 30.8 96.3 4.8 93.8 2.3 104.0 ± 7.4

Glucosylceramide
d18:1-12:0 104.3 24.4 90.3 5.4 109.6 4.5 104.5 ± 12.1

Lactosylceramide
d18:1-12:0 106.1 13.6 92.8 5.2 110.5 5.5 110.4 ± 8.0

LPC 16:0-d3 99.8 21.7 106.3 3.9 86.7 1.7 63.0 ± 3.8
PAF 18:0-d4 97.6 23.9 104.5 5.6 80.0 2.5 105.2 ± 8.8

LysoPAF 18:0-d4 97.4 19.9 100.1 10.7 85.5 3.9 106.9 ± 3.0
Sphinganine d17:0 99.3 26.2 103.3 7.0 87.1 4.8 102.9 ± 10.2

Sphinganine 1P d17:0 112.9 23.6 94.0 2.9 118.0 3.1 103.8 ± 5.4
Sphingosine d17:1 93.9 12.0 105.2 9.1 86.3 2.1 111.5 ± 5.9

Sphingosine 1P d17:1 109.5 31.1 92.7 5.1 112.1 2.3 102.6 ± 12.8

Before sample preparation, the extraction recoveries for lipids from human plasma
were determined by adding a known amount of IS mixtures (the concentration of each stan-
dard is described in Section 2.4). Except for LPC, the recoveries for the tested compounds
ranged from 100.2% to 111.5%, indicating that the extraction of lipids from plasma could
be quantitatively performed. Although the extraction recovery of LPC was slightly worse
(63.0%) than that of the others in this study, the effect of reduced recovery due to sample
preparation can be compensated for by spiking with isotope-labeled standards.

3.2. Comparison of Analytical Results with and without Normalization

This study measured 10,833 samples, with each batch consisting of 40 samples. We
prepared a pooled QC sample at the beginning of the study and aliquots of the same pooled
QC sample were used across all batches for the entire study. QC samples were measured
first and last, and for every ten samples; therefore, 5 QC samples were measured for each
batch, and 1376 QC samples were analyzed in all batches. The mass spectrometer was
autocalibrated every three months, with maintenance performed once a year. Finally, it
took 1580 days to measure all samples. Figure 2 shows the normalization strategy adopted
in this study. The median value of each lipid was calculated from the quantitative values of
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the five QC samples measured in the same batch, and the relative value of each lipid in the
sample was obtained by dividing by this value.
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Figure 2. The quantitative and normalization method adopted in this study.

Figure 3 shows the relative areas of the QC samples. Each relative area was divided by
the average of those in all QC samples, and, therefore, the horizontal bar at y = 1.0 was the
ideal line without any variations. Figure 3A shows the variations in FA, including FA 18:0,
FA 18:1, FA 18:2, and FA 22:6. Figure 3B shows the variations in lactosylceramide, including
lactosylceramide d18:1-14:0, lactosylceramide d18:1-16:0, lactosylceramide d18:1-18:0, and
lactosylceramide d18:1-24:1. FA 18:0 exhibited relatively small variations, whereas FA 22:6
exhibited relatively large variations. Figure 3C shows chromatograms of the FA. Compared
to FA 18:0, the retention time (RT) of the FA 22:6 was significantly different from that
of the IS and exhibited a larger variation. This trend was the same for lactosylceramide
(Figure 3D). Lactosylceramide d18:1-14:0, whose RT was closest to that of the IS, exhibited
quantified data close to 1.0. Additionally, lactosylceramide d18:1-18:0 and lactosylceramide
d18:1-24:1, whose RT was significantly different from that of the IS, exhibited a large
difference. This large difference indicates that the fluctuations of these peaks were different
from those of the IS. Among the 147 metabolites in the QC samples, the CV among batches
(inter-CV) and the CV in a batch (intra-CV) are shown in Figure 3E,F. The median values of
the inter- and intra-CV were 17.8% and 10.6%, respectively, indicating that the variance
among batches was smaller.
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Figure 3. Fluctuation of the relative peak areas in the QC samples from multiple batches. (A,C) The
FA data. (B,D) The lactosylceramide data. (A,B) Fluctuation of the relative peak area; that is, the
peak area divided by the corresponding IS peak area. The X-axis indicates the QC sample number.
(C,D) Representative chromatograms. (E) Histogram of the interbatch data. (F) Histogram of the
intrabatch data. (E,F) The X- and Y-axes indicate the CV values and frequencies, respectively, of
147 metabolites.

Figure 4 shows the effect of normalization using QC samples on the peaks in the sample
data. Figure 4A,B show the quantified data for FA 18:1 before and after normalization.
The data for FA 18:1 before normalization exhibited a horizontally flat trend, and most
of the data were less than 50 µM. Although several data at the sample numbers around
No. 4800 exhibited conspicuously high values over 100 µM (Figure 4A), all data were flat
after normalization (Figure 4B). Figure 4C,D show the quantified data for lactosylceramide
d18:1-16:0 before and after normalization, respectively. The quantified data exhibited larger
fluctuations than that of FA 18:1. These fluctuations did not follow a random trend, but
the curves showed some patterns, for example, a gradual increase between samples No. 1
and 4000 (Figure 4C). In addition, abrupt changes were observed at around 4000, 7000, and
10,000 chromatographic runs, which correspond to annual instrument maintenance. After
normalization, these patterns disappeared, and all data showed a horizontally flat trend
(Figure 4D). The median value of the inter-CV before normalization was 20.8% (Figure 4E).
After normalization, these values decreased to 14.7% (Figure 4F). The median value of the
intra-CV before normalization was 44.3% and decreased to 42.0% after normalization.
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Figure 4. Comparison of the quantified values of the two metabolites without and with normalization.
(A,B) The FA 18:1 data. (C,D) The lactosylceramide d18:1-16:0 data. (E,F) Histograms of the interbatch
data. (G,H) Histograms of the intrabatch data. (E–H) The X- and Y-axes indicate the CV values and
frequencies, respectively, of 147 metabolites.

3.3. Data Analysis

The effect of normalization on the subsequent statistical analyses was analyzed.
Figure 5 shows the relationship between lipid profile and gender, and Figure 5A,B show
the score plots of PLS-DA using the data without and with normalization, respectively.
The analyses using the data without and with normalization using up to five components
resulted in R2 = 0.859, Q2 = 0.856 ± 4.49×10−5 and R2 = 0.859, Q2 = 0.856 ± 1.30 × 10−4,
respectively. The metabolites showing high variable importance in projection (VIP) scores
within the top 20 without and with normalized data are shown in Figure 5C,D, respectively.
Both results include testosterone, one of the androgens, which consistently showed the
largest VIP value. Acylcarnitine 20:4, FA 12:0, FA 14:1, FA 18:3, FA 12:1, lactosylceramide
d18:1-14:0, acylcarnitine 20:3, and acylcarnitine 20:5 were included within the top ten VIP
scores, although the orders were slightly different among them. As an inconsistent result,
progesterone and LPC 20:2 were included in the analysis without normalized data, and
glucosylceramide d18:1-18:0 was included in the analysis with normalized data.
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Figure 5. The relationship between gender and metabolomic profile using PLS-DA. (A,B) Score plots.
(C,D) VIP scores. (A,C) Analytical results using the data without normalization and (B,D) analytical
results using the data with normalization.

The effect of the lipidomic profile on age was analyzed using PLS-DA, and the score
plots are shown in Figure 6A,B. PLS-DA resulted in R2 = 0.521, Q2 = 0.515 ± 3.73 × 104

using the data without normalization, and R2 = 0.527, Q2 = 0.519 ± 1.89 × 10−4 using the
data with normalization. The VIP scores are shown in Figure 6C,D. Progesterone levels
declined with age, and all other metabolites were included. FA 20:5 and acylcarnitine
20:5 were ranked first and second, respectively. FA 22:6 and acylcarnitine 22:5 were also
consistently included, although the order differed. Lactosylceramide 18:0 was included in
the data without normalization, whereas LPE 22:6, LPC 20:5, and LPC 24:0 were included
in the data with normalization.

The PatternHunter function was used to identify metabolites that showed monotonous
increases and decreases with age. The analyzed results using the data with and without
normalization are shown in Figure 6E,F, respectively. FA 20:5 consistently showed the
highest positive absolute correlation values in both results. Acylcarnitine 22:5, FA 22:6,
and acylcarnitine 20:5 were included in the data without normalization. The negative
correlation included progesterone and lysoPAF 18:0. Four metabolites of lactosylceramide
and four metabolites of glucosylceramide were included. Only glucosylceramide d18:1-22:2
was included in the normalized data.
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Figure 6. The relationship between ages and metabolomic profile using PLS-DA and PatternHunter.
(A,B) Score plots. (C,D) VIP scores. (E,F) Correlations produced using PatternHunter. (A,C,E) Ana-
lytical results using the data without normalization and (B,D,E) analytical results using the data with
normalization.

4. Conclusions

A method for the long-term stable measurement of lipid components contained in the
plasma of more than 10,000 samples was developed in this study. Long-term quantification
of stability using IS representing each lipid group alone is inadequate. In particular, lipids
with a larger distance from the IS in the time dimension show large fluctuations. To
minimize this problem, a method for correcting the median value of QC samples measured
multiple times in the same batch was examined. Using this method, the interbatch CV
decreased from 20.8% (before correction) to 14.7% (after correction). Several lipids were
also found to be correlated with age and gender.

In this study, all samples were analyzed using a single instrument. The usefulness of
this method should be verified in the future by examining multiple apparatus, apparatus
from various vendors, and multiple laboratories.

In conclusion, the correction method used in this study is versatile for various
metabolome analyses, even in the long-term measurement of multiple samples, such
as cohort studies.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/metabo13040558/s1, Table S1: Optimized MRM settings for target
lipids. Table S2: Accuracy and precision results at 19 standard calibration concentration points.
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